| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj1463.1 |
⊢ 𝐵 = { 𝑑 ∣ ( 𝑑 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) } |
| 2 |
|
bnj1463.2 |
⊢ 𝑌 = 〈 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 |
| 3 |
|
bnj1463.3 |
⊢ 𝐶 = { 𝑓 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) } |
| 4 |
|
bnj1463.4 |
⊢ ( 𝜏 ↔ ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) ) |
| 5 |
|
bnj1463.5 |
⊢ 𝐷 = { 𝑥 ∈ 𝐴 ∣ ¬ ∃ 𝑓 𝜏 } |
| 6 |
|
bnj1463.6 |
⊢ ( 𝜓 ↔ ( 𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅ ) ) |
| 7 |
|
bnj1463.7 |
⊢ ( 𝜒 ↔ ( 𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀ 𝑦 ∈ 𝐷 ¬ 𝑦 𝑅 𝑥 ) ) |
| 8 |
|
bnj1463.8 |
⊢ ( 𝜏′ ↔ [ 𝑦 / 𝑥 ] 𝜏 ) |
| 9 |
|
bnj1463.9 |
⊢ 𝐻 = { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝜏′ } |
| 10 |
|
bnj1463.10 |
⊢ 𝑃 = ∪ 𝐻 |
| 11 |
|
bnj1463.11 |
⊢ 𝑍 = 〈 𝑥 , ( 𝑃 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 |
| 12 |
|
bnj1463.12 |
⊢ 𝑄 = ( 𝑃 ∪ { 〈 𝑥 , ( 𝐺 ‘ 𝑍 ) 〉 } ) |
| 13 |
|
bnj1463.13 |
⊢ 𝑊 = 〈 𝑧 , ( 𝑄 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) 〉 |
| 14 |
|
bnj1463.14 |
⊢ 𝐸 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) |
| 15 |
|
bnj1463.15 |
⊢ ( 𝜒 → 𝑄 ∈ V ) |
| 16 |
|
bnj1463.16 |
⊢ ( 𝜒 → ∀ 𝑧 ∈ 𝐸 ( 𝑄 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑊 ) ) |
| 17 |
|
bnj1463.17 |
⊢ ( 𝜒 → 𝑄 Fn 𝐸 ) |
| 18 |
|
bnj1463.18 |
⊢ ( 𝜒 → 𝐸 ∈ 𝐵 ) |
| 19 |
18
|
elexd |
⊢ ( 𝜒 → 𝐸 ∈ V ) |
| 20 |
|
eleq1 |
⊢ ( 𝑑 = 𝐸 → ( 𝑑 ∈ 𝐵 ↔ 𝐸 ∈ 𝐵 ) ) |
| 21 |
|
fneq2 |
⊢ ( 𝑑 = 𝐸 → ( 𝑄 Fn 𝑑 ↔ 𝑄 Fn 𝐸 ) ) |
| 22 |
|
raleq |
⊢ ( 𝑑 = 𝐸 → ( ∀ 𝑧 ∈ 𝑑 ( 𝑄 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑊 ) ↔ ∀ 𝑧 ∈ 𝐸 ( 𝑄 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑊 ) ) ) |
| 23 |
21 22
|
anbi12d |
⊢ ( 𝑑 = 𝐸 → ( ( 𝑄 Fn 𝑑 ∧ ∀ 𝑧 ∈ 𝑑 ( 𝑄 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑊 ) ) ↔ ( 𝑄 Fn 𝐸 ∧ ∀ 𝑧 ∈ 𝐸 ( 𝑄 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑊 ) ) ) ) |
| 24 |
20 23
|
anbi12d |
⊢ ( 𝑑 = 𝐸 → ( ( 𝑑 ∈ 𝐵 ∧ ( 𝑄 Fn 𝑑 ∧ ∀ 𝑧 ∈ 𝑑 ( 𝑄 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑊 ) ) ) ↔ ( 𝐸 ∈ 𝐵 ∧ ( 𝑄 Fn 𝐸 ∧ ∀ 𝑧 ∈ 𝐸 ( 𝑄 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑊 ) ) ) ) ) |
| 25 |
1
|
bnj1317 |
⊢ ( 𝑤 ∈ 𝐵 → ∀ 𝑑 𝑤 ∈ 𝐵 ) |
| 26 |
25
|
nfcii |
⊢ Ⅎ 𝑑 𝐵 |
| 27 |
26
|
nfel2 |
⊢ Ⅎ 𝑑 𝐸 ∈ 𝐵 |
| 28 |
1 2 3 4 5 6 7 8 9 10 11 12
|
bnj1467 |
⊢ ( 𝑤 ∈ 𝑄 → ∀ 𝑑 𝑤 ∈ 𝑄 ) |
| 29 |
28
|
nfcii |
⊢ Ⅎ 𝑑 𝑄 |
| 30 |
|
nfcv |
⊢ Ⅎ 𝑑 𝐸 |
| 31 |
29 30
|
nffn |
