| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bposlem7.1 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑛 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑛 / 2 ) ) ) ) + ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑛 ) ) ) ) ) |
| 2 |
|
bposlem7.2 |
⊢ 𝐺 = ( 𝑥 ∈ ℝ+ ↦ ( ( log ‘ 𝑥 ) / 𝑥 ) ) |
| 3 |
|
bposlem9.3 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 4 |
|
bposlem9.4 |
⊢ ( 𝜑 → ; 6 4 < 𝑁 ) |
| 5 |
|
bposlem9.5 |
⊢ ( 𝜑 → ¬ ∃ 𝑝 ∈ ℙ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ ( 2 · 𝑁 ) ) ) |
| 6 |
|
6nn0 |
⊢ 6 ∈ ℕ0 |
| 7 |
|
4nn |
⊢ 4 ∈ ℕ |
| 8 |
6 7
|
decnncl |
⊢ ; 6 4 ∈ ℕ |
| 9 |
8
|
a1i |
⊢ ( 𝜑 → ; 6 4 ∈ ℕ ) |
| 10 |
|
ere |
⊢ e ∈ ℝ |
| 11 |
|
8re |
⊢ 8 ∈ ℝ |
| 12 |
|
egt2lt3 |
⊢ ( 2 < e ∧ e < 3 ) |
| 13 |
12
|
simpri |
⊢ e < 3 |
| 14 |
|
3lt8 |
⊢ 3 < 8 |
| 15 |
|
3re |
⊢ 3 ∈ ℝ |
| 16 |
10 15 11
|
lttri |
⊢ ( ( e < 3 ∧ 3 < 8 ) → e < 8 ) |
| 17 |
13 14 16
|
mp2an |
⊢ e < 8 |
| 18 |
10 11 17
|
ltleii |
⊢ e ≤ 8 |
| 19 |
|
0re |
⊢ 0 ∈ ℝ |
| 20 |
|
epos |
⊢ 0 < e |
| 21 |
19 10 20
|
ltleii |
⊢ 0 ≤ e |
| 22 |
|
8pos |
⊢ 0 < 8 |
| 23 |
19 11 22
|
ltleii |
⊢ 0 ≤ 8 |
| 24 |
|
le2sq |
⊢ ( ( ( e ∈ ℝ ∧ 0 ≤ e ) ∧ ( 8 ∈ ℝ ∧ 0 ≤ 8 ) ) → ( e ≤ 8 ↔ ( e ↑ 2 ) ≤ ( 8 ↑ 2 ) ) ) |
| 25 |
10 21 11 23 24
|
mp4an |
⊢ ( e ≤ 8 ↔ ( e ↑ 2 ) ≤ ( 8 ↑ 2 ) ) |
| 26 |
18 25
|
mpbi |
⊢ ( e ↑ 2 ) ≤ ( 8 ↑ 2 ) |
| 27 |
11
|
recni |
⊢ 8 ∈ ℂ |
| 28 |
27
|
sqvali |
⊢ ( 8 ↑ 2 ) = ( 8 · 8 ) |
| 29 |
|
8t8e64 |
⊢ ( 8 · 8 ) = ; 6 4 |
| 30 |
28 29
|
eqtri |
⊢ ( 8 ↑ 2 ) = ; 6 4 |
| 31 |
26 30
|
breqtri |
⊢ ( e ↑ 2 ) ≤ ; 6 4 |
| 32 |
31
|
a1i |
⊢ ( 𝜑 → ( e ↑ 2 ) ≤ ; 6 4 ) |
| 33 |
10
|
resqcli |
⊢ ( e ↑ 2 ) ∈ ℝ |
| 34 |
33
|
a1i |
⊢ ( 𝜑 → ( e ↑ 2 ) ∈ ℝ ) |
| 35 |
8
|
nnrei |
⊢ ; 6 4 ∈ ℝ |
| 36 |
35
|
a1i |
⊢ ( 𝜑 → ; 6 4 ∈ ℝ ) |
| 37 |
3
|
nnred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 38 |
|
ltle |
⊢ ( ( ; 6 4 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ; 6 4 < 𝑁 → ; 6 4 ≤ 𝑁 ) ) |
| 39 |
35 37 38
|
sylancr |
⊢ ( 𝜑 → ( ; 6 4 < 𝑁 → ; 6 4 ≤ 𝑁 ) ) |
| 40 |
4 39
|
mpd |
⊢ ( 𝜑 → ; 6 4 ≤ 𝑁 ) |
| 41 |
34 36 37 32 40
|
letrd |
⊢ ( 𝜑 → ( e ↑ 2 ) ≤ 𝑁 ) |
| 42 |
1 2 9 3 32 41
|
bposlem7 |
⊢ ( 𝜑 → ( ; 6 4 < 𝑁 → ( 𝐹 ‘ 𝑁 ) < ( 𝐹 ‘ ; 6 4 ) ) ) |
| 43 |
4 42
|
mpd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) < ( 𝐹 ‘ ; 6 4 ) ) |
| 44 |
1 2
|
bposlem8 |
⊢ ( ( 𝐹 ‘ ; 6 4 ) ∈ ℝ ∧ ( 𝐹 ‘ ; 6 4 ) < ( log ‘ 2 ) ) |
| 45 |
44
|
a1i |
⊢ ( 𝜑 → ( ( 𝐹 ‘ ; 6 4 ) ∈ ℝ ∧ ( 𝐹 ‘ ; 6 4 ) < ( log ‘ 2 ) ) ) |
| 46 |
45
|
simpld |
⊢ ( 𝜑 → ( 𝐹 ‘ ; 6 4 ) ∈ ℝ ) |
| 47 |
|
2fveq3 |
⊢ ( 𝑛 = 𝑁 → ( 𝐺 ‘ ( √ ‘ 𝑛 ) ) = ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) |
| 48 |
47
|
oveq2d |
⊢ ( 𝑛 = 𝑁 → ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑛 ) ) ) = ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) ) |
| 49 |
|
fvoveq1 |
⊢ ( 𝑛 = 𝑁 → ( 𝐺 ‘ ( 𝑛 / 2 ) ) = ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) |
| 50 |
49
|
oveq2d |
⊢ ( 𝑛 = 𝑁 → ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑛 / 2 ) ) ) = ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) |
| 51 |
48 50
|
oveq12d |
⊢ ( 𝑛 = 𝑁 → ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑛 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑛 / 2 ) ) ) ) = ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) ) |
| 52 |
|
oveq2 |
⊢ ( 𝑛 = 𝑁 → ( 2 · 𝑛 ) = ( 2 · 𝑁 ) ) |
| 53 |
52
|
fveq2d |
⊢ ( 𝑛 = 𝑁 → ( √ ‘ ( 2 · 𝑛 ) ) = ( √ ‘ ( 2 · 𝑁 ) ) ) |
| 54 |
53
|
oveq2d |
⊢ ( 𝑛 = 𝑁 → ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑛 ) ) ) = ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑁 ) ) ) ) |
| 55 |
51 54
|
oveq12d |
⊢ ( 𝑛 = 𝑁 → ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑛 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑛 / 2 ) ) ) ) + ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑛 ) ) ) ) = ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) + ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑁 ) ) ) ) ) |
| 56 |
|
ovex |
⊢ ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) + ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑁 ) ) ) ) ∈ V |
| 57 |
55 1 56
|
fvmpt |
⊢ ( 𝑁 ∈ ℕ → ( 𝐹 ‘ 𝑁 ) = ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) + ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑁 ) ) ) ) ) |
| 58 |
3 57
|
syl |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) = ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) + ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑁 ) ) ) ) ) |
| 59 |
|
sqrt2re |
⊢ ( √ ‘ 2 ) ∈ ℝ |
| 60 |
3
|
nnrpd |
⊢ ( 𝜑 → 𝑁 ∈ ℝ+ ) |
| 61 |
60
|
rpsqrtcld |
⊢ ( 𝜑 → ( √ ‘ 𝑁 ) ∈ ℝ+ ) |
| 62 |
|
fveq2 |
⊢ ( 𝑥 = ( √ ‘ 𝑁 ) → ( log ‘ 𝑥 ) = ( log ‘ ( √ ‘ 𝑁 ) ) ) |
| 63 |
|
id |
⊢ ( 𝑥 = ( √ ‘ 𝑁 ) → 𝑥 = ( √ ‘ 𝑁 ) ) |
| 64 |
62 63
|
oveq12d |
⊢ ( 𝑥 = ( √ ‘ 𝑁 ) → ( ( log ‘ 𝑥 ) / 𝑥 ) = ( ( log ‘ ( √ ‘ 𝑁 ) ) / ( √ ‘ 𝑁 ) ) ) |
| 65 |
|
ovex |
⊢ ( ( log ‘ ( √ ‘ 𝑁 ) ) / ( √ ‘ 𝑁 ) ) ∈ V |
| 66 |
64 2 65
|
fvmpt |
