Metamath Proof Explorer


Theorem bpos

Description: Bertrand's postulate: there is a prime between N and 2 N for every positive integer N . This proof follows ErdΕ‘s's method, for the most part, but with some refinements due to Shigenori Tochiori to save us some calculations of large primes. See http://en.wikipedia.org/wiki/Proof_of_Bertrand%27s_postulate for an overview of the proof strategy. This is Metamath 100 proof #98. (Contributed by Mario Carneiro, 14-Mar-2014)

Ref Expression
Assertion bpos ( 𝑁 ∈ β„• β†’ βˆƒ 𝑝 ∈ β„™ ( 𝑁 < 𝑝 ∧ 𝑝 ≀ ( 2 Β· 𝑁 ) ) )

Proof

Step Hyp Ref Expression
1 bpos1 ⊒ ( ( 𝑁 ∈ β„• ∧ 𝑁 ≀ 6 4 ) β†’ βˆƒ 𝑝 ∈ β„™ ( 𝑁 < 𝑝 ∧ 𝑝 ≀ ( 2 Β· 𝑁 ) ) )
2 eqid ⊒ ( 𝑛 ∈ β„• ↦ ( ( ( ( √ β€˜ 2 ) Β· ( ( π‘₯ ∈ ℝ+ ↦ ( ( log β€˜ π‘₯ ) / π‘₯ ) ) β€˜ ( √ β€˜ 𝑛 ) ) ) + ( ( 9 / 4 ) Β· ( ( π‘₯ ∈ ℝ+ ↦ ( ( log β€˜ π‘₯ ) / π‘₯ ) ) β€˜ ( 𝑛 / 2 ) ) ) ) + ( ( log β€˜ 2 ) / ( √ β€˜ ( 2 Β· 𝑛 ) ) ) ) ) = ( 𝑛 ∈ β„• ↦ ( ( ( ( √ β€˜ 2 ) Β· ( ( π‘₯ ∈ ℝ+ ↦ ( ( log β€˜ π‘₯ ) / π‘₯ ) ) β€˜ ( √ β€˜ 𝑛 ) ) ) + ( ( 9 / 4 ) Β· ( ( π‘₯ ∈ ℝ+ ↦ ( ( log β€˜ π‘₯ ) / π‘₯ ) ) β€˜ ( 𝑛 / 2 ) ) ) ) + ( ( log β€˜ 2 ) / ( √ β€˜ ( 2 Β· 𝑛 ) ) ) ) )
3 eqid ⊒ ( π‘₯ ∈ ℝ+ ↦ ( ( log β€˜ π‘₯ ) / π‘₯ ) ) = ( π‘₯ ∈ ℝ+ ↦ ( ( log β€˜ π‘₯ ) / π‘₯ ) )
4 simpll ⊒ ( ( ( 𝑁 ∈ β„• ∧ 6 4 < 𝑁 ) ∧ Β¬ βˆƒ 𝑝 ∈ β„™ ( 𝑁 < 𝑝 ∧ 𝑝 ≀ ( 2 Β· 𝑁 ) ) ) β†’ 𝑁 ∈ β„• )
5 simplr ⊒ ( ( ( 𝑁 ∈ β„• ∧ 6 4 < 𝑁 ) ∧ Β¬ βˆƒ 𝑝 ∈ β„™ ( 𝑁 < 𝑝 ∧ 𝑝 ≀ ( 2 Β· 𝑁 ) ) ) β†’ 6 4 < 𝑁 )
6 simpr ⊒ ( ( ( 𝑁 ∈ β„• ∧ 6 4 < 𝑁 ) ∧ Β¬ βˆƒ 𝑝 ∈ β„™ ( 𝑁 < 𝑝 ∧ 𝑝 ≀ ( 2 Β· 𝑁 ) ) ) β†’ Β¬ βˆƒ 𝑝 ∈ β„™ ( 𝑁 < 𝑝 ∧ 𝑝 ≀ ( 2 Β· 𝑁 ) ) )
7 2 3 4 5 6 bposlem9 ⊒ ( ( ( 𝑁 ∈ β„• ∧ 6 4 < 𝑁 ) ∧ Β¬ βˆƒ 𝑝 ∈ β„™ ( 𝑁 < 𝑝 ∧ 𝑝 ≀ ( 2 Β· 𝑁 ) ) ) β†’ βˆƒ 𝑝 ∈ β„™ ( 𝑁 < 𝑝 ∧ 𝑝 ≀ ( 2 Β· 𝑁 ) ) )
8 7 pm2.18da ⊒ ( ( 𝑁 ∈ β„• ∧ 6 4 < 𝑁 ) β†’ βˆƒ 𝑝 ∈ β„™ ( 𝑁 < 𝑝 ∧ 𝑝 ≀ ( 2 Β· 𝑁 ) ) )
9 nnre ⊒ ( 𝑁 ∈ β„• β†’ 𝑁 ∈ ℝ )
10 6nn0 ⊒ 6 ∈ β„•0
11 4nn0 ⊒ 4 ∈ β„•0
12 10 11 deccl ⊒ 6 4 ∈ β„•0
13 12 nn0rei ⊒ 6 4 ∈ ℝ
14 lelttric ⊒ ( ( 𝑁 ∈ ℝ ∧ 6 4 ∈ ℝ ) β†’ ( 𝑁 ≀ 6 4 ∨ 6 4 < 𝑁 ) )
15 9 13 14 sylancl ⊒ ( 𝑁 ∈ β„• β†’ ( 𝑁 ≀ 6 4 ∨ 6 4 < 𝑁 ) )
16 1 8 15 mpjaodan ⊒ ( 𝑁 ∈ β„• β†’ βˆƒ 𝑝 ∈ β„™ ( 𝑁 < 𝑝 ∧ 𝑝 ≀ ( 2 Β· 𝑁 ) ) )