⊢ Ⅎ 𝑑 𝑄 Fn 𝐸 |
| 32 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
bnj1446 |
⊢ ( ( 𝑄 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑊 ) → ∀ 𝑑 ( 𝑄 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑊 ) ) |
| 33 |
32
|
nf5i |
⊢ Ⅎ 𝑑 ( 𝑄 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑊 ) |
| 34 |
30 33
|
nfralw |
⊢ Ⅎ 𝑑 ∀ 𝑧 ∈ 𝐸 ( 𝑄 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑊 ) |
| 35 |
31 34
|
nfan |
⊢ Ⅎ 𝑑 ( 𝑄 Fn 𝐸 ∧ ∀ 𝑧 ∈ 𝐸 ( 𝑄 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑊 ) ) |
| 36 |
27 35
|
nfan |
⊢ Ⅎ 𝑑 ( 𝐸 ∈ 𝐵 ∧ ( 𝑄 Fn 𝐸 ∧ ∀ 𝑧 ∈ 𝐸 ( 𝑄 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑊 ) ) ) |
| 37 |
36
|
nf5ri |
⊢ ( ( 𝐸 ∈ 𝐵 ∧ ( 𝑄 Fn 𝐸 ∧ ∀ 𝑧 ∈ 𝐸 ( 𝑄 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑊 ) ) ) → ∀ 𝑑 ( 𝐸 ∈ 𝐵 ∧ ( 𝑄 Fn 𝐸 ∧ ∀ 𝑧 ∈ 𝐸 ( 𝑄 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑊 ) ) ) ) |
| 38 |
18 17 16
|
jca32 |
⊢ ( 𝜒 → ( 𝐸 ∈ 𝐵 ∧ ( 𝑄 Fn 𝐸 ∧ ∀ 𝑧 ∈ 𝐸 ( 𝑄 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑊 ) ) ) ) |
| 39 |
24 37 38
|
bnj1465 |
⊢ ( ( 𝜒 ∧ 𝐸 ∈ V ) → ∃ 𝑑 ( 𝑑 ∈ 𝐵 ∧ ( 𝑄 Fn 𝑑 ∧ ∀ 𝑧 ∈ 𝑑 ( 𝑄 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑊 ) ) ) ) |
| 40 |
19 39
|
mpdan |
⊢ ( 𝜒 → ∃ 𝑑 ( 𝑑 ∈ 𝐵 ∧ ( 𝑄 Fn 𝑑 ∧ ∀ 𝑧 ∈ 𝑑 ( 𝑄 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑊 ) ) ) ) |
| 41 |
|
df-rex |
⊢ ( ∃ 𝑑 ∈ 𝐵 ( 𝑄 Fn 𝑑 ∧ ∀ 𝑧 ∈ 𝑑 ( 𝑄 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑊 ) ) ↔ ∃ 𝑑 ( 𝑑 ∈ 𝐵 ∧ ( 𝑄 Fn 𝑑 ∧ ∀ 𝑧 ∈ 𝑑 ( 𝑄 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑊 ) ) ) ) |
| 42 |
40 41
|
sylibr |
⊢ ( 𝜒 → ∃ 𝑑 ∈ 𝐵 ( 𝑄 Fn 𝑑 ∧ ∀ 𝑧 ∈ 𝑑 ( 𝑄 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑊 ) ) ) |
| 43 |
|
nfcv |
⊢ Ⅎ 𝑓 𝐵 |
| 44 |
1 2 3 4 5 6 7 8 9 10 11 12
|
bnj1466 |
⊢ ( 𝑤 ∈ 𝑄 → ∀ 𝑓 𝑤 ∈ 𝑄 ) |
| 45 |
44
|
nfcii |
⊢ Ⅎ 𝑓 𝑄 |
| 46 |
|
nfcv |
⊢ Ⅎ 𝑓 𝑑 |
| 47 |
45 46
|
nffn |
⊢ Ⅎ 𝑓 𝑄 Fn 𝑑 |
| 48 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
bnj1448 |
⊢ ( ( 𝑄 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑊 ) → ∀ 𝑓 ( 𝑄 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑊 ) ) |
| 49 |
48
|
nf5i |
⊢ Ⅎ 𝑓 ( 𝑄 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑊 ) |
| 50 |
46 49
|
nfralw |
⊢ Ⅎ 𝑓 ∀ 𝑧 ∈ 𝑑 ( 𝑄 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑊 ) |
| 51 |
47 50
|
nfan |
⊢ Ⅎ 𝑓 ( 𝑄 Fn 𝑑 ∧ ∀ 𝑧 ∈ 𝑑 ( 𝑄 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑊 ) ) |
| 52 |
43 51
|
nfrexw |
