| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj1463.1 |
|- B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) } |
| 2 |
|
bnj1463.2 |
|- Y = <. x , ( f |` _pred ( x , A , R ) ) >. |
| 3 |
|
bnj1463.3 |
|- C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) } |
| 4 |
|
bnj1463.4 |
|- ( ta <-> ( f e. C /\ dom f = ( { x } u. _trCl ( x , A , R ) ) ) ) |
| 5 |
|
bnj1463.5 |
|- D = { x e. A | -. E. f ta } |
| 6 |
|
bnj1463.6 |
|- ( ps <-> ( R _FrSe A /\ D =/= (/) ) ) |
| 7 |
|
bnj1463.7 |
|- ( ch <-> ( ps /\ x e. D /\ A. y e. D -. y R x ) ) |
| 8 |
|
bnj1463.8 |
|- ( ta' <-> [. y / x ]. ta ) |
| 9 |
|
bnj1463.9 |
|- H = { f | E. y e. _pred ( x , A , R ) ta' } |
| 10 |
|
bnj1463.10 |
|- P = U. H |
| 11 |
|
bnj1463.11 |
|- Z = <. x , ( P |` _pred ( x , A , R ) ) >. |
| 12 |
|
bnj1463.12 |
|- Q = ( P u. { <. x , ( G ` Z ) >. } ) |
| 13 |
|
bnj1463.13 |
|- W = <. z , ( Q |` _pred ( z , A , R ) ) >. |
| 14 |
|
bnj1463.14 |
|- E = ( { x } u. _trCl ( x , A , R ) ) |
| 15 |
|
bnj1463.15 |
|- ( ch -> Q e. _V ) |
| 16 |
|
bnj1463.16 |
|- ( ch -> A. z e. E ( Q ` z ) = ( G ` W ) ) |
| 17 |
|
bnj1463.17 |
|- ( ch -> Q Fn E ) |
| 18 |
|
bnj1463.18 |
|- ( ch -> E e. B ) |
| 19 |
18
|
elexd |
|- ( ch -> E e. _V ) |
| 20 |
|
eleq1 |
|- ( d = E -> ( d e. B <-> E e. B ) ) |
| 21 |
|
fneq2 |
|- ( d = E -> ( Q Fn d <-> Q Fn E ) ) |
| 22 |
|
raleq |
|- ( d = E -> ( A. z e. d ( Q ` z ) = ( G ` W ) <-> A. z e. E ( Q ` z ) = ( G ` W ) ) ) |
| 23 |
21 22
|
anbi12d |
|- ( d = E -> ( ( Q Fn d /\ A. z e. d ( Q ` z ) = ( G ` W ) ) <-> ( Q Fn E /\ A. z e. E ( Q ` z ) = ( G ` W ) ) ) ) |
| 24 |
20 23
|
anbi12d |
|- ( d = E -> ( ( d e. B /\ ( Q Fn d /\ A. z e. d ( Q ` z ) = ( G ` W ) ) ) <-> ( E e. B /\ ( Q Fn E /\ A. z e. E ( Q ` z ) = ( G ` W ) ) ) ) ) |
| 25 |
1
|
bnj1317 |
|- ( w e. B -> A. d w e. B ) |
| 26 |
25
|
nfcii |
|- F/_ d B |
| 27 |
26
|
nfel2 |
|- F/ d E e. B |
| 28 |
1 2 3 4 5 6 7 8 9 10 11 12
|
bnj1467 |
|- ( w e. Q -> A. d w e. Q ) |
| 29 |
28
|
nfcii |
|- F/_ d Q |
| 30 |
|
nfcv |
|- F/_ d E |
| 31 |
29 30
|
nffn |
|- F/ d Q Fn E |
| 32 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
bnj1446 |
|- ( ( Q ` z ) = ( G ` W ) -> A. d ( Q ` z ) = ( G ` W ) ) |
| 33 |
32
|
nf5i |
|- F/ d ( Q ` z ) = ( G ` W ) |
| 34 |
30 33
|
nfralw |
|- F/ d A. z e. E ( Q ` z ) = ( G ` W ) |
| 35 |
31 34
|
nfan |
|- F/ d ( Q Fn E /\ A. z e. E ( Q ` z ) = ( G ` W ) ) |
| 36 |
27 35
|
nfan |
|- F/ d ( E e. B /\ ( Q Fn E /\ A. z e. E ( Q ` z ) = ( G ` W ) ) ) |
| 37 |
36
|
nf5ri |
