Metamath Proof Explorer


Theorem bnj1463

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1463.1 B=d|dAxdpredxARd
bnj1463.2 Y=xfpredxAR
bnj1463.3 C=f|dBfFndxdfx=GY
bnj1463.4 τfCdomf=xtrClxAR
bnj1463.5 D=xA|¬fτ
bnj1463.6 ψRFrSeAD
bnj1463.7 χψxDyD¬yRx
bnj1463.8 No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |-
bnj1463.9 No typesetting found for |- H = { f | E. y e. _pred ( x , A , R ) ta' } with typecode |-
bnj1463.10 P=H
bnj1463.11 Z=xPpredxAR
bnj1463.12 Q=PxGZ
bnj1463.13 W=zQpredzAR
bnj1463.14 E=xtrClxAR
bnj1463.15 χQV
bnj1463.16 χzEQz=GW
bnj1463.17 χQFnE
bnj1463.18 χEB
Assertion bnj1463 χQC

Proof

Step Hyp Ref Expression
1 bnj1463.1 B=d|dAxdpredxARd
2 bnj1463.2 Y=xfpredxAR
3 bnj1463.3 C=f|dBfFndxdfx=GY
4 bnj1463.4 τfCdomf=xtrClxAR
5 bnj1463.5 D=xA|¬fτ
6 bnj1463.6 ψRFrSeAD
7 bnj1463.7 χψxDyD¬yRx
8 bnj1463.8 Could not format ( ta' <-> [. y / x ]. ta ) : No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |-
9 bnj1463.9 Could not format H = { f | E. y e. _pred ( x , A , R ) ta' } : No typesetting found for |- H = { f | E. y e. _pred ( x , A , R ) ta' } with typecode |-
10 bnj1463.10 P=H
11 bnj1463.11 Z=xPpredxAR
12 bnj1463.12 Q=PxGZ
13 bnj1463.13 W=zQpredzAR
14 bnj1463.14 E=xtrClxAR
15 bnj1463.15 χQV
16 bnj1463.16 χzEQz=GW
17 bnj1463.17 χQFnE
18 bnj1463.18 χEB
19 18 elexd χEV
20 eleq1 d=EdBEB
21 fneq2 d=EQFndQFnE
22 raleq d=EzdQz=GWzEQz=GW
23 21 22 anbi12d d=EQFndzdQz=GWQFnEzEQz=GW
24 20 23 anbi12d d=EdBQFndzdQz=GWEBQFnEzEQz=GW
25 1 bnj1317 wBdwB
26 25 nfcii _dB
27 26 nfel2 dEB
28 1 2 3 4 5 6 7 8 9 10 11 12 bnj1467 wQdwQ
29 28 nfcii _dQ
30 nfcv _dE
31 29 30 nffn dQFnE
32 1 2 3 4 5 6 7 8 9 10 11 12 13 bnj1446 Qz=GWdQz=GW
33 32 nf5i dQz=GW
34 30 33 nfralw dzEQz=GW
35 31 34 nfan dQFnEzEQz=GW
36 27 35 nfan dEBQFnEzEQz=GW
37 36 nf5ri EBQFnEzEQz=GWdEBQFnEzEQz=GW
38 18 17 16 jca32 χEBQFnEzEQz=GW
39 24 37 38 bnj1465 χEVddBQFndzdQz=GW
40 19 39 mpdan χddBQFndzdQz=GW
41 df-rex dBQFndzdQz=GWddBQFndzdQz=GW
42 40 41 sylibr χdBQFndzdQz=GW
43 nfcv _fB
44 1 2 3 4 5 6 7 8 9 10 11 12 bnj1466 wQfwQ
45 44 nfcii _fQ
46 nfcv _fd
47 45 46 nffn fQFnd
48 1 2 3 4 5 6 7 8 9 10 11 12 13 bnj1448 Qz=GWfQz=GW
49 48 nf5i fQz=GW
50 46 49 nfralw fzdQz=GW
51 47 50 nfan fQFndzdQz=GW
52 43 51 nfrexw fdBQFndzdQz=GW
53 52 nf5ri dBQFndzdQz=GWfdBQFndzdQz=GW
54 29 nfeq2 df=Q
55 fneq1 f=QfFndQFnd
56 fveq1 f=Qfz=Qz
57 reseq1 f=QfpredzAR=QpredzAR
58 57 opeq2d f=QzfpredzAR=zQpredzAR
59 58 13 eqtr4di f=QzfpredzAR=W
60 59 fveq2d f=QGzfpredzAR=GW
61 56 60 eqeq12d f=Qfz=GzfpredzARQz=GW
62 61 ralbidv f=Qzdfz=GzfpredzARzdQz=GW
63 55 62 anbi12d f=QfFndzdfz=GzfpredzARQFndzdQz=GW
64 54 63 rexbid f=QdBfFndzdfz=GzfpredzARdBQFndzdQz=GW
65 53 64 44 bnj1468 QV[˙Q/f]˙dBfFndzdfz=GzfpredzARdBQFndzdQz=GW
66 15 65 syl χ[˙Q/f]˙dBfFndzdfz=GzfpredzARdBQFndzdQz=GW
67 42 66 mpbird χ[˙Q/f]˙dBfFndzdfz=GzfpredzAR
68 fveq2 x=zfx=fz
69 id x=zx=z
70 bnj602 x=zpredxAR=predzAR
71 70 reseq2d x=zfpredxAR=fpredzAR
72 69 71 opeq12d x=zxfpredxAR=zfpredzAR
73 2 72 eqtrid x=zY=zfpredzAR
74 73 fveq2d x=zGY=GzfpredzAR
75 68 74 eqeq12d x=zfx=GYfz=GzfpredzAR
76 75 cbvralvw xdfx=GYzdfz=GzfpredzAR
77 76 anbi2i fFndxdfx=GYfFndzdfz=GzfpredzAR
78 77 rexbii dBfFndxdfx=GYdBfFndzdfz=GzfpredzAR
79 78 sbcbii [˙Q/f]˙dBfFndxdfx=GY[˙Q/f]˙dBfFndzdfz=GzfpredzAR
80 67 79 sylibr χ[˙Q/f]˙dBfFndxdfx=GY
81 3 bnj1454 QVQC[˙Q/f]˙dBfFndxdfx=GY
82 15 81 syl χQC[˙Q/f]˙dBfFndxdfx=GY
83 80 82 mpbird χQC