| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj1326.1 |
⊢ 𝐵 = { 𝑑 ∣ ( 𝑑 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) } |
| 2 |
|
bnj1326.2 |
⊢ 𝑌 = 〈 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 |
| 3 |
|
bnj1326.3 |
⊢ 𝐶 = { 𝑓 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) } |
| 4 |
|
bnj1326.4 |
⊢ 𝐷 = ( dom 𝑔 ∩ dom ℎ ) |
| 5 |
|
eleq1w |
⊢ ( 𝑞 = ℎ → ( 𝑞 ∈ 𝐶 ↔ ℎ ∈ 𝐶 ) ) |
| 6 |
5
|
3anbi3d |
⊢ ( 𝑞 = ℎ → ( ( 𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ 𝑞 ∈ 𝐶 ) ↔ ( 𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ) ) ) |
| 7 |
|
dmeq |
⊢ ( 𝑞 = ℎ → dom 𝑞 = dom ℎ ) |
| 8 |
7
|
ineq2d |
⊢ ( 𝑞 = ℎ → ( dom 𝑔 ∩ dom 𝑞 ) = ( dom 𝑔 ∩ dom ℎ ) ) |
| 9 |
8
|
reseq2d |
⊢ ( 𝑞 = ℎ → ( 𝑔 ↾ ( dom 𝑔 ∩ dom 𝑞 ) ) = ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) ) |
| 10 |
4
|
reseq2i |
⊢ ( 𝑔 ↾ 𝐷 ) = ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) |
| 11 |
9 10
|
eqtr4di |
⊢ ( 𝑞 = ℎ → ( 𝑔 ↾ ( dom 𝑔 ∩ dom 𝑞 ) ) = ( 𝑔 ↾ 𝐷 ) ) |
| 12 |
8
|
reseq2d |
⊢ ( 𝑞 = ℎ → ( 𝑞 ↾ ( dom 𝑔 ∩ dom 𝑞 ) ) = ( 𝑞 ↾ ( dom 𝑔 ∩ dom ℎ ) ) ) |
| 13 |
|
reseq1 |
⊢ ( 𝑞 = ℎ → ( 𝑞 ↾ ( dom 𝑔 ∩ dom ℎ ) ) = ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ) |
| 14 |
12 13
|
eqtrd |
⊢ ( 𝑞 = ℎ → ( 𝑞 ↾ ( dom 𝑔 ∩ dom 𝑞 ) ) = ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ) |
| 15 |
4
|
reseq2i |
⊢ ( ℎ ↾ 𝐷 ) = ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) |
| 16 |
14 15
|
eqtr4di |
⊢ ( 𝑞 = ℎ → ( 𝑞 ↾ ( dom 𝑔 ∩ dom 𝑞 ) ) = ( ℎ ↾ 𝐷 ) ) |
| 17 |
11 16
|
eqeq12d |
⊢ ( 𝑞 = ℎ → ( ( 𝑔 ↾ ( dom 𝑔 ∩ dom 𝑞 ) ) = ( 𝑞 ↾ ( dom 𝑔 ∩ dom 𝑞 ) ) ↔ ( 𝑔 ↾ 𝐷 ) = ( ℎ ↾ 𝐷 ) ) ) |
| 18 |
6 17
|
imbi12d |