|- ( ( E e. B /\ ( Q Fn E /\ A. z e. E ( Q ` z ) = ( G ` W ) ) ) -> A. d ( E e. B /\ ( Q Fn E /\ A. z e. E ( Q ` z ) = ( G ` W ) ) ) ) |
| 38 |
18 17 16
|
jca32 |
|- ( ch -> ( E e. B /\ ( Q Fn E /\ A. z e. E ( Q ` z ) = ( G ` W ) ) ) ) |
| 39 |
24 37 38
|
bnj1465 |
|- ( ( ch /\ E e. _V ) -> E. d ( d e. B /\ ( Q Fn d /\ A. z e. d ( Q ` z ) = ( G ` W ) ) ) ) |
| 40 |
19 39
|
mpdan |
|- ( ch -> E. d ( d e. B /\ ( Q Fn d /\ A. z e. d ( Q ` z ) = ( G ` W ) ) ) ) |
| 41 |
|
df-rex |
|- ( E. d e. B ( Q Fn d /\ A. z e. d ( Q ` z ) = ( G ` W ) ) <-> E. d ( d e. B /\ ( Q Fn d /\ A. z e. d ( Q ` z ) = ( G ` W ) ) ) ) |
| 42 |
40 41
|
sylibr |
|- ( ch -> E. d e. B ( Q Fn d /\ A. z e. d ( Q ` z ) = ( G ` W ) ) ) |
| 43 |
|
nfcv |
|- F/_ f B |
| 44 |
1 2 3 4 5 6 7 8 9 10 11 12
|
bnj1466 |
|- ( w e. Q -> A. f w e. Q ) |
| 45 |
44
|
nfcii |
|- F/_ f Q |
| 46 |
|
nfcv |
|- F/_ f d |
| 47 |
45 46
|
nffn |
|- F/ f Q Fn d |
| 48 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
bnj1448 |
|- ( ( Q ` z ) = ( G ` W ) -> A. f ( Q ` z ) = ( G ` W ) ) |
| 49 |
48
|
nf5i |
|- F/ f ( Q ` z ) = ( G ` W ) |
| 50 |
46 49
|
nfralw |
|- F/ f A. z e. d ( Q ` z ) = ( G ` W ) |
| 51 |
47 50
|
nfan |
|- F/ f ( Q Fn d /\ A. z e. d ( Q ` z ) = ( G ` W ) ) |
| 52 |
43 51
|
nfrexw |
|- F/ f E. d e. B ( Q Fn d /\ A. z e. d ( Q ` z ) = ( G ` W ) ) |
| 53 |
52
|
nf5ri |
|- ( E. d e. B ( Q Fn d /\ A. z e. d ( Q ` z ) = ( G ` W ) ) -> A. f E. d e. B ( Q Fn d /\ A. z e. d ( Q ` z ) = ( G ` W ) ) ) |
| 54 |
29
|
nfeq2 |
|- F/ d f = Q |
| 55 |
|
fneq1 |
|- ( f = Q -> ( f Fn d <-> Q Fn d ) ) |
| 56 |
|
fveq1 |
|- ( f = Q -> ( f ` z ) = ( Q ` z ) ) |
| 57 |
|
reseq1 |
|- ( f = Q -> ( f |` _pred ( z , A , R ) ) = ( Q |` _pred ( z , A , R ) ) ) |
| 58 |
57
|
opeq2d |
|- ( f = Q -> <. z , ( f |` _pred ( z , A , R ) ) >. = <. z , ( Q |` _pred ( z , A , R ) ) >. ) |
| 59 |
58 13
|
eqtr4di |
|- ( f = Q -> <. z , ( f |` _pred ( z , A , R ) ) >. = W ) |
| 60 |
59
|
fveq2d |
|- ( f = Q -> ( G ` <. z , ( f |` _pred ( z , A , R ) ) >. ) = ( G ` W ) ) |
| 61 |
56 60
|
eqeq12d |
|- ( f = Q -> ( ( f ` z ) = ( G ` <. z , ( f |` _pred ( z , A , R ) ) >. ) <-> ( Q ` z ) = ( G ` W ) ) ) |
| 62 |
61
|
ralbidv |
|- ( f = Q -> ( A. z e. d ( f ` z ) = ( G ` <. z , ( f |` _pred ( z , A , R ) ) >. ) <-> A. z e. d ( Q ` z ) = ( G ` W ) ) ) |
| 63 |
55 62
|
anbi12d |
|- ( f = Q -> ( ( f Fn d /\ A. z e. d ( f ` z ) = ( G ` <. z , ( f |` _pred ( z , A , R ) ) >. ) ) <-> ( Q Fn d /\ A. z e. d ( Q ` z ) = ( G ` W ) ) ) ) |
| 64 |
54 63
|
rexbid |
