Description: A pair formed of two nested sets is a Moore collection. (Note that in the statement, if B is a proper class, we are in the case of bj-snmoore ). A direct consequence is |- { (/) , A } e. Moore_ .
More generally, any nonempty well-ordered chain of sets that is a set is a Moore collection.
We also have the biconditional |- ( ( A i^i B ) e. V -> ( { A , B } e. Moore_ <-> ( A C_ B \/ B C_ A ) ) ) . (Contributed by BJ, 11-Apr-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-prmoore | |- ( ( A e. V /\ A C_ B ) -> { A , B } e. Moore_ ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm3.22 | |- ( ( B e. _V /\ A e. V ) -> ( A e. V /\ B e. _V ) ) | |
| 2 | 1 | adantrr | |- ( ( B e. _V /\ ( A e. V /\ A C_ B ) ) -> ( A e. V /\ B e. _V ) ) | 
| 3 | uniprg |  |-  ( ( A e. V /\ B e. _V ) -> U. { A , B } = ( A u. B ) ) | |
| 4 | 2 3 | syl |  |-  ( ( B e. _V /\ ( A e. V /\ A C_ B ) ) -> U. { A , B } = ( A u. B ) ) | 
| 5 | simprr | |- ( ( B e. _V /\ ( A e. V /\ A C_ B ) ) -> A C_ B ) | |
| 6 | ssequn1 | |- ( A C_ B <-> ( A u. B ) = B ) | |
| 7 | 5 6 | sylib | |- ( ( B e. _V /\ ( A e. V /\ A C_ B ) ) -> ( A u. B ) = B ) | 
| 8 | 4 7 | eqtrd |  |-  ( ( B e. _V /\ ( A e. V /\ A C_ B ) ) -> U. { A , B } = B ) | 
| 9 | prid2g |  |-  ( B e. _V -> B e. { A , B } ) | |
| 10 | 9 | adantr |  |-  ( ( B e. _V /\ ( A e. V /\ A C_ B ) ) -> B e. { A , B } ) | 
| 11 | 8 10 | eqeltrd |  |-  ( ( B e. _V /\ ( A e. V /\ A C_ B ) ) -> U. { A , B } e. { A , B } ) | 
| 12 | biid | |- ( ( A e. V /\ A C_ B ) <-> ( A e. V /\ A C_ B ) ) | |
| 13 | 12 | bianass | |- ( ( B e. _V /\ ( A e. V /\ A C_ B ) ) <-> ( ( B e. _V /\ A e. V ) /\ A C_ B ) ) | 
| 14 | inteq |  |-  ( x = { A } -> |^| x = |^| { A } ) | |
| 15 | intsng |  |-  ( A e. V -> |^| { A } = A ) | |
| 16 | 15 | adantl |  |-  ( ( B e. _V /\ A e. V ) -> |^| { A } = A ) | 
| 17 | 14 16 | sylan9eqr |  |-  ( ( ( B e. _V /\ A e. V ) /\ x = { A } ) -> |^| x = A ) | 
| 18 | prid1g |  |-  ( A e. V -> A e. { A , B } ) | |
| 19 | 18 | adantl |  |-  ( ( B e. _V /\ A e. V ) -> A e. { A , B } ) | 
| 20 | 19 | adantr |  |-  ( ( ( B e. _V /\ A e. V ) /\ x = { A } ) -> A e. { A , B } ) | 
| 21 | 17 20 | eqeltrd |  |-  ( ( ( B e. _V /\ A e. V ) /\ x = { A } ) -> |^| x e. { A , B } ) | 
| 22 | 21 | ex |  |-  ( ( B e. _V /\ A e. V ) -> ( x = { A } -> |^| x e. { A , B } ) ) | 
| 23 | 22 | adantr |  |-  ( ( ( B e. _V /\ A e. V ) /\ A C_ B ) -> ( x = { A } -> |^| x e. { A , B } ) ) | 
| 24 | inteq |  |-  ( x = { B } -> |^| x = |^| { B } ) | |