⊢ ( ( √ ‘ 𝑁 ) ∈ ℝ+ → ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) = ( ( log ‘ ( √ ‘ 𝑁 ) ) / ( √ ‘ 𝑁 ) ) ) |
| 67 |
61 66
|
syl |
⊢ ( 𝜑 → ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) = ( ( log ‘ ( √ ‘ 𝑁 ) ) / ( √ ‘ 𝑁 ) ) ) |
| 68 |
61
|
relogcld |
⊢ ( 𝜑 → ( log ‘ ( √ ‘ 𝑁 ) ) ∈ ℝ ) |
| 69 |
68 61
|
rerpdivcld |
⊢ ( 𝜑 → ( ( log ‘ ( √ ‘ 𝑁 ) ) / ( √ ‘ 𝑁 ) ) ∈ ℝ ) |
| 70 |
67 69
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ∈ ℝ ) |
| 71 |
|
remulcl |
⊢ ( ( ( √ ‘ 2 ) ∈ ℝ ∧ ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ∈ ℝ ) → ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) ∈ ℝ ) |
| 72 |
59 70 71
|
sylancr |
⊢ ( 𝜑 → ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) ∈ ℝ ) |
| 73 |
|
9re |
⊢ 9 ∈ ℝ |
| 74 |
|
4re |
⊢ 4 ∈ ℝ |
| 75 |
|
4ne0 |
⊢ 4 ≠ 0 |
| 76 |
73 74 75
|
redivcli |
⊢ ( 9 / 4 ) ∈ ℝ |
| 77 |
60
|
rphalfcld |
⊢ ( 𝜑 → ( 𝑁 / 2 ) ∈ ℝ+ ) |
| 78 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑁 / 2 ) → ( log ‘ 𝑥 ) = ( log ‘ ( 𝑁 / 2 ) ) ) |
| 79 |
|
id |
⊢ ( 𝑥 = ( 𝑁 / 2 ) → 𝑥 = ( 𝑁 / 2 ) ) |
| 80 |
78 79
|
oveq12d |
⊢ ( 𝑥 = ( 𝑁 / 2 ) → ( ( log ‘ 𝑥 ) / 𝑥 ) = ( ( log ‘ ( 𝑁 / 2 ) ) / ( 𝑁 / 2 ) ) ) |
| 81 |
|
ovex |
⊢ ( ( log ‘ ( 𝑁 / 2 ) ) / ( 𝑁 / 2 ) ) ∈ V |
| 82 |
80 2 81
|
fvmpt |
⊢ ( ( 𝑁 / 2 ) ∈ ℝ+ → ( 𝐺 ‘ ( 𝑁 / 2 ) ) = ( ( log ‘ ( 𝑁 / 2 ) ) / ( 𝑁 / 2 ) ) ) |
| 83 |
77 82
|
syl |
⊢ ( 𝜑 → ( 𝐺 ‘ ( 𝑁 / 2 ) ) = ( ( log ‘ ( 𝑁 / 2 ) ) / ( 𝑁 / 2 ) ) ) |
| 84 |
77
|
relogcld |
⊢ ( 𝜑 → ( log ‘ ( 𝑁 / 2 ) ) ∈ ℝ ) |
| 85 |
84 77
|
rerpdivcld |
⊢ ( 𝜑 → ( ( log ‘ ( 𝑁 / 2 ) ) / ( 𝑁 / 2 ) ) ∈ ℝ ) |
| 86 |
83 85
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐺 ‘ ( 𝑁 / 2 ) ) ∈ ℝ ) |
| 87 |
|
remulcl |
⊢ ( ( ( 9 / 4 ) ∈ ℝ ∧ ( 𝐺 ‘ ( 𝑁 / 2 ) ) ∈ ℝ ) → ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ∈ ℝ ) |
| 88 |
76 86 87
|
sylancr |
⊢ ( 𝜑 → ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ∈ ℝ ) |
| 89 |
72 88
|
readdcld |
⊢ ( 𝜑 → ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) ∈ ℝ ) |
| 90 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 91 |
|
relogcl |
⊢ ( 2 ∈ ℝ+ → ( log ‘ 2 ) ∈ ℝ ) |
| 92 |
90 91
|
ax-mp |
⊢ ( log ‘ 2 ) ∈ ℝ |
| 93 |
|
rpmulcl |
⊢ ( ( 2 ∈ ℝ+ ∧ 𝑁 ∈ ℝ+ ) → ( 2 · 𝑁 ) ∈ ℝ+ ) |
| 94 |
90 60 93
|
sylancr |
⊢ ( 𝜑 → ( 2 · 𝑁 ) ∈ ℝ+ ) |
| 95 |
94
|
rpsqrtcld |
⊢ ( 𝜑 → ( √ ‘ ( 2 · 𝑁 ) ) ∈ ℝ+ ) |
| 96 |
|
rerpdivcl |
⊢ ( ( ( log ‘ 2 ) ∈ ℝ ∧ ( √ ‘ ( 2 · 𝑁 ) ) ∈ ℝ+ ) → ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑁 ) ) ) ∈ ℝ ) |
| 97 |
92 95 96
|
sylancr |
⊢ ( 𝜑 → ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑁 ) ) ) ∈ ℝ ) |
| 98 |
89 97
|
readdcld |
⊢ ( 𝜑 → ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) + ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑁 ) ) ) ) ∈ ℝ ) |
| 99 |
58 98
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ∈ ℝ ) |
| 100 |
92
|
a1i |
⊢ ( 𝜑 → ( log ‘ 2 ) ∈ ℝ ) |
| 101 |
45
|
simprd |
⊢ ( 𝜑 → ( 𝐹 ‘ ; 6 4 ) < ( log ‘ 2 ) ) |
| 102 |
|
nnrp |
⊢ ( 4 ∈ ℕ → 4 ∈ ℝ+ ) |
| 103 |
7 102
|
ax-mp |
⊢ 4 ∈ ℝ+ |
| 104 |
|
relogcl |
⊢ ( 4 ∈ ℝ+ → ( log ‘ 4 ) ∈ ℝ ) |
| 105 |
103 104
|
ax-mp |
⊢ ( log ‘ 4 ) ∈ ℝ |
| 106 |
|
remulcl |
⊢ ( ( 𝑁 ∈ ℝ ∧ ( log ‘ 4 ) ∈ ℝ ) → ( 𝑁 · ( log ‘ 4 ) ) ∈ ℝ ) |
| 107 |
37 105 106
|
sylancl |
⊢ ( 𝜑 → ( 𝑁 · ( log ‘ 4 ) ) ∈ ℝ ) |
| 108 |
60
|
relogcld |
⊢ ( 𝜑 → ( log ‘ 𝑁 ) ∈ ℝ ) |
| 109 |
107 108
|
resubcld |
⊢ ( 𝜑 → ( ( 𝑁 · ( log ‘ 4 ) ) − ( log ‘ 𝑁 ) ) ∈ ℝ ) |
| 110 |
|
rpre |
⊢ ( ( 2 · 𝑁 ) ∈ ℝ+ → ( 2 · 𝑁 ) ∈ ℝ ) |
| 111 |
|
rpge0 |
⊢ ( ( 2 · 𝑁 ) ∈ ℝ+ → 0 ≤ ( 2 · 𝑁 ) ) |
| 112 |
110 111
|
resqrtcld |
⊢ ( ( 2 · 𝑁 ) ∈ ℝ+ → ( √ ‘ ( 2 · 𝑁 ) ) ∈ ℝ ) |
| 113 |
94 112
|
syl |
⊢ ( 𝜑 → ( √ ‘ ( 2 · 𝑁 ) ) ∈ ℝ ) |
| 114 |
|
3nn |
⊢ 3 ∈ ℕ |
| 115 |
|
nndivre |
⊢ ( ( ( √ ‘ ( 2 · 𝑁 ) ) ∈ ℝ ∧ 3 ∈ ℕ ) → ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) ∈ ℝ ) |
| 116 |
113 114 115
|
sylancl |
⊢ ( 𝜑 → ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) ∈ ℝ ) |
| 117 |
|
2re |
⊢ 2 ∈ ℝ |
| 118 |
|
readdcl |
⊢ ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) ∈ ℝ ∧ 2 ∈ ℝ ) → ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) ∈ ℝ ) |
| 119 |
116 117 118
|
sylancl |
⊢ ( 𝜑 → ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) ∈ ℝ ) |
| 120 |
94
|
relogcld |
⊢ ( 𝜑 → ( log ‘ ( 2 · 𝑁 ) ) ∈ ℝ ) |
| 121 |
119 120
|
remulcld |
⊢ ( 𝜑 → ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) · ( log ‘ ( 2 · 𝑁 ) ) ) ∈ ℝ ) |
| 122 |
|
remulcl |
⊢ ( ( 4 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 4 · 𝑁 ) ∈ ℝ ) |
| 123 |
74 37 122
|
sylancr |
⊢ ( 𝜑 → ( 4 · 𝑁 ) ∈ ℝ ) |
| 124 |
|
nndivre |
⊢ ( ( ( 4 · 𝑁 ) ∈ ℝ ∧ 3 ∈ ℕ ) → ( ( 4 · 𝑁 ) / 3 ) ∈ ℝ ) |
| 125 |
123 114 124
|
sylancl |
⊢ ( 𝜑 → ( ( 4 · 𝑁 ) / 3 ) ∈ ℝ ) |
| 126 |
|
5re |
⊢ 5 ∈ ℝ |
| 127 |
|
resubcl |
⊢ ( ( ( ( 4 · 𝑁 ) / 3 ) ∈ ℝ ∧ 5 ∈ ℝ ) → ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) ∈ ℝ ) |
| 128 |
125 126 127
|
sylancl |
⊢ ( 𝜑 → ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) ∈ ℝ ) |
