Metamath Proof Explorer


Theorem bj-snmooreb

Description: A singleton is a Moore collection, biconditional version. (Contributed by BJ, 9-Dec-2021) (Proof shortened by BJ, 10-Apr-2024)

Ref Expression
Assertion bj-snmooreb A V A Moore _

Proof

Step Hyp Ref Expression
1 bj-snmoore A V A Moore _
2 snprc ¬ A V A =
3 2 biimpi ¬ A V A =
4 bj-0nmoore ¬ Moore _
5 4 a1i ¬ A V ¬ Moore _
6 3 5 eqneltrd ¬ A V ¬ A Moore _
7 6 con4i A Moore _ A V
8 1 7 impbii A V A Moore _