Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnj1463.1 | |
|
bnj1463.2 | |
||
bnj1463.3 | |
||
bnj1463.4 | |
||
bnj1463.5 | |
||
bnj1463.6 | |
||
bnj1463.7 | |
||
bnj1463.8 | No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |- | ||
bnj1463.9 | No typesetting found for |- H = { f | E. y e. _pred ( x , A , R ) ta' } with typecode |- | ||
bnj1463.10 | |
||
bnj1463.11 | |
||
bnj1463.12 | |
||
bnj1463.13 | |
||
bnj1463.14 | |
||
bnj1463.15 | |
||
bnj1463.16 | |
||
bnj1463.17 | |
||
bnj1463.18 | |
||
Assertion | bnj1463 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1463.1 | |
|
2 | bnj1463.2 | |
|
3 | bnj1463.3 | |
|
4 | bnj1463.4 | |
|
5 | bnj1463.5 | |
|
6 | bnj1463.6 | |
|
7 | bnj1463.7 | |
|
8 | bnj1463.8 | Could not format ( ta' <-> [. y / x ]. ta ) : No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |- | |
9 | bnj1463.9 | Could not format H = { f | E. y e. _pred ( x , A , R ) ta' } : No typesetting found for |- H = { f | E. y e. _pred ( x , A , R ) ta' } with typecode |- | |
10 | bnj1463.10 | |
|
11 | bnj1463.11 | |
|
12 | bnj1463.12 | |
|
13 | bnj1463.13 | |
|
14 | bnj1463.14 | |
|
15 | bnj1463.15 | |
|
16 | bnj1463.16 | |
|
17 | bnj1463.17 | |
|
18 | bnj1463.18 | |
|
19 | 18 | elexd | |
20 | eleq1 | |
|
21 | fneq2 | |
|
22 | raleq | |
|
23 | 21 22 | anbi12d | |
24 | 20 23 | anbi12d | |
25 | 1 | bnj1317 | |
26 | 25 | nfcii | |
27 | 26 | nfel2 | |
28 | 1 2 3 4 5 6 7 8 9 10 11 12 | bnj1467 | |
29 | 28 | nfcii | |
30 | nfcv | |
|
31 | 29 30 | nffn | |
32 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | bnj1446 | |
33 | 32 | nf5i | |
34 | 30 33 | nfralw | |
35 | 31 34 | nfan | |
36 | 27 35 | nfan | |
37 | 36 | nf5ri | |
38 | 18 17 16 | jca32 | |
39 | 24 37 38 | bnj1465 | |
40 | 19 39 | mpdan | |
41 | df-rex | |
|
42 | 40 41 | sylibr | |
43 | nfcv | |
|
44 | 1 2 3 4 5 6 7 8 9 10 11 12 | bnj1466 | |
45 | 44 | nfcii | |
46 | nfcv | |
|
47 | 45 46 | nffn | |
48 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | bnj1448 | |
49 | 48 | nf5i | |
50 | 46 49 | nfralw | |
51 | 47 50 | nfan | |
52 | 43 51 | nfrexw | |
53 | 52 | nf5ri | |
54 | 29 | nfeq2 | |
55 | fneq1 | |
|
56 | fveq1 | |
|
57 | reseq1 | |
|
58 | 57 | opeq2d | |
59 | 58 13 | eqtr4di | |
60 | 59 | fveq2d | |
61 | 56 60 | eqeq12d | |
62 | 61 | ralbidv | |
63 | 55 62 | anbi12d | |
64 | 54 63 | rexbid | |
65 | 53 64 44 | bnj1468 | |
66 | 15 65 | syl | |
67 | 42 66 | mpbird | |
68 | fveq2 | |
|
69 | id | |
|
70 | bnj602 | |
|
71 | 70 | reseq2d | |
72 | 69 71 | opeq12d | |
73 | 2 72 | eqtrid | |
74 | 73 | fveq2d | |
75 | 68 74 | eqeq12d | |
76 | 75 | cbvralvw | |
77 | 76 | anbi2i | |
78 | 77 | rexbii | |
79 | 78 | sbcbii | |
80 | 67 79 | sylibr | |
81 | 3 | bnj1454 | |
82 | 15 81 | syl | |
83 | 80 82 | mpbird | |