| 129 |
|
remulcl |
⊢ ( ( ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) ∈ ℝ ∧ ( log ‘ 2 ) ∈ ℝ ) → ( ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) · ( log ‘ 2 ) ) ∈ ℝ ) |
| 130 |
128 92 129
|
sylancl |
⊢ ( 𝜑 → ( ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) · ( log ‘ 2 ) ) ∈ ℝ ) |
| 131 |
121 130
|
readdcld |
⊢ ( 𝜑 → ( ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) · ( log ‘ ( 2 · 𝑁 ) ) ) + ( ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) · ( log ‘ 2 ) ) ) ∈ ℝ ) |
| 132 |
|
remulcl |
⊢ ( ( ( ( 4 · 𝑁 ) / 3 ) ∈ ℝ ∧ ( log ‘ 2 ) ∈ ℝ ) → ( ( ( 4 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) ∈ ℝ ) |
| 133 |
125 92 132
|
sylancl |
⊢ ( 𝜑 → ( ( ( 4 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) ∈ ℝ ) |
| 134 |
133 108
|
resubcld |
⊢ ( 𝜑 → ( ( ( ( 4 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) − ( log ‘ 𝑁 ) ) ∈ ℝ ) |
| 135 |
3
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 136 |
|
df-5 |
⊢ 5 = ( 4 + 1 ) |
| 137 |
74
|
a1i |
⊢ ( 𝜑 → 4 ∈ ℝ ) |
| 138 |
|
6nn |
⊢ 6 ∈ ℕ |
| 139 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
| 140 |
|
4lt10 |
⊢ 4 < ; 1 0 |
| 141 |
138 139 139 140
|
declti |
⊢ 4 < ; 6 4 |
| 142 |
141
|
a1i |
⊢ ( 𝜑 → 4 < ; 6 4 ) |
| 143 |
137 36 37 142 4
|
lttrd |
⊢ ( 𝜑 → 4 < 𝑁 ) |
| 144 |
|
4z |
⊢ 4 ∈ ℤ |
| 145 |
|
zltp1le |
⊢ ( ( 4 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 4 < 𝑁 ↔ ( 4 + 1 ) ≤ 𝑁 ) ) |
| 146 |
144 135 145
|
sylancr |
⊢ ( 𝜑 → ( 4 < 𝑁 ↔ ( 4 + 1 ) ≤ 𝑁 ) ) |
| 147 |
143 146
|
mpbid |
⊢ ( 𝜑 → ( 4 + 1 ) ≤ 𝑁 ) |
| 148 |
136 147
|
eqbrtrid |
⊢ ( 𝜑 → 5 ≤ 𝑁 ) |
| 149 |
|
5nn |
⊢ 5 ∈ ℕ |
| 150 |
149
|
nnzi |
⊢ 5 ∈ ℤ |
| 151 |
150
|
eluz1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 5 ) ↔ ( 𝑁 ∈ ℤ ∧ 5 ≤ 𝑁 ) ) |
| 152 |
135 148 151
|
sylanbrc |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 5 ) ) |
| 153 |
|
breq2 |
⊢ ( 𝑝 = 𝑞 → ( 𝑁 < 𝑝 ↔ 𝑁 < 𝑞 ) ) |
| 154 |
|
breq1 |
⊢ ( 𝑝 = 𝑞 → ( 𝑝 ≤ ( 2 · 𝑁 ) ↔ 𝑞 ≤ ( 2 · 𝑁 ) ) ) |
| 155 |
153 154
|
anbi12d |
⊢ ( 𝑝 = 𝑞 → ( ( 𝑁 < 𝑝 ∧ 𝑝 ≤ ( 2 · 𝑁 ) ) ↔ ( 𝑁 < 𝑞 ∧ 𝑞 ≤ ( 2 · 𝑁 ) ) ) ) |
| 156 |
155
|
cbvrexvw |
⊢ ( ∃ 𝑝 ∈ ℙ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ ( 2 · 𝑁 ) ) ↔ ∃ 𝑞 ∈ ℙ ( 𝑁 < 𝑞 ∧ 𝑞 ≤ ( 2 · 𝑁 ) ) ) |
| 157 |
5 156
|
sylnib |
⊢ ( 𝜑 → ¬ ∃ 𝑞 ∈ ℙ ( 𝑁 < 𝑞 ∧ 𝑞 ≤ ( 2 · 𝑁 ) ) ) |
| 158 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ ( 𝑛 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) ) , 1 ) ) = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ ( 𝑛 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) ) , 1 ) ) |
| 159 |
|
eqid |
⊢ ( ⌊ ‘ ( ( 2 · 𝑁 ) / 3 ) ) = ( ⌊ ‘ ( ( 2 · 𝑁 ) / 3 ) ) |
| 160 |
|
eqid |
⊢ ( ⌊ ‘ ( √ ‘ ( 2 · 𝑁 ) ) ) = ( ⌊ ‘ ( √ ‘ ( 2 · 𝑁 ) ) ) |
| 161 |
152 157 158 159 160
|
bposlem6 |
⊢ ( 𝜑 → ( ( 4 ↑ 𝑁 ) / 𝑁 ) < ( ( ( 2 · 𝑁 ) ↑𝑐 ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) ) · ( 2 ↑𝑐 ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) ) ) ) |
| 162 |
|
reexplog |
⊢ ( ( 4 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ) → ( 4 ↑ 𝑁 ) = ( exp ‘ ( 𝑁 · ( log ‘ 4 ) ) ) ) |
| 163 |
103 135 162
|
sylancr |
⊢ ( 𝜑 → ( 4 ↑ 𝑁 ) = ( exp ‘ ( 𝑁 · ( log ‘ 4 ) ) ) ) |
| 164 |
60
|
reeflogd |
⊢ ( 𝜑 → ( exp ‘ ( log ‘ 𝑁 ) ) = 𝑁 ) |
| 165 |
164
|
eqcomd |
⊢ ( 𝜑 → 𝑁 = ( exp ‘ ( log ‘ 𝑁 ) ) ) |
| 166 |
163 165
|
oveq12d |
⊢ ( 𝜑 → ( ( 4 ↑ 𝑁 ) / 𝑁 ) = ( ( exp ‘ ( 𝑁 · ( log ‘ 4 ) ) ) / ( exp ‘ ( log ‘ 𝑁 ) ) ) ) |
| 167 |
107
|
recnd |
⊢ ( 𝜑 → ( 𝑁 · ( log ‘ 4 ) ) ∈ ℂ ) |
| 168 |
108
|
recnd |
⊢ ( 𝜑 → ( log ‘ 𝑁 ) ∈ ℂ ) |
| 169 |
|
efsub |
⊢ ( ( ( 𝑁 · ( log ‘ 4 ) ) ∈ ℂ ∧ ( log ‘ 𝑁 ) ∈ ℂ ) → ( exp ‘ ( ( 𝑁 · ( log ‘ 4 ) ) − ( log ‘ 𝑁 ) ) ) = ( ( exp ‘ ( 𝑁 · ( log ‘ 4 ) ) ) / ( exp ‘ ( log ‘ 𝑁 ) ) ) ) |
| 170 |
167 168 169
|
syl2anc |
⊢ ( 𝜑 → ( exp ‘ ( ( 𝑁 · ( log ‘ 4 ) ) − ( log ‘ 𝑁 ) ) ) = ( ( exp ‘ ( 𝑁 · ( log ‘ 4 ) ) ) / ( exp ‘ ( log ‘ 𝑁 ) ) ) ) |
| 171 |
166 170
|
eqtr4d |
⊢ ( 𝜑 → ( ( 4 ↑ 𝑁 ) / 𝑁 ) = ( exp ‘ ( ( 𝑁 · ( log ‘ 4 ) ) − ( log ‘ 𝑁 ) ) ) ) |
| 172 |
94
|
rpcnd |
⊢ ( 𝜑 → ( 2 · 𝑁 ) ∈ ℂ ) |
| 173 |
94
|
rpne0d |
⊢ ( 𝜑 → ( 2 · 𝑁 ) ≠ 0 ) |
| 174 |
119
|
recnd |
⊢ ( 𝜑 → ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) ∈ ℂ ) |
| 175 |
172 173 174
|
cxpefd |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) ↑𝑐 ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) ) = ( exp ‘ ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) · ( log ‘ ( 2 · 𝑁 ) ) ) ) ) |
| 176 |
|
2cn |
⊢ 2 ∈ ℂ |
| 177 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 178 |
128
|
recnd |
⊢ ( 𝜑 → ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) ∈ ℂ ) |
| 179 |
|
cxpef |
⊢ ( ( 2 ∈ ℂ ∧ 2 ≠ 0 ∧ ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) ∈ ℂ ) → ( 2 ↑𝑐 ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) ) = ( exp ‘ ( ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) · ( log ‘ 2 ) ) ) ) |
| 180 |
176 177 178 179
|
mp3an12i |
