Metamath Proof Explorer


Theorem bj-snmooreb

Description: A singleton is a Moore collection, biconditional version. (Contributed by BJ, 9-Dec-2021) (Proof shortened by BJ, 10-Apr-2024)

Ref Expression
Assertion bj-snmooreb
|- ( A e. _V <-> { A } e. Moore_ )

Proof

Step Hyp Ref Expression
1 bj-snmoore
 |-  ( A e. _V -> { A } e. Moore_ )
2 snprc
 |-  ( -. A e. _V <-> { A } = (/) )
3 2 biimpi
 |-  ( -. A e. _V -> { A } = (/) )
4 bj-0nmoore
 |-  -. (/) e. Moore_
5 4 a1i
 |-  ( -. A e. _V -> -. (/) e. Moore_ )
6 3 5 eqneltrd
 |-  ( -. A e. _V -> -. { A } e. Moore_ )
7 6 con4i
 |-  ( { A } e. Moore_ -> A e. _V )
8 1 7 impbii
 |-  ( A e. _V <-> { A } e. Moore_ )