⊢ Ⅎ 𝑓 ∃ 𝑑 ∈ 𝐵 ( 𝑄 Fn 𝑑 ∧ ∀ 𝑧 ∈ 𝑑 ( 𝑄 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑊 ) ) |
| 53 |
52
|
nf5ri |
⊢ ( ∃ 𝑑 ∈ 𝐵 ( 𝑄 Fn 𝑑 ∧ ∀ 𝑧 ∈ 𝑑 ( 𝑄 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑊 ) ) → ∀ 𝑓 ∃ 𝑑 ∈ 𝐵 ( 𝑄 Fn 𝑑 ∧ ∀ 𝑧 ∈ 𝑑 ( 𝑄 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑊 ) ) ) |
| 54 |
29
|
nfeq2 |
⊢ Ⅎ 𝑑 𝑓 = 𝑄 |
| 55 |
|
fneq1 |
⊢ ( 𝑓 = 𝑄 → ( 𝑓 Fn 𝑑 ↔ 𝑄 Fn 𝑑 ) ) |
| 56 |
|
fveq1 |
⊢ ( 𝑓 = 𝑄 → ( 𝑓 ‘ 𝑧 ) = ( 𝑄 ‘ 𝑧 ) ) |
| 57 |
|
reseq1 |
⊢ ( 𝑓 = 𝑄 → ( 𝑓 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) = ( 𝑄 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) ) |
| 58 |
57
|
opeq2d |
⊢ ( 𝑓 = 𝑄 → 〈 𝑧 , ( 𝑓 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) 〉 = 〈 𝑧 , ( 𝑄 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) 〉 ) |
| 59 |
58 13
|
eqtr4di |
⊢ ( 𝑓 = 𝑄 → 〈 𝑧 , ( 𝑓 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) 〉 = 𝑊 ) |
| 60 |
59
|
fveq2d |
⊢ ( 𝑓 = 𝑄 → ( 𝐺 ‘ 〈 𝑧 , ( 𝑓 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) 〉 ) = ( 𝐺 ‘ 𝑊 ) ) |
| 61 |
56 60
|
eqeq12d |
⊢ ( 𝑓 = 𝑄 → ( ( 𝑓 ‘ 𝑧 ) = ( 𝐺 ‘ 〈 𝑧 , ( 𝑓 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) 〉 ) ↔ ( 𝑄 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑊 ) ) ) |
| 62 |
61
|
ralbidv |
⊢ ( 𝑓 = 𝑄 → ( ∀ 𝑧 ∈ 𝑑 ( 𝑓 ‘ 𝑧 ) = ( 𝐺 ‘ 〈 𝑧 , ( 𝑓 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) 〉 ) ↔ ∀ 𝑧 ∈ 𝑑 ( 𝑄 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑊 ) ) ) |
| 63 |
55 62
|
anbi12d |
⊢ ( 𝑓 = 𝑄 → ( ( 𝑓 Fn 𝑑 ∧ ∀ 𝑧 ∈ 𝑑 ( 𝑓 ‘ 𝑧 ) = ( 𝐺 ‘ 〈 𝑧 , ( 𝑓 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) 〉 ) ) ↔ ( 𝑄 Fn 𝑑 ∧ ∀ 𝑧 ∈ 𝑑 ( 𝑄 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑊 ) ) ) ) |
| 64 |
54 63
|
rexbid |
⊢ ( 𝑓 = 𝑄 → ( ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑧 ∈ 𝑑 ( 𝑓 ‘ 𝑧 ) = ( 𝐺 ‘ 〈 𝑧 , ( 𝑓 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) 〉 ) ) ↔ ∃ 𝑑 ∈ 𝐵 ( 𝑄 Fn 𝑑 ∧ ∀ 𝑧 ∈ 𝑑 ( 𝑄 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑊 ) ) ) ) |
| 65 |
53 64 44
|
bnj1468 |
⊢ ( 𝑄 ∈ V → ( [ 𝑄 / 𝑓 ] ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑧 ∈ 𝑑 ( 𝑓 ‘ 𝑧 ) = ( 𝐺 ‘ 〈 𝑧 , ( 𝑓 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) 〉 ) ) ↔ ∃ 𝑑 ∈ 𝐵 ( 𝑄 Fn 𝑑 ∧ ∀ 𝑧 ∈ 𝑑 ( 𝑄 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑊 ) ) ) ) |
| 66 |
15 65
|
syl |
⊢ ( 𝜒 → ( [ 𝑄 / 𝑓 ] ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑧 ∈ 𝑑 ( 𝑓 ‘ 𝑧 ) = ( 𝐺 ‘ 〈 𝑧 , ( 𝑓 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) 〉 ) ) ↔ ∃ 𝑑 ∈ 𝐵 ( 𝑄 Fn 𝑑 ∧ ∀ 𝑧 ∈ 𝑑 ( 𝑄 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑊 ) ) ) ) |