⊢ ( 𝜑 → ( 2 ↑𝑐 ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) ) = ( exp ‘ ( ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) · ( log ‘ 2 ) ) ) ) |
| 181 |
175 180
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) ↑𝑐 ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) ) · ( 2 ↑𝑐 ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) ) ) = ( ( exp ‘ ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) · ( log ‘ ( 2 · 𝑁 ) ) ) ) · ( exp ‘ ( ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) · ( log ‘ 2 ) ) ) ) ) |
| 182 |
121
|
recnd |
⊢ ( 𝜑 → ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) · ( log ‘ ( 2 · 𝑁 ) ) ) ∈ ℂ ) |
| 183 |
130
|
recnd |
⊢ ( 𝜑 → ( ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) · ( log ‘ 2 ) ) ∈ ℂ ) |
| 184 |
|
efadd |
⊢ ( ( ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) · ( log ‘ ( 2 · 𝑁 ) ) ) ∈ ℂ ∧ ( ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) · ( log ‘ 2 ) ) ∈ ℂ ) → ( exp ‘ ( ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) · ( log ‘ ( 2 · 𝑁 ) ) ) + ( ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) · ( log ‘ 2 ) ) ) ) = ( ( exp ‘ ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) · ( log ‘ ( 2 · 𝑁 ) ) ) ) · ( exp ‘ ( ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) · ( log ‘ 2 ) ) ) ) ) |
| 185 |
182 183 184
|
syl2anc |
⊢ ( 𝜑 → ( exp ‘ ( ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) · ( log ‘ ( 2 · 𝑁 ) ) ) + ( ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) · ( log ‘ 2 ) ) ) ) = ( ( exp ‘ ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) · ( log ‘ ( 2 · 𝑁 ) ) ) ) · ( exp ‘ ( ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) · ( log ‘ 2 ) ) ) ) ) |
| 186 |
181 185
|
eqtr4d |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) ↑𝑐 ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) ) · ( 2 ↑𝑐 ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) ) ) = ( exp ‘ ( ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) · ( log ‘ ( 2 · 𝑁 ) ) ) + ( ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) · ( log ‘ 2 ) ) ) ) ) |
| 187 |
161 171 186
|
3brtr3d |
⊢ ( 𝜑 → ( exp ‘ ( ( 𝑁 · ( log ‘ 4 ) ) − ( log ‘ 𝑁 ) ) ) < ( exp ‘ ( ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) · ( log ‘ ( 2 · 𝑁 ) ) ) + ( ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) · ( log ‘ 2 ) ) ) ) ) |
| 188 |
|
eflt |
⊢ ( ( ( ( 𝑁 · ( log ‘ 4 ) ) − ( log ‘ 𝑁 ) ) ∈ ℝ ∧ ( ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) · ( log ‘ ( 2 · 𝑁 ) ) ) + ( ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) · ( log ‘ 2 ) ) ) ∈ ℝ ) → ( ( ( 𝑁 · ( log ‘ 4 ) ) − ( log ‘ 𝑁 ) ) < ( ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) · ( log ‘ ( 2 · 𝑁 ) ) ) + ( ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) · ( log ‘ 2 ) ) ) ↔ ( exp ‘ ( ( 𝑁 · ( log ‘ 4 ) ) − ( log ‘ 𝑁 ) ) ) < ( exp ‘ ( ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) · ( log ‘ ( 2 · 𝑁 ) ) ) + ( ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) · ( log ‘ 2 ) ) ) ) ) ) |
| 189 |
109 131 188
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝑁 · ( log ‘ 4 ) ) − ( log ‘ 𝑁 ) ) < ( ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) · ( log ‘ ( 2 · 𝑁 ) ) ) + ( ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) · ( log ‘ 2 ) ) ) ↔ ( exp ‘ ( ( 𝑁 · ( log ‘ 4 ) ) − ( log ‘ 𝑁 ) ) ) < ( exp ‘ ( ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) · ( log ‘ ( 2 · 𝑁 ) ) ) + ( ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) · ( log ‘ 2 ) ) ) ) ) ) |
| 190 |
187 189
|
mpbird |
⊢ ( 𝜑 → ( ( 𝑁 · ( log ‘ 4 ) ) − ( log ‘ 𝑁 ) ) < ( ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) · ( log ‘ ( 2 · 𝑁 ) ) ) + ( ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) · ( log ‘ 2 ) ) ) ) |
| 191 |
109 131 134 190
|
ltsub1dd |
⊢ ( 𝜑 → ( ( ( 𝑁 · ( log ‘ 4 ) ) − ( log ‘ 𝑁 ) ) − ( ( ( ( 4 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) − ( log ‘ 𝑁 ) ) ) < ( ( ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) · ( log ‘ ( 2 · 𝑁 ) ) ) + ( ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) · ( log ‘ 2 ) ) ) − ( ( ( ( 4 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) − ( log ‘ 𝑁 ) ) ) ) |
| 192 |
37
|
recnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 193 |
|
mulcom |
⊢ ( ( 2 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( 2 · 𝑁 ) = ( 𝑁 · 2 ) ) |
| 194 |
176 192 193
|
sylancr |
⊢ ( 𝜑 → ( 2 · 𝑁 ) = ( 𝑁 · 2 ) ) |
| 195 |
194
|
oveq1d |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) · ( log ‘ 2 ) ) = ( ( 𝑁 · 2 ) · ( log ‘ 2 ) ) ) |
| 196 |
92
|
recni |
⊢ ( log ‘ 2 ) ∈ ℂ |
| 197 |
|
mulass |
⊢ ( ( 𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ ( log ‘ 2 ) ∈ ℂ ) → ( ( 𝑁 · 2 ) · ( log ‘ 2 ) ) = ( 𝑁 · ( 2 · ( log ‘ 2 ) ) ) ) |
| 198 |
176 196 197
|
mp3an23 |
⊢ ( 𝑁 ∈ ℂ → ( ( 𝑁 · 2 ) · ( log ‘ 2 ) ) = ( 𝑁 · ( 2 · ( log ‘ 2 ) ) ) ) |
| 199 |
192 198
|
syl |
