Metamath Proof Explorer


Theorem bnj1467

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1467.1 𝐵 = { 𝑑 ∣ ( 𝑑𝐴 ∧ ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) }
bnj1467.2 𝑌 = ⟨ 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
bnj1467.3 𝐶 = { 𝑓 ∣ ∃ 𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) }
bnj1467.4 ( 𝜏 ↔ ( 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) )
bnj1467.5 𝐷 = { 𝑥𝐴 ∣ ¬ ∃ 𝑓 𝜏 }
bnj1467.6 ( 𝜓 ↔ ( 𝑅 FrSe 𝐴𝐷 ≠ ∅ ) )
bnj1467.7 ( 𝜒 ↔ ( 𝜓𝑥𝐷 ∧ ∀ 𝑦𝐷 ¬ 𝑦 𝑅 𝑥 ) )
bnj1467.8 ( 𝜏′[ 𝑦 / 𝑥 ] 𝜏 )
bnj1467.9 𝐻 = { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝜏′ }
bnj1467.10 𝑃 = 𝐻
bnj1467.11 𝑍 = ⟨ 𝑥 , ( 𝑃 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
bnj1467.12 𝑄 = ( 𝑃 ∪ { ⟨ 𝑥 , ( 𝐺𝑍 ) ⟩ } )
Assertion bnj1467 ( 𝑤𝑄 → ∀ 𝑑 𝑤𝑄 )

Proof

Step Hyp Ref Expression
1 bnj1467.1 𝐵 = { 𝑑 ∣ ( 𝑑𝐴 ∧ ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) }
2 bnj1467.2 𝑌 = ⟨ 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
3 bnj1467.3 𝐶 = { 𝑓 ∣ ∃ 𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) }
4 bnj1467.4 ( 𝜏 ↔ ( 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) )
5 bnj1467.5 𝐷 = { 𝑥𝐴 ∣ ¬ ∃ 𝑓 𝜏 }
6 bnj1467.6 ( 𝜓 ↔ ( 𝑅 FrSe 𝐴𝐷 ≠ ∅ ) )
7 bnj1467.7 ( 𝜒 ↔ ( 𝜓𝑥𝐷 ∧ ∀ 𝑦𝐷 ¬ 𝑦 𝑅 𝑥 ) )
8 bnj1467.8 ( 𝜏′[ 𝑦 / 𝑥 ] 𝜏 )
9 bnj1467.9 𝐻 = { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝜏′ }
10 bnj1467.10 𝑃 = 𝐻
11 bnj1467.11 𝑍 = ⟨ 𝑥 , ( 𝑃 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
12 bnj1467.12 𝑄 = ( 𝑃 ∪ { ⟨ 𝑥 , ( 𝐺𝑍 ) ⟩ } )
13 nfcv 𝑑 pred ( 𝑥 , 𝐴 , 𝑅 )
14 nfcv 𝑑 𝑦
15 nfre1 𝑑𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) )
16 15 nfab 𝑑 { 𝑓 ∣ ∃ 𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) }
17 3 16 nfcxfr 𝑑 𝐶
18 17 nfcri 𝑑 𝑓𝐶
19 nfv 𝑑 dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) )
20 18 19 nfan 𝑑 ( 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) )
21 4 20 nfxfr 𝑑 𝜏
22 14 21 nfsbcw 𝑑 [ 𝑦 / 𝑥 ] 𝜏
23 8 22 nfxfr 𝑑 𝜏′
24 13 23 nfrex 𝑑𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝜏′
25 24 nfab 𝑑 { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝜏′ }
26 9 25 nfcxfr 𝑑 𝐻
27 26 nfuni 𝑑 𝐻
28 10 27 nfcxfr 𝑑 𝑃
29 nfcv 𝑑 𝑥
30 nfcv 𝑑 𝐺
31 28 13 nfres 𝑑 ( 𝑃 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) )
32 29 31 nfop 𝑑𝑥 , ( 𝑃 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
33 11 32 nfcxfr 𝑑 𝑍
34 30 33 nffv 𝑑 ( 𝐺𝑍 )
35 29 34 nfop 𝑑𝑥 , ( 𝐺𝑍 ) ⟩
36 35 nfsn 𝑑 { ⟨ 𝑥 , ( 𝐺𝑍 ) ⟩ }
37 28 36 nfun 𝑑 ( 𝑃 ∪ { ⟨ 𝑥 , ( 𝐺𝑍 ) ⟩ } )
38 12 37 nfcxfr 𝑑 𝑄
39 38 nfcrii ( 𝑤𝑄 → ∀ 𝑑 𝑤𝑄 )