| 67 |
42 66
|
mpbird |
⊢ ( 𝜒 → [ 𝑄 / 𝑓 ] ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑧 ∈ 𝑑 ( 𝑓 ‘ 𝑧 ) = ( 𝐺 ‘ 〈 𝑧 , ( 𝑓 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) 〉 ) ) ) |
| 68 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑧 ) ) |
| 69 |
|
id |
⊢ ( 𝑥 = 𝑧 → 𝑥 = 𝑧 ) |
| 70 |
|
bnj602 |
⊢ ( 𝑥 = 𝑧 → pred ( 𝑥 , 𝐴 , 𝑅 ) = pred ( 𝑧 , 𝐴 , 𝑅 ) ) |
| 71 |
70
|
reseq2d |
⊢ ( 𝑥 = 𝑧 → ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) = ( 𝑓 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) ) |
| 72 |
69 71
|
opeq12d |
⊢ ( 𝑥 = 𝑧 → 〈 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 = 〈 𝑧 , ( 𝑓 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) 〉 ) |
| 73 |
2 72
|
eqtrid |
⊢ ( 𝑥 = 𝑧 → 𝑌 = 〈 𝑧 , ( 𝑓 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) 〉 ) |
| 74 |
73
|
fveq2d |
⊢ ( 𝑥 = 𝑧 → ( 𝐺 ‘ 𝑌 ) = ( 𝐺 ‘ 〈 𝑧 , ( 𝑓 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) 〉 ) ) |
| 75 |
68 74
|
eqeq12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ↔ ( 𝑓 ‘ 𝑧 ) = ( 𝐺 ‘ 〈 𝑧 , ( 𝑓 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) 〉 ) ) ) |
| 76 |
75
|
cbvralvw |
⊢ ( ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ↔ ∀ 𝑧 ∈ 𝑑 ( 𝑓 ‘ 𝑧 ) = ( 𝐺 ‘ 〈 𝑧 , ( 𝑓 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) 〉 ) ) |
| 77 |
76
|
anbi2i |
⊢ ( ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) ↔ ( 𝑓 Fn 𝑑 ∧ ∀ 𝑧 ∈ 𝑑 ( 𝑓 ‘ 𝑧 ) = ( 𝐺 ‘ 〈 𝑧 , ( 𝑓 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) 〉 ) ) ) |
| 78 |
77
|
rexbii |
⊢ ( ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) ↔ ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑧 ∈ 𝑑 ( 𝑓 ‘ 𝑧 ) = ( 𝐺 ‘ 〈 𝑧 , ( 𝑓 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) 〉 ) ) ) |
| 79 |
78
|
sbcbii |
⊢ ( [ 𝑄 / 𝑓 ] ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) ↔ [ 𝑄 / 𝑓 ] ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑧 ∈ 𝑑 ( 𝑓 ‘ 𝑧 ) = ( 𝐺 ‘ 〈 𝑧 , ( 𝑓 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) 〉 ) ) ) |
| 80 |
67 79
|
sylibr |
⊢ ( 𝜒 → [ 𝑄 / 𝑓 ] ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) ) |
| 81 |
3
|
bnj1454 |
⊢ ( 𝑄 ∈ V → ( 𝑄 ∈ 𝐶 ↔ [ 𝑄 / 𝑓 ] ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) ) ) |
| 82 |
15 81
|
syl |
⊢ ( 𝜒 → ( 𝑄 ∈ 𝐶 ↔ [ 𝑄 / 𝑓 ] ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) ) ) |
| 83 |
80 82
|
mpbird |
⊢ ( 𝜒 → 𝑄 ∈ 𝐶 ) |