| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pm3.22 |  | 
						
							| 2 | 1 | adantrr |  | 
						
							| 3 |  | uniprg |  | 
						
							| 4 | 2 3 | syl |  | 
						
							| 5 |  | simprr |  | 
						
							| 6 |  | ssequn1 |  | 
						
							| 7 | 5 6 | sylib |  | 
						
							| 8 | 4 7 | eqtrd |  | 
						
							| 9 |  | prid2g |  | 
						
							| 10 | 9 | adantr |  | 
						
							| 11 | 8 10 | eqeltrd |  | 
						
							| 12 |  | biid |  | 
						
							| 13 | 12 | bianass |  | 
						
							| 14 |  | inteq |  | 
						
							| 15 |  | intsng |  | 
						
							| 16 | 15 | adantl |  | 
						
							| 17 | 14 16 | sylan9eqr |  | 
						
							| 18 |  | prid1g |  | 
						
							| 19 | 18 | adantl |  | 
						
							| 20 | 19 | adantr |  | 
						
							| 21 | 17 20 | eqeltrd |  | 
						
							| 22 | 21 | ex |  | 
						
							| 23 | 22 | adantr |  | 
						
							| 24 |  | inteq |  | 
						
							| 25 |  | intsng |  | 
						
							| 26 | 25 | adantr |  | 
						
							| 27 | 24 26 | sylan9eqr |  | 
						
							| 28 | 9 | ad2antrr |  | 
						
							| 29 | 27 28 | eqeltrd |  | 
						
							| 30 | 29 | ex |  | 
						
							| 31 | 30 | adantr |  | 
						
							| 32 |  | inteq |  | 
						
							| 33 | 32 | adantl |  | 
						
							| 34 | 1 | ad2antrr |  | 
						
							| 35 |  | intprg |  | 
						
							| 36 | 34 35 | syl |  | 
						
							| 37 |  | dfss2 |  | 
						
							| 38 | 37 | biimpi |  | 
						
							| 39 | 38 | adantl |  | 
						
							| 40 | 39 | adantr |  | 
						
							| 41 | 33 36 40 | 3eqtrd |  | 
						
							| 42 | 18 | ad3antlr |  | 
						
							| 43 | 41 42 | eqeltrd |  | 
						
							| 44 | 43 | ex |  | 
						
							| 45 | 31 44 | jaod |  | 
						
							| 46 | 23 45 | jaod |  | 
						
							| 47 |  | sspr |  | 
						
							| 48 |  | andir |  | 
						
							| 49 |  | andir |  | 
						
							| 50 |  | eqneqall |  | 
						
							| 51 | 50 | imp |  | 
						
							| 52 |  | simpl |  | 
						
							| 53 | 51 52 | orim12i |  | 
						
							| 54 |  | falim |  | 
						
							| 55 | 54 | bj-jaoi1 |  | 
						
							| 56 | 53 55 | syl |  | 
						
							| 57 | 49 56 | sylbi |  | 
						
							| 58 |  | simpl |  | 
						
							| 59 | 57 58 | orim12i |  | 
						
							| 60 | 48 59 | sylbi |  | 
						
							| 61 | 47 60 | sylanb |  | 
						
							| 62 | 46 61 | impel |  | 
						
							| 63 | 13 62 | sylanb |  | 
						
							| 64 | 11 63 | bj-ismooredr2 |  | 
						
							| 65 |  | pm3.22 |  | 
						
							| 66 | 65 | adantrr |  | 
						
							| 67 |  | prprc2 |  | 
						
							| 68 | 67 | adantl |  | 
						
							| 69 | 68 | eqcomd |  | 
						
							| 70 | 66 69 | syl |  | 
						
							| 71 |  | bj-snmoore |  | 
						
							| 72 | 71 | ad2antrl |  | 
						
							| 73 | 70 72 | eqeltrrd |  | 
						
							| 74 | 64 73 | pm2.61ian |  |