⊢ ( 𝜑 → ( ( 𝑁 · 2 ) · ( log ‘ 2 ) ) = ( 𝑁 · ( 2 · ( log ‘ 2 ) ) ) ) |
| 200 |
196
|
2timesi |
⊢ ( 2 · ( log ‘ 2 ) ) = ( ( log ‘ 2 ) + ( log ‘ 2 ) ) |
| 201 |
|
relogmul |
⊢ ( ( 2 ∈ ℝ+ ∧ 2 ∈ ℝ+ ) → ( log ‘ ( 2 · 2 ) ) = ( ( log ‘ 2 ) + ( log ‘ 2 ) ) ) |
| 202 |
90 90 201
|
mp2an |
⊢ ( log ‘ ( 2 · 2 ) ) = ( ( log ‘ 2 ) + ( log ‘ 2 ) ) |
| 203 |
|
2t2e4 |
⊢ ( 2 · 2 ) = 4 |
| 204 |
203
|
fveq2i |
⊢ ( log ‘ ( 2 · 2 ) ) = ( log ‘ 4 ) |
| 205 |
200 202 204
|
3eqtr2i |
⊢ ( 2 · ( log ‘ 2 ) ) = ( log ‘ 4 ) |
| 206 |
205
|
oveq2i |
⊢ ( 𝑁 · ( 2 · ( log ‘ 2 ) ) ) = ( 𝑁 · ( log ‘ 4 ) ) |
| 207 |
199 206
|
eqtrdi |
⊢ ( 𝜑 → ( ( 𝑁 · 2 ) · ( log ‘ 2 ) ) = ( 𝑁 · ( log ‘ 4 ) ) ) |
| 208 |
195 207
|
eqtrd |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) · ( log ‘ 2 ) ) = ( 𝑁 · ( log ‘ 4 ) ) ) |
| 209 |
208
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) · ( log ‘ 2 ) ) − ( ( ( 4 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) ) = ( ( 𝑁 · ( log ‘ 4 ) ) − ( ( ( 4 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) ) ) |
| 210 |
125
|
recnd |
⊢ ( 𝜑 → ( ( 4 · 𝑁 ) / 3 ) ∈ ℂ ) |
| 211 |
|
3rp |
⊢ 3 ∈ ℝ+ |
| 212 |
|
rpdivcl |
⊢ ( ( ( 2 · 𝑁 ) ∈ ℝ+ ∧ 3 ∈ ℝ+ ) → ( ( 2 · 𝑁 ) / 3 ) ∈ ℝ+ ) |
| 213 |
94 211 212
|
sylancl |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) / 3 ) ∈ ℝ+ ) |
| 214 |
213
|
rpcnd |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) / 3 ) ∈ ℂ ) |
| 215 |
|
4p2e6 |
⊢ ( 4 + 2 ) = 6 |
| 216 |
215
|
oveq1i |
⊢ ( ( 4 + 2 ) · 𝑁 ) = ( 6 · 𝑁 ) |
| 217 |
|
4cn |
⊢ 4 ∈ ℂ |
| 218 |
|
adddir |
⊢ ( ( 4 ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( ( 4 + 2 ) · 𝑁 ) = ( ( 4 · 𝑁 ) + ( 2 · 𝑁 ) ) ) |
| 219 |
217 176 192 218
|
mp3an12i |
⊢ ( 𝜑 → ( ( 4 + 2 ) · 𝑁 ) = ( ( 4 · 𝑁 ) + ( 2 · 𝑁 ) ) ) |
| 220 |
216 219
|
eqtr3id |
⊢ ( 𝜑 → ( 6 · 𝑁 ) = ( ( 4 · 𝑁 ) + ( 2 · 𝑁 ) ) ) |
| 221 |
220
|
oveq1d |
⊢ ( 𝜑 → ( ( 6 · 𝑁 ) / 3 ) = ( ( ( 4 · 𝑁 ) + ( 2 · 𝑁 ) ) / 3 ) ) |
| 222 |
|
6cn |
⊢ 6 ∈ ℂ |
| 223 |
|
3cn |
⊢ 3 ∈ ℂ |
| 224 |
|
3ne0 |
⊢ 3 ≠ 0 |
| 225 |
223 224
|
pm3.2i |
⊢ ( 3 ∈ ℂ ∧ 3 ≠ 0 ) |
| 226 |
|
div23 |
⊢ ( ( 6 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ ( 3 ∈ ℂ ∧ 3 ≠ 0 ) ) → ( ( 6 · 𝑁 ) / 3 ) = ( ( 6 / 3 ) · 𝑁 ) ) |
| 227 |
222 225 226
|
mp3an13 |
⊢ ( 𝑁 ∈ ℂ → ( ( 6 · 𝑁 ) / 3 ) = ( ( 6 / 3 ) · 𝑁 ) ) |
| 228 |
192 227
|
syl |
⊢ ( 𝜑 → ( ( 6 · 𝑁 ) / 3 ) = ( ( 6 / 3 ) · 𝑁 ) ) |
| 229 |
|
3t2e6 |
⊢ ( 3 · 2 ) = 6 |
| 230 |
229
|
oveq1i |
⊢ ( ( 3 · 2 ) / 3 ) = ( 6 / 3 ) |
| 231 |
176 223 224
|
divcan3i |
⊢ ( ( 3 · 2 ) / 3 ) = 2 |
| 232 |
230 231
|
eqtr3i |
⊢ ( 6 / 3 ) = 2 |
| 233 |
232
|
oveq1i |
⊢ ( ( 6 / 3 ) · 𝑁 ) = ( 2 · 𝑁 ) |
| 234 |
228 233
|
eqtrdi |
⊢ ( 𝜑 → ( ( 6 · 𝑁 ) / 3 ) = ( 2 · 𝑁 ) ) |
| 235 |
123
|
recnd |
⊢ ( 𝜑 → ( 4 · 𝑁 ) ∈ ℂ ) |
| 236 |
|
remulcl |
⊢ ( ( 2 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 2 · 𝑁 ) ∈ ℝ ) |
| 237 |
117 37 236
|
sylancr |
⊢ ( 𝜑 → ( 2 · 𝑁 ) ∈ ℝ ) |
| 238 |
237
|
recnd |
⊢ ( 𝜑 → ( 2 · 𝑁 ) ∈ ℂ ) |
| 239 |
|
divdir |
⊢ ( ( ( 4 · 𝑁 ) ∈ ℂ ∧ ( 2 · 𝑁 ) ∈ ℂ ∧ ( 3 ∈ ℂ ∧ 3 ≠ 0 ) ) → ( ( ( 4 · 𝑁 ) + ( 2 · 𝑁 ) ) / 3 ) = ( ( ( 4 · 𝑁 ) / 3 ) + ( ( 2 · 𝑁 ) / 3 ) ) ) |
| 240 |
225 239
|
mp3an3 |
⊢ ( ( ( 4 · 𝑁 ) ∈ ℂ ∧ ( 2 · 𝑁 ) ∈ ℂ ) → ( ( ( 4 · 𝑁 ) + ( 2 · 𝑁 ) ) / 3 ) = ( ( ( 4 · 𝑁 ) / 3 ) + ( ( 2 · 𝑁 ) / 3 ) ) ) |
| 241 |
235 238 240
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 4 · 𝑁 ) + ( 2 · 𝑁 ) ) / 3 ) = ( ( ( 4 · 𝑁 ) / 3 ) + ( ( 2 · 𝑁 ) / 3 ) ) ) |
| 242 |
221 234 241
|
3eqtr3d |
⊢ ( 𝜑 → ( 2 · 𝑁 ) = ( ( ( 4 · 𝑁 ) / 3 ) + ( ( 2 · 𝑁 ) / 3 ) ) ) |
| 243 |
210 214 242
|
mvrladdd |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) − ( ( 4 · 𝑁 ) / 3 ) ) = ( ( 2 · 𝑁 ) / 3 ) ) |
| 244 |
243
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) − ( ( 4 · 𝑁 ) / 3 ) ) · ( log ‘ 2 ) ) = ( ( ( 2 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) ) |
| 245 |
100
|
recnd |
⊢ ( 𝜑 → ( log ‘ 2 ) ∈ ℂ ) |
| 246 |
238 210 245
|
subdird |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) − ( ( 4 · 𝑁 ) / 3 ) ) · ( log ‘ 2 ) ) = ( ( ( 2 · 𝑁 ) · ( log ‘ 2 ) ) − ( ( ( 4 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) ) ) |
| 247 |
244 246
|
eqtr3d |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) = ( ( ( 2 · 𝑁 ) · ( log ‘ 2 ) ) − ( ( ( 4 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) ) ) |
| 248 |
133
|
recnd |
⊢ ( 𝜑 → ( ( ( 4 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) ∈ ℂ ) |
| 249 |
167 248 168
|
nnncan2d |
⊢ ( 𝜑 → ( ( ( 𝑁 · ( log ‘ 4 ) ) − ( log ‘ 𝑁 ) ) − ( ( ( ( 4 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) − ( log ‘ 𝑁 ) ) ) = ( ( 𝑁 · ( log ‘ 4 ) ) − ( ( ( 4 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) ) ) |
| 250 |
209 247 249
|
3eqtr4d |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) = ( ( ( 𝑁 · ( log ‘ 4 ) ) − ( log ‘ 𝑁 ) ) − ( ( ( ( 4 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) − ( log ‘ 𝑁 ) ) ) ) |
| 251 |
116
|
recnd |
⊢ ( 𝜑 → ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) ∈ ℂ ) |