|- ( f = Q -> ( E. d e. B ( f Fn d /\ A. z e. d ( f ` z ) = ( G ` <. z , ( f |` _pred ( z , A , R ) ) >. ) ) <-> E. d e. B ( Q Fn d /\ A. z e. d ( Q ` z ) = ( G ` W ) ) ) ) |
| 65 |
53 64 44
|
bnj1468 |
|- ( Q e. _V -> ( [. Q / f ]. E. d e. B ( f Fn d /\ A. z e. d ( f ` z ) = ( G ` <. z , ( f |` _pred ( z , A , R ) ) >. ) ) <-> E. d e. B ( Q Fn d /\ A. z e. d ( Q ` z ) = ( G ` W ) ) ) ) |
| 66 |
15 65
|
syl |
|- ( ch -> ( [. Q / f ]. E. d e. B ( f Fn d /\ A. z e. d ( f ` z ) = ( G ` <. z , ( f |` _pred ( z , A , R ) ) >. ) ) <-> E. d e. B ( Q Fn d /\ A. z e. d ( Q ` z ) = ( G ` W ) ) ) ) |
| 67 |
42 66
|
mpbird |
|- ( ch -> [. Q / f ]. E. d e. B ( f Fn d /\ A. z e. d ( f ` z ) = ( G ` <. z , ( f |` _pred ( z , A , R ) ) >. ) ) ) |
| 68 |
|
fveq2 |
|- ( x = z -> ( f ` x ) = ( f ` z ) ) |
| 69 |
|
id |
|- ( x = z -> x = z ) |
| 70 |
|
bnj602 |
|- ( x = z -> _pred ( x , A , R ) = _pred ( z , A , R ) ) |
| 71 |
70
|
reseq2d |
|- ( x = z -> ( f |` _pred ( x , A , R ) ) = ( f |` _pred ( z , A , R ) ) ) |
| 72 |
69 71
|
opeq12d |
|- ( x = z -> <. x , ( f |` _pred ( x , A , R ) ) >. = <. z , ( f |` _pred ( z , A , R ) ) >. ) |
| 73 |
2 72
|
eqtrid |
|- ( x = z -> Y = <. z , ( f |` _pred ( z , A , R ) ) >. ) |
| 74 |
73
|
fveq2d |
|- ( x = z -> ( G ` Y ) = ( G ` <. z , ( f |` _pred ( z , A , R ) ) >. ) ) |
| 75 |
68 74
|
eqeq12d |
|- ( x = z -> ( ( f ` x ) = ( G ` Y ) <-> ( f ` z ) = ( G ` <. z , ( f |` _pred ( z , A , R ) ) >. ) ) ) |
| 76 |
75
|
cbvralvw |
|- ( A. x e. d ( f ` x ) = ( G ` Y ) <-> A. z e. d ( f ` z ) = ( G ` <. z , ( f |` _pred ( z , A , R ) ) >. ) ) |
| 77 |
76
|
anbi2i |
|- ( ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) <-> ( f Fn d /\ A. z e. d ( f ` z ) = ( G ` <. z , ( f |` _pred ( z , A , R ) ) >. ) ) ) |
| 78 |
77
|
rexbii |
|- ( E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) <-> E. d e. B ( f Fn d /\ A. z e. d ( f ` z ) = ( G ` <. z , ( f |` _pred ( z , A , R ) ) >. ) ) ) |
| 79 |
78
|
sbcbii |
|- ( [. Q / f ]. E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) <-> [. Q / f ]. E. d e. B ( f Fn d /\ A. z e. d ( f ` z ) = ( G ` <. z , ( f |` _pred ( z , A , R ) ) >. ) ) ) |
| 80 |
67 79
|
sylibr |
|- ( ch -> [. Q / f ]. E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) ) |
| 81 |
3
|
bnj1454 |
|- ( Q e. _V -> ( Q e. C <-> [. Q / f ]. E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) ) ) |
| 82 |
15 81
|
syl |
|- ( ch -> ( Q e. C <-> [. Q / f ]. E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) ) ) |
| 83 |
80 82
|
mpbird |
|- ( ch -> Q e. C ) |