Step |
Hyp |
Ref |
Expression |
1 |
|
pm3.22 |
|
2 |
1
|
adantrr |
|
3 |
|
uniprg |
|
4 |
2 3
|
syl |
|
5 |
|
simprr |
|
6 |
|
ssequn1 |
|
7 |
5 6
|
sylib |
|
8 |
4 7
|
eqtrd |
|
9 |
|
prid2g |
|
10 |
9
|
adantr |
|
11 |
8 10
|
eqeltrd |
|
12 |
|
biid |
|
13 |
12
|
bianass |
|
14 |
|
inteq |
|
15 |
|
intsng |
|
16 |
15
|
adantl |
|
17 |
14 16
|
sylan9eqr |
|
18 |
|
prid1g |
|
19 |
18
|
adantl |
|
20 |
19
|
adantr |
|
21 |
17 20
|
eqeltrd |
|
22 |
21
|
ex |
|
23 |
22
|
adantr |
|
24 |
|
inteq |
|
25 |
|
intsng |
|
26 |
25
|
adantr |
|
27 |
24 26
|
sylan9eqr |
|
28 |
9
|
ad2antrr |
|
29 |
27 28
|
eqeltrd |
|
30 |
29
|
ex |
|
31 |
30
|
adantr |
|
32 |
|
inteq |
|
33 |
32
|
adantl |
|
34 |
1
|
ad2antrr |
|
35 |
|
intprg |
|
36 |
34 35
|
syl |
|
37 |
|
df-ss |
|
38 |
37
|
biimpi |
|
39 |
38
|
adantl |
|
40 |
39
|
adantr |
|
41 |
33 36 40
|
3eqtrd |
|
42 |
18
|
ad3antlr |
|
43 |
41 42
|
eqeltrd |
|
44 |
43
|
ex |
|
45 |
31 44
|
jaod |
|
46 |
23 45
|
jaod |
|
47 |
|
sspr |
|
48 |
|
andir |
|
49 |
|
andir |
|
50 |
|
eqneqall |
|
51 |
50
|
imp |
|
52 |
|
simpl |
|
53 |
51 52
|
orim12i |
|
54 |
|
falim |
|
55 |
54
|
bj-jaoi1 |
|
56 |
53 55
|
syl |
|
57 |
49 56
|
sylbi |
|
58 |
|
simpl |
|
59 |
57 58
|
orim12i |
|
60 |
48 59
|
sylbi |
|
61 |
47 60
|
sylanb |
|
62 |
46 61
|
impel |
|
63 |
13 62
|
sylanb |
|
64 |
11 63
|
bj-ismooredr2 |
|
65 |
|
pm3.22 |
|
66 |
65
|
adantrr |
|
67 |
|
prprc2 |
|
68 |
67
|
adantl |
|
69 |
68
|
eqcomd |
|
70 |
66 69
|
syl |
|
71 |
|
bj-snmoore |
|
72 |
71
|
ad2antrl |
|
73 |
70 72
|
eqeltrrd |
|
74 |
64 73
|
pm2.61ian |
|