| 25 | intsng |  |-  ( B e. _V -> |^| { B } = B ) | |
| 26 | 25 | adantr |  |-  ( ( B e. _V /\ A e. V ) -> |^| { B } = B ) | 
| 27 | 24 26 | sylan9eqr |  |-  ( ( ( B e. _V /\ A e. V ) /\ x = { B } ) -> |^| x = B ) | 
| 28 | 9 | ad2antrr |  |-  ( ( ( B e. _V /\ A e. V ) /\ x = { B } ) -> B e. { A , B } ) | 
| 29 | 27 28 | eqeltrd |  |-  ( ( ( B e. _V /\ A e. V ) /\ x = { B } ) -> |^| x e. { A , B } ) | 
| 30 | 29 | ex |  |-  ( ( B e. _V /\ A e. V ) -> ( x = { B } -> |^| x e. { A , B } ) ) | 
| 31 | 30 | adantr |  |-  ( ( ( B e. _V /\ A e. V ) /\ A C_ B ) -> ( x = { B } -> |^| x e. { A , B } ) ) | 
| 32 | inteq |  |-  ( x = { A , B } -> |^| x = |^| { A , B } ) | |
| 33 | 32 | adantl |  |-  ( ( ( ( B e. _V /\ A e. V ) /\ A C_ B ) /\ x = { A , B } ) -> |^| x = |^| { A , B } ) | 
| 34 | 1 | ad2antrr |  |-  ( ( ( ( B e. _V /\ A e. V ) /\ A C_ B ) /\ x = { A , B } ) -> ( A e. V /\ B e. _V ) ) | 
| 35 | intprg |  |-  ( ( A e. V /\ B e. _V ) -> |^| { A , B } = ( A i^i B ) ) | |
| 36 | 34 35 | syl |  |-  ( ( ( ( B e. _V /\ A e. V ) /\ A C_ B ) /\ x = { A , B } ) -> |^| { A , B } = ( A i^i B ) ) | 
| 37 | dfss2 | |- ( A C_ B <-> ( A i^i B ) = A ) | |
| 38 | 37 | biimpi | |- ( A C_ B -> ( A i^i B ) = A ) | 
| 39 | 38 | adantl | |- ( ( ( B e. _V /\ A e. V ) /\ A C_ B ) -> ( A i^i B ) = A ) | 
| 40 | 39 | adantr |  |-  ( ( ( ( B e. _V /\ A e. V ) /\ A C_ B ) /\ x = { A , B } ) -> ( A i^i B ) = A ) | 
| 41 | 33 36 40 | 3eqtrd |  |-  ( ( ( ( B e. _V /\ A e. V ) /\ A C_ B ) /\ x = { A , B } ) -> |^| x = A ) | 
| 42 | 18 | ad3antlr |  |-  ( ( ( ( B e. _V /\ A e. V ) /\ A C_ B ) /\ x = { A , B } ) -> A e. { A , B } ) | 
| 43 | 41 42 | eqeltrd |  |-  ( ( ( ( B e. _V /\ A e. V ) /\ A C_ B ) /\ x = { A , B } ) -> |^| x e. { A , B } ) | 
| 44 | 43 | ex |  |-  ( ( ( B e. _V /\ A e. V ) /\ A C_ B ) -> ( x = { A , B } -> |^| x e. { A , B } ) ) | 
| 45 | 31 44 | jaod |  |-  ( ( ( B e. _V /\ A e. V ) /\ A C_ B ) -> ( ( x = { B } \/ x = { A , B } ) -> |^| x e. { A , B } ) ) | 
| 46 | 23 45 | jaod |  |-  ( ( ( B e. _V /\ A e. V ) /\ A C_ B ) -> ( ( x = { A } \/ ( x = { B } \/ x = { A , B } ) ) -> |^| x e. { A , B } ) ) | 
| 47 | sspr |  |-  ( x C_ { A , B } <-> ( ( x = (/) \/ x = { A } ) \/ ( x = { B } \/ x = { A , B } ) ) ) | |
| 48 | andir |  |-  ( ( ( ( x = (/) \/ x = { A } ) \/ ( x = { B } \/ x = { A , B } ) ) /\ x =/= (/) ) <-> ( ( ( x = (/) \/ x = { A } ) /\ x =/= (/) ) \/ ( ( x = { B } \/ x = { A , B } ) /\ x =/= (/) ) ) ) | |