| 252 |
176
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
| 253 |
120
|
recnd |
⊢ ( 𝜑 → ( log ‘ ( 2 · 𝑁 ) ) ∈ ℂ ) |
| 254 |
251 252 253
|
adddird |
⊢ ( 𝜑 → ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) · ( log ‘ ( 2 · 𝑁 ) ) ) = ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ ( 2 · 𝑁 ) ) ) + ( 2 · ( log ‘ ( 2 · 𝑁 ) ) ) ) ) |
| 255 |
|
relogmul |
⊢ ( ( 2 ∈ ℝ+ ∧ 𝑁 ∈ ℝ+ ) → ( log ‘ ( 2 · 𝑁 ) ) = ( ( log ‘ 2 ) + ( log ‘ 𝑁 ) ) ) |
| 256 |
90 60 255
|
sylancr |
⊢ ( 𝜑 → ( log ‘ ( 2 · 𝑁 ) ) = ( ( log ‘ 2 ) + ( log ‘ 𝑁 ) ) ) |
| 257 |
256
|
oveq2d |
⊢ ( 𝜑 → ( 2 · ( log ‘ ( 2 · 𝑁 ) ) ) = ( 2 · ( ( log ‘ 2 ) + ( log ‘ 𝑁 ) ) ) ) |
| 258 |
252 245 168
|
adddid |
⊢ ( 𝜑 → ( 2 · ( ( log ‘ 2 ) + ( log ‘ 𝑁 ) ) ) = ( ( 2 · ( log ‘ 2 ) ) + ( 2 · ( log ‘ 𝑁 ) ) ) ) |
| 259 |
257 258
|
eqtrd |
⊢ ( 𝜑 → ( 2 · ( log ‘ ( 2 · 𝑁 ) ) ) = ( ( 2 · ( log ‘ 2 ) ) + ( 2 · ( log ‘ 𝑁 ) ) ) ) |
| 260 |
259
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ ( 2 · 𝑁 ) ) ) + ( 2 · ( log ‘ ( 2 · 𝑁 ) ) ) ) = ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ ( 2 · 𝑁 ) ) ) + ( ( 2 · ( log ‘ 2 ) ) + ( 2 · ( log ‘ 𝑁 ) ) ) ) ) |
| 261 |
254 260
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) · ( log ‘ ( 2 · 𝑁 ) ) ) = ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ ( 2 · 𝑁 ) ) ) + ( ( 2 · ( log ‘ 2 ) ) + ( 2 · ( log ‘ 𝑁 ) ) ) ) ) |
| 262 |
|
5cn |
⊢ 5 ∈ ℂ |
| 263 |
262
|
a1i |
⊢ ( 𝜑 → 5 ∈ ℂ ) |
| 264 |
210 263 245
|
subdird |
⊢ ( 𝜑 → ( ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) · ( log ‘ 2 ) ) = ( ( ( ( 4 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) − ( 5 · ( log ‘ 2 ) ) ) ) |
| 265 |
264
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) · ( log ‘ 2 ) ) − ( ( ( ( 4 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) − ( log ‘ 𝑁 ) ) ) = ( ( ( ( ( 4 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) − ( 5 · ( log ‘ 2 ) ) ) − ( ( ( ( 4 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) − ( log ‘ 𝑁 ) ) ) ) |
| 266 |
262 196
|
mulcli |
⊢ ( 5 · ( log ‘ 2 ) ) ∈ ℂ |
| 267 |
266
|
a1i |
⊢ ( 𝜑 → ( 5 · ( log ‘ 2 ) ) ∈ ℂ ) |
| 268 |
248 267 168
|
nnncan1d |
⊢ ( 𝜑 → ( ( ( ( ( 4 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) − ( 5 · ( log ‘ 2 ) ) ) − ( ( ( ( 4 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) − ( log ‘ 𝑁 ) ) ) = ( ( log ‘ 𝑁 ) − ( 5 · ( log ‘ 2 ) ) ) ) |
| 269 |
265 268
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) · ( log ‘ 2 ) ) − ( ( ( ( 4 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) − ( log ‘ 𝑁 ) ) ) = ( ( log ‘ 𝑁 ) − ( 5 · ( log ‘ 2 ) ) ) ) |
| 270 |
261 269
|
oveq12d |
⊢ ( 𝜑 → ( ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) · ( log ‘ ( 2 · 𝑁 ) ) ) + ( ( ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) · ( log ‘ 2 ) ) − ( ( ( ( 4 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) − ( log ‘ 𝑁 ) ) ) ) = ( ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ ( 2 · 𝑁 ) ) ) + ( ( 2 · ( log ‘ 2 ) ) + ( 2 · ( log ‘ 𝑁 ) ) ) ) + ( ( log ‘ 𝑁 ) − ( 5 · ( log ‘ 2 ) ) ) ) ) |
| 271 |
134
|
recnd |
⊢ ( 𝜑 → ( ( ( ( 4 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) − ( log ‘ 𝑁 ) ) ∈ ℂ ) |
| 272 |
182 183 271
|
addsubassd |
⊢ ( 𝜑 → ( ( ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) · ( log ‘ ( 2 · 𝑁 ) ) ) + ( ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) · ( log ‘ 2 ) ) ) − ( ( ( ( 4 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) − ( log ‘ 𝑁 ) ) ) = ( ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) · ( log ‘ ( 2 · 𝑁 ) ) ) + ( ( ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) · ( log ‘ 2 ) ) − ( ( ( ( 4 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) − ( log ‘ 𝑁 ) ) ) ) ) |
| 273 |
262 223 196
|
subdiri |
⊢ ( ( 5 − 3 ) · ( log ‘ 2 ) ) = ( ( 5 · ( log ‘ 2 ) ) − ( 3 · ( log ‘ 2 ) ) ) |
| 274 |
|
3p2e5 |
⊢ ( 3 + 2 ) = 5 |
| 275 |
274
|
oveq1i |
⊢ ( ( 3 + 2 ) − 3 ) = ( 5 − 3 ) |
| 276 |
|
pncan2 |
⊢ ( ( 3 ∈ ℂ ∧ 2 ∈ ℂ ) → ( ( 3 + 2 ) − 3 ) = 2 ) |
| 277 |
223 176 276
|
mp2an |
⊢ ( ( 3 + 2 ) − 3 ) = 2 |
| 278 |
275 277
|
eqtr3i |
⊢ ( 5 − 3 ) = 2 |
| 279 |
278
|
oveq1i |
⊢ ( ( 5 − 3 ) · ( log ‘ 2 ) ) = ( 2 · ( log ‘ 2 ) ) |
| 280 |
273 279
|
eqtr3i |
⊢ ( ( 5 · ( log ‘ 2 ) ) − ( 3 · ( log ‘ 2 ) ) ) = ( 2 · ( log ‘ 2 ) ) |
| 281 |
280
|
a1i |
⊢ ( 𝜑 → ( ( 5 · ( log ‘ 2 ) ) − ( 3 · ( log ‘ 2 ) ) ) = ( 2 · ( log ‘ 2 ) ) ) |
| 282 |
|
mulcl |
⊢ ( ( 2 ∈ ℂ ∧ ( log ‘ 𝑁 ) ∈ ℂ ) → ( 2 · ( log ‘ 𝑁 ) ) ∈ ℂ ) |
| 283 |
176 168 282
|
sylancr |
⊢ ( 𝜑 → ( 2 · ( log ‘ 𝑁 ) ) ∈ ℂ ) |
| 284 |
|
df-3 |
⊢ 3 = ( 2 + 1 ) |
| 285 |
284
|
oveq1i |
⊢ ( 3 · ( log ‘ 𝑁 ) ) = ( ( 2 + 1 ) · ( log ‘ 𝑁 ) ) |
| 286 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 287 |
252 286 168
|
adddird |
⊢ ( 𝜑 → ( ( 2 + 1 ) · ( log ‘ 𝑁 ) ) = ( ( 2 · ( log ‘ 𝑁 ) ) + ( 1 · ( log ‘ 𝑁 ) ) ) ) |
| 288 |
285 287
|
eqtrid |
⊢ ( 𝜑 → ( 3 · ( log ‘ 𝑁 ) ) = ( ( 2 · ( log ‘ 𝑁 ) ) + ( 1 · ( log ‘ 𝑁 ) ) ) ) |
