Description: A singleton is a Moore collection, biconditional version. (Contributed by BJ, 9-Dec-2021) (Proof shortened by BJ, 10-Apr-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-snmooreb | |- ( A e. _V <-> { A } e. Moore_ ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bj-snmoore |  |-  ( A e. _V -> { A } e. Moore_ ) | |
| 2 | snprc |  |-  ( -. A e. _V <-> { A } = (/) ) | |
| 3 | 2 | biimpi |  |-  ( -. A e. _V -> { A } = (/) ) | 
| 4 | bj-0nmoore | |- -. (/) e. Moore_ | |
| 5 | 4 | a1i | |- ( -. A e. _V -> -. (/) e. Moore_ ) | 
| 6 | 3 5 | eqneltrd |  |-  ( -. A e. _V -> -. { A } e. Moore_ ) | 
| 7 | 6 | con4i |  |-  ( { A } e. Moore_ -> A e. _V ) | 
| 8 | 1 7 | impbii |  |-  ( A e. _V <-> { A } e. Moore_ ) |