| 49 | andir |  |-  ( ( ( x = (/) \/ x = { A } ) /\ x =/= (/) ) <-> ( ( x = (/) /\ x =/= (/) ) \/ ( x = { A } /\ x =/= (/) ) ) ) | |
| 50 | eqneqall | |- ( x = (/) -> ( x =/= (/) -> F. ) ) | |
| 51 | 50 | imp | |- ( ( x = (/) /\ x =/= (/) ) -> F. ) | 
| 52 | simpl |  |-  ( ( x = { A } /\ x =/= (/) ) -> x = { A } ) | |
| 53 | 51 52 | orim12i |  |-  ( ( ( x = (/) /\ x =/= (/) ) \/ ( x = { A } /\ x =/= (/) ) ) -> ( F. \/ x = { A } ) ) | 
| 54 | falim |  |-  ( F. -> x = { A } ) | |
| 55 | 54 | bj-jaoi1 |  |-  ( ( F. \/ x = { A } ) -> x = { A } ) | 
| 56 | 53 55 | syl |  |-  ( ( ( x = (/) /\ x =/= (/) ) \/ ( x = { A } /\ x =/= (/) ) ) -> x = { A } ) | 
| 57 | 49 56 | sylbi |  |-  ( ( ( x = (/) \/ x = { A } ) /\ x =/= (/) ) -> x = { A } ) | 
| 58 | simpl |  |-  ( ( ( x = { B } \/ x = { A , B } ) /\ x =/= (/) ) -> ( x = { B } \/ x = { A , B } ) ) | |
| 59 | 57 58 | orim12i |  |-  ( ( ( ( x = (/) \/ x = { A } ) /\ x =/= (/) ) \/ ( ( x = { B } \/ x = { A , B } ) /\ x =/= (/) ) ) -> ( x = { A } \/ ( x = { B } \/ x = { A , B } ) ) ) | 
| 60 | 48 59 | sylbi |  |-  ( ( ( ( x = (/) \/ x = { A } ) \/ ( x = { B } \/ x = { A , B } ) ) /\ x =/= (/) ) -> ( x = { A } \/ ( x = { B } \/ x = { A , B } ) ) ) | 
| 61 | 47 60 | sylanb |  |-  ( ( x C_ { A , B } /\ x =/= (/) ) -> ( x = { A } \/ ( x = { B } \/ x = { A , B } ) ) ) | 
| 62 | 46 61 | impel |  |-  ( ( ( ( B e. _V /\ A e. V ) /\ A C_ B ) /\ ( x C_ { A , B } /\ x =/= (/) ) ) -> |^| x e. { A , B } ) | 
| 63 | 13 62 | sylanb |  |-  ( ( ( B e. _V /\ ( A e. V /\ A C_ B ) ) /\ ( x C_ { A , B } /\ x =/= (/) ) ) -> |^| x e. { A , B } ) | 
| 64 | 11 63 | bj-ismooredr2 |  |-  ( ( B e. _V /\ ( A e. V /\ A C_ B ) ) -> { A , B } e. Moore_ ) | 
| 65 | pm3.22 | |- ( ( -. B e. _V /\ A e. V ) -> ( A e. V /\ -. B e. _V ) ) | |
| 66 | 65 | adantrr | |- ( ( -. B e. _V /\ ( A e. V /\ A C_ B ) ) -> ( A e. V /\ -. B e. _V ) ) | 
| 67 | prprc2 |  |-  ( -. B e. _V -> { A , B } = { A } ) | |
| 68 | 67 | adantl |  |-  ( ( A e. V /\ -. B e. _V ) -> { A , B } = { A } ) | 
| 69 | 68 | eqcomd |  |-  ( ( A e. V /\ -. B e. _V ) -> { A } = { A , B } ) | 
| 70 | 66 69 | syl |  |-  ( ( -. B e. _V /\ ( A e. V /\ A C_ B ) ) -> { A } = { A , B } ) | 
| 71 | bj-snmoore |  |-  ( A e. V -> { A } e. Moore_ ) | |
| 72 | 71 | ad2antrl |  |-  ( ( -. B e. _V /\ ( A e. V /\ A C_ B ) ) -> { A } e. Moore_ ) | 
| 73 | 70 72 | eqeltrrd |  |-  ( ( -. B e. _V /\ ( A e. V /\ A C_ B ) ) -> { A , B } e. Moore_ ) | 
| 74 | 64 73 | pm2.61ian |  |-  ( ( A e. V /\ A C_ B ) -> { A , B } e. Moore_ ) |