| 289 |
168
|
mullidd |
⊢ ( 𝜑 → ( 1 · ( log ‘ 𝑁 ) ) = ( log ‘ 𝑁 ) ) |
| 290 |
289
|
oveq2d |
⊢ ( 𝜑 → ( ( 2 · ( log ‘ 𝑁 ) ) + ( 1 · ( log ‘ 𝑁 ) ) ) = ( ( 2 · ( log ‘ 𝑁 ) ) + ( log ‘ 𝑁 ) ) ) |
| 291 |
288 290
|
eqtrd |
⊢ ( 𝜑 → ( 3 · ( log ‘ 𝑁 ) ) = ( ( 2 · ( log ‘ 𝑁 ) ) + ( log ‘ 𝑁 ) ) ) |
| 292 |
291
|
oveq1d |
⊢ ( 𝜑 → ( ( 3 · ( log ‘ 𝑁 ) ) − ( 5 · ( log ‘ 2 ) ) ) = ( ( ( 2 · ( log ‘ 𝑁 ) ) + ( log ‘ 𝑁 ) ) − ( 5 · ( log ‘ 2 ) ) ) ) |
| 293 |
283 168 267 292
|
assraddsubd |
⊢ ( 𝜑 → ( ( 3 · ( log ‘ 𝑁 ) ) − ( 5 · ( log ‘ 2 ) ) ) = ( ( 2 · ( log ‘ 𝑁 ) ) + ( ( log ‘ 𝑁 ) − ( 5 · ( log ‘ 2 ) ) ) ) ) |
| 294 |
281 293
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 5 · ( log ‘ 2 ) ) − ( 3 · ( log ‘ 2 ) ) ) + ( ( 3 · ( log ‘ 𝑁 ) ) − ( 5 · ( log ‘ 2 ) ) ) ) = ( ( 2 · ( log ‘ 2 ) ) + ( ( 2 · ( log ‘ 𝑁 ) ) + ( ( log ‘ 𝑁 ) − ( 5 · ( log ‘ 2 ) ) ) ) ) ) |
| 295 |
|
relogdiv |
⊢ ( ( 𝑁 ∈ ℝ+ ∧ 2 ∈ ℝ+ ) → ( log ‘ ( 𝑁 / 2 ) ) = ( ( log ‘ 𝑁 ) − ( log ‘ 2 ) ) ) |
| 296 |
60 90 295
|
sylancl |
⊢ ( 𝜑 → ( log ‘ ( 𝑁 / 2 ) ) = ( ( log ‘ 𝑁 ) − ( log ‘ 2 ) ) ) |
| 297 |
296
|
oveq2d |
⊢ ( 𝜑 → ( 3 · ( log ‘ ( 𝑁 / 2 ) ) ) = ( 3 · ( ( log ‘ 𝑁 ) − ( log ‘ 2 ) ) ) ) |
| 298 |
|
subdi |
⊢ ( ( 3 ∈ ℂ ∧ ( log ‘ 𝑁 ) ∈ ℂ ∧ ( log ‘ 2 ) ∈ ℂ ) → ( 3 · ( ( log ‘ 𝑁 ) − ( log ‘ 2 ) ) ) = ( ( 3 · ( log ‘ 𝑁 ) ) − ( 3 · ( log ‘ 2 ) ) ) ) |
| 299 |
223 196 298
|
mp3an13 |
⊢ ( ( log ‘ 𝑁 ) ∈ ℂ → ( 3 · ( ( log ‘ 𝑁 ) − ( log ‘ 2 ) ) ) = ( ( 3 · ( log ‘ 𝑁 ) ) − ( 3 · ( log ‘ 2 ) ) ) ) |
| 300 |
168 299
|
syl |
⊢ ( 𝜑 → ( 3 · ( ( log ‘ 𝑁 ) − ( log ‘ 2 ) ) ) = ( ( 3 · ( log ‘ 𝑁 ) ) − ( 3 · ( log ‘ 2 ) ) ) ) |
| 301 |
297 300
|
eqtrd |
⊢ ( 𝜑 → ( 3 · ( log ‘ ( 𝑁 / 2 ) ) ) = ( ( 3 · ( log ‘ 𝑁 ) ) − ( 3 · ( log ‘ 2 ) ) ) ) |
| 302 |
|
div23 |
⊢ ( ( 2 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ ( 3 ∈ ℂ ∧ 3 ≠ 0 ) ) → ( ( 2 · 𝑁 ) / 3 ) = ( ( 2 / 3 ) · 𝑁 ) ) |
| 303 |
176 225 302
|
mp3an13 |
⊢ ( 𝑁 ∈ ℂ → ( ( 2 · 𝑁 ) / 3 ) = ( ( 2 / 3 ) · 𝑁 ) ) |
| 304 |
192 303
|
syl |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) / 3 ) = ( ( 2 / 3 ) · 𝑁 ) ) |
| 305 |
223 176 223 176 177 177
|
divmuldivi |
⊢ ( ( 3 / 2 ) · ( 3 / 2 ) ) = ( ( 3 · 3 ) / ( 2 · 2 ) ) |
| 306 |
|
3t3e9 |
⊢ ( 3 · 3 ) = 9 |
| 307 |
306 203
|
oveq12i |
⊢ ( ( 3 · 3 ) / ( 2 · 2 ) ) = ( 9 / 4 ) |
| 308 |
305 307
|
eqtr2i |
⊢ ( 9 / 4 ) = ( ( 3 / 2 ) · ( 3 / 2 ) ) |
| 309 |
308
|
a1i |
⊢ ( 𝜑 → ( 9 / 4 ) = ( ( 3 / 2 ) · ( 3 / 2 ) ) ) |
| 310 |
304 309
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) / 3 ) · ( 9 / 4 ) ) = ( ( ( 2 / 3 ) · 𝑁 ) · ( ( 3 / 2 ) · ( 3 / 2 ) ) ) ) |
| 311 |
176 223 224
|
divcli |
⊢ ( 2 / 3 ) ∈ ℂ |
| 312 |
223 176 177
|
divcli |
⊢ ( 3 / 2 ) ∈ ℂ |
| 313 |
|
mul4 |
⊢ ( ( ( ( 2 / 3 ) ∈ ℂ ∧ 𝑁 ∈ ℂ ) ∧ ( ( 3 / 2 ) ∈ ℂ ∧ ( 3 / 2 ) ∈ ℂ ) ) → ( ( ( 2 / 3 ) · 𝑁 ) · ( ( 3 / 2 ) · ( 3 / 2 ) ) ) = ( ( ( 2 / 3 ) · ( 3 / 2 ) ) · ( 𝑁 · ( 3 / 2 ) ) ) ) |
| 314 |
312 312 313
|
mpanr12 |
⊢ ( ( ( 2 / 3 ) ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( ( ( 2 / 3 ) · 𝑁 ) · ( ( 3 / 2 ) · ( 3 / 2 ) ) ) = ( ( ( 2 / 3 ) · ( 3 / 2 ) ) · ( 𝑁 · ( 3 / 2 ) ) ) ) |
| 315 |
311 192 314
|
sylancr |
⊢ ( 𝜑 → ( ( ( 2 / 3 ) · 𝑁 ) · ( ( 3 / 2 ) · ( 3 / 2 ) ) ) = ( ( ( 2 / 3 ) · ( 3 / 2 ) ) · ( 𝑁 · ( 3 / 2 ) ) ) ) |
| 316 |
|
divcan6 |
⊢ ( ( ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ∧ ( 3 ∈ ℂ ∧ 3 ≠ 0 ) ) → ( ( 2 / 3 ) · ( 3 / 2 ) ) = 1 ) |
| 317 |
176 177 223 224 316
|
mp4an |
⊢ ( ( 2 / 3 ) · ( 3 / 2 ) ) = 1 |
| 318 |
317
|
oveq1i |
⊢ ( ( ( 2 / 3 ) · ( 3 / 2 ) ) · ( 𝑁 · ( 3 / 2 ) ) ) = ( 1 · ( 𝑁 · ( 3 / 2 ) ) ) |
| 319 |
|
mulcl |
⊢ ( ( 𝑁 ∈ ℂ ∧ ( 3 / 2 ) ∈ ℂ ) → ( 𝑁 · ( 3 / 2 ) ) ∈ ℂ ) |
| 320 |
192 312 319
|
sylancl |
⊢ ( 𝜑 → ( 𝑁 · ( 3 / 2 ) ) ∈ ℂ ) |
| 321 |
320
|
mullidd |
⊢ ( 𝜑 → ( 1 · ( 𝑁 · ( 3 / 2 ) ) ) = ( 𝑁 · ( 3 / 2 ) ) ) |
| 322 |
318 321
|
eqtrid |
⊢ ( 𝜑 → ( ( ( 2 / 3 ) · ( 3 / 2 ) ) · ( 𝑁 · ( 3 / 2 ) ) ) = ( 𝑁 · ( 3 / 2 ) ) ) |
| 323 |
|
2cnne0 |
⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) |
| 324 |
|
div12 |
⊢ ( ( 𝑁 ∈ ℂ ∧ 3 ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( 𝑁 · ( 3 / 2 ) ) = ( 3 · ( 𝑁 / 2 ) ) ) |
| 325 |
223 323 324
|
mp3an23 |
⊢ ( 𝑁 ∈ ℂ → ( 𝑁 · ( 3 / 2 ) ) = ( 3 · ( 𝑁 / 2 ) ) ) |
| 326 |
192 325
|
syl |
⊢ ( 𝜑 → ( 𝑁 · ( 3 / 2 ) ) = ( 3 · ( 𝑁 / 2 ) ) ) |
| 327 |
322 326
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 2 / 3 ) · ( 3 / 2 ) ) · ( 𝑁 · ( 3 / 2 ) ) ) = ( 3 · ( 𝑁 / 2 ) ) ) |
| 328 |
310 315 327
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) / 3 ) · ( 9 / 4 ) ) = ( 3 · ( 𝑁 / 2 ) ) ) |
| 329 |
328 83
|
oveq12d |
⊢ ( 𝜑 → ( ( ( ( 2 · 𝑁 ) / 3 ) · ( 9 / 4 ) ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) = ( ( 3 · ( 𝑁 / 2 ) ) · ( ( log ‘ ( 𝑁 / 2 ) ) / ( 𝑁 / 2 ) ) ) ) |
| 330 |
76
|
recni |
⊢ ( 9 / 4 ) ∈ ℂ |
| 331 |
330
|
a1i |
⊢ ( 𝜑 → ( 9 / 4 ) ∈ ℂ ) |
| 332 |
86
|
recnd |
⊢ ( 𝜑 → ( 𝐺 ‘ ( 𝑁 / 2 ) ) ∈ ℂ ) |
| 333 |
214 331 332
|
mulassd |