⊢ ( 𝑞 = ℎ → ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ 𝑞 ∈ 𝐶 ) → ( 𝑔 ↾ ( dom 𝑔 ∩ dom 𝑞 ) ) = ( 𝑞 ↾ ( dom 𝑔 ∩ dom 𝑞 ) ) ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ) → ( 𝑔 ↾ 𝐷 ) = ( ℎ ↾ 𝐷 ) ) ) ) |
| 19 |
|
eleq1w |
⊢ ( 𝑝 = 𝑔 → ( 𝑝 ∈ 𝐶 ↔ 𝑔 ∈ 𝐶 ) ) |
| 20 |
19
|
3anbi2d |
⊢ ( 𝑝 = 𝑔 → ( ( 𝑅 FrSe 𝐴 ∧ 𝑝 ∈ 𝐶 ∧ 𝑞 ∈ 𝐶 ) ↔ ( 𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ 𝑞 ∈ 𝐶 ) ) ) |
| 21 |
|
dmeq |
⊢ ( 𝑝 = 𝑔 → dom 𝑝 = dom 𝑔 ) |
| 22 |
21
|
ineq1d |
⊢ ( 𝑝 = 𝑔 → ( dom 𝑝 ∩ dom 𝑞 ) = ( dom 𝑔 ∩ dom 𝑞 ) ) |
| 23 |
22
|
reseq2d |
⊢ ( 𝑝 = 𝑔 → ( 𝑝 ↾ ( dom 𝑝 ∩ dom 𝑞 ) ) = ( 𝑝 ↾ ( dom 𝑔 ∩ dom 𝑞 ) ) ) |
| 24 |
|
reseq1 |
⊢ ( 𝑝 = 𝑔 → ( 𝑝 ↾ ( dom 𝑔 ∩ dom 𝑞 ) ) = ( 𝑔 ↾ ( dom 𝑔 ∩ dom 𝑞 ) ) ) |
| 25 |
23 24
|
eqtrd |
⊢ ( 𝑝 = 𝑔 → ( 𝑝 ↾ ( dom 𝑝 ∩ dom 𝑞 ) ) = ( 𝑔 ↾ ( dom 𝑔 ∩ dom 𝑞 ) ) ) |
| 26 |
22
|
reseq2d |
⊢ ( 𝑝 = 𝑔 → ( 𝑞 ↾ ( dom 𝑝 ∩ dom 𝑞 ) ) = ( 𝑞 ↾ ( dom 𝑔 ∩ dom 𝑞 ) ) ) |
| 27 |
25 26
|
eqeq12d |
⊢ ( 𝑝 = 𝑔 → ( ( 𝑝 ↾ ( dom 𝑝 ∩ dom 𝑞 ) ) = ( 𝑞 ↾ ( dom 𝑝 ∩ dom 𝑞 ) ) ↔ ( 𝑔 ↾ ( dom 𝑔 ∩ dom 𝑞 ) ) = ( 𝑞 ↾ ( dom 𝑔 ∩ dom 𝑞 ) ) ) ) |
| 28 |
20 27
|
imbi12d |
⊢ ( 𝑝 = 𝑔 → ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑝 ∈ 𝐶 ∧ 𝑞 ∈ 𝐶 ) → ( 𝑝 ↾ ( dom 𝑝 ∩ dom 𝑞 ) ) = ( 𝑞 ↾ ( dom 𝑝 ∩ dom 𝑞 ) ) ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ 𝑞 ∈ 𝐶 ) → ( 𝑔 ↾ ( dom 𝑔 ∩ dom 𝑞 ) ) = ( 𝑞 ↾ ( dom 𝑔 ∩ dom 𝑞 ) ) ) ) ) |
| 29 |
|
eqid |
⊢ ( dom 𝑝 ∩ dom 𝑞 ) = ( dom 𝑝 ∩ dom 𝑞 ) |
| 30 |
1 2 3 29
|
bnj1311 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑝 ∈ 𝐶 ∧ 𝑞 ∈ 𝐶 ) → ( 𝑝 ↾ ( dom 𝑝 ∩ dom 𝑞 ) ) = ( 𝑞 ↾ ( dom 𝑝 ∩ dom 𝑞 ) ) ) |
| 31 |
28 30
|
chvarvv |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ 𝑞 ∈ 𝐶 ) → ( 𝑔 ↾ ( dom 𝑔 ∩ dom 𝑞 ) ) = ( 𝑞 ↾ ( dom 𝑔 ∩ dom 𝑞 ) ) ) |
| 32 |
18 31
|
chvarvv |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ) → ( 𝑔 ↾ 𝐷 ) = ( ℎ ↾ 𝐷 ) ) |