⊢ ( 𝜑 → ( ( ( ( 2 · 𝑁 ) / 3 ) · ( 9 / 4 ) ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) = ( ( ( 2 · 𝑁 ) / 3 ) · ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) ) |
| 334 |
223
|
a1i |
⊢ ( 𝜑 → 3 ∈ ℂ ) |
| 335 |
77
|
rpcnd |
⊢ ( 𝜑 → ( 𝑁 / 2 ) ∈ ℂ ) |
| 336 |
84
|
recnd |
⊢ ( 𝜑 → ( log ‘ ( 𝑁 / 2 ) ) ∈ ℂ ) |
| 337 |
77
|
rpne0d |
⊢ ( 𝜑 → ( 𝑁 / 2 ) ≠ 0 ) |
| 338 |
336 335 337
|
divcld |
⊢ ( 𝜑 → ( ( log ‘ ( 𝑁 / 2 ) ) / ( 𝑁 / 2 ) ) ∈ ℂ ) |
| 339 |
334 335 338
|
mulassd |
⊢ ( 𝜑 → ( ( 3 · ( 𝑁 / 2 ) ) · ( ( log ‘ ( 𝑁 / 2 ) ) / ( 𝑁 / 2 ) ) ) = ( 3 · ( ( 𝑁 / 2 ) · ( ( log ‘ ( 𝑁 / 2 ) ) / ( 𝑁 / 2 ) ) ) ) ) |
| 340 |
336 335 337
|
divcan2d |
⊢ ( 𝜑 → ( ( 𝑁 / 2 ) · ( ( log ‘ ( 𝑁 / 2 ) ) / ( 𝑁 / 2 ) ) ) = ( log ‘ ( 𝑁 / 2 ) ) ) |
| 341 |
340
|
oveq2d |
⊢ ( 𝜑 → ( 3 · ( ( 𝑁 / 2 ) · ( ( log ‘ ( 𝑁 / 2 ) ) / ( 𝑁 / 2 ) ) ) ) = ( 3 · ( log ‘ ( 𝑁 / 2 ) ) ) ) |
| 342 |
339 341
|
eqtrd |
⊢ ( 𝜑 → ( ( 3 · ( 𝑁 / 2 ) ) · ( ( log ‘ ( 𝑁 / 2 ) ) / ( 𝑁 / 2 ) ) ) = ( 3 · ( log ‘ ( 𝑁 / 2 ) ) ) ) |
| 343 |
329 333 342
|
3eqtr3d |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) / 3 ) · ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) = ( 3 · ( log ‘ ( 𝑁 / 2 ) ) ) ) |
| 344 |
223 196
|
mulcli |
⊢ ( 3 · ( log ‘ 2 ) ) ∈ ℂ |
| 345 |
344
|
a1i |
⊢ ( 𝜑 → ( 3 · ( log ‘ 2 ) ) ∈ ℂ ) |
| 346 |
|
mulcl |
⊢ ( ( 3 ∈ ℂ ∧ ( log ‘ 𝑁 ) ∈ ℂ ) → ( 3 · ( log ‘ 𝑁 ) ) ∈ ℂ ) |
| 347 |
223 168 346
|
sylancr |
⊢ ( 𝜑 → ( 3 · ( log ‘ 𝑁 ) ) ∈ ℂ ) |
| 348 |
267 345 347
|
npncan3d |
⊢ ( 𝜑 → ( ( ( 5 · ( log ‘ 2 ) ) − ( 3 · ( log ‘ 2 ) ) ) + ( ( 3 · ( log ‘ 𝑁 ) ) − ( 5 · ( log ‘ 2 ) ) ) ) = ( ( 3 · ( log ‘ 𝑁 ) ) − ( 3 · ( log ‘ 2 ) ) ) ) |
| 349 |
301 343 348
|
3eqtr4d |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) / 3 ) · ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) = ( ( ( 5 · ( log ‘ 2 ) ) − ( 3 · ( log ‘ 2 ) ) ) + ( ( 3 · ( log ‘ 𝑁 ) ) − ( 5 · ( log ‘ 2 ) ) ) ) ) |
| 350 |
117 92
|
remulcli |
⊢ ( 2 · ( log ‘ 2 ) ) ∈ ℝ |
| 351 |
350
|
recni |
⊢ ( 2 · ( log ‘ 2 ) ) ∈ ℂ |
| 352 |
351
|
a1i |
⊢ ( 𝜑 → ( 2 · ( log ‘ 2 ) ) ∈ ℂ ) |
| 353 |
|
subcl |
⊢ ( ( ( log ‘ 𝑁 ) ∈ ℂ ∧ ( 5 · ( log ‘ 2 ) ) ∈ ℂ ) → ( ( log ‘ 𝑁 ) − ( 5 · ( log ‘ 2 ) ) ) ∈ ℂ ) |
| 354 |
168 266 353
|
sylancl |
⊢ ( 𝜑 → ( ( log ‘ 𝑁 ) − ( 5 · ( log ‘ 2 ) ) ) ∈ ℂ ) |
| 355 |
352 283 354
|
addassd |
⊢ ( 𝜑 → ( ( ( 2 · ( log ‘ 2 ) ) + ( 2 · ( log ‘ 𝑁 ) ) ) + ( ( log ‘ 𝑁 ) − ( 5 · ( log ‘ 2 ) ) ) ) = ( ( 2 · ( log ‘ 2 ) ) + ( ( 2 · ( log ‘ 𝑁 ) ) + ( ( log ‘ 𝑁 ) − ( 5 · ( log ‘ 2 ) ) ) ) ) ) |
| 356 |
294 349 355
|
3eqtr4d |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) / 3 ) · ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) = ( ( ( 2 · ( log ‘ 2 ) ) + ( 2 · ( log ‘ 𝑁 ) ) ) + ( ( log ‘ 𝑁 ) − ( 5 · ( log ‘ 2 ) ) ) ) ) |
| 357 |
356
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ ( 2 · 𝑁 ) ) ) + ( ( ( 2 · 𝑁 ) / 3 ) · ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) ) = ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ ( 2 · 𝑁 ) ) ) + ( ( ( 2 · ( log ‘ 2 ) ) + ( 2 · ( log ‘ 𝑁 ) ) ) + ( ( log ‘ 𝑁 ) − ( 5 · ( log ‘ 2 ) ) ) ) ) ) |
| 358 |
|
mulcl |
⊢ ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) ∈ ℂ ∧ ( log ‘ 2 ) ∈ ℂ ) → ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ 2 ) ) ∈ ℂ ) |
| 359 |
251 196 358
|
sylancl |
⊢ ( 𝜑 → ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ 2 ) ) ∈ ℂ ) |
| 360 |
251 168
|
mulcld |
⊢ ( 𝜑 → ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ 𝑁 ) ) ∈ ℂ ) |
| 361 |
88
|
recnd |
⊢ ( 𝜑 → ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ∈ ℂ ) |
| 362 |
214 361
|
mulcld |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) / 3 ) · ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) ∈ ℂ ) |
| 363 |
359 360 362
|
addassd |
⊢ ( 𝜑 → ( ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ 2 ) ) + ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ 𝑁 ) ) ) + ( ( ( 2 · 𝑁 ) / 3 ) · ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) ) = ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ 2 ) ) + ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ 𝑁 ) ) + ( ( ( 2 · 𝑁 ) / 3 ) · ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) ) ) ) |
| 364 |
256
|
oveq2d |
⊢ ( 𝜑 → ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ ( 2 · 𝑁 ) ) ) = ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( ( log ‘ 2 ) + ( log ‘ 𝑁 ) ) ) ) |
| 365 |
251 245 168
|
adddid |
⊢ ( 𝜑 → ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( ( log ‘ 2 ) + ( log ‘ 𝑁 ) ) ) = ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ 2 ) ) + ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ 𝑁 ) ) ) ) |
| 366 |
364 365
|
eqtrd |
⊢ ( 𝜑 → ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ ( 2 · 𝑁 ) ) ) = ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ 2 ) ) + ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ 𝑁 ) ) ) ) |
| 367 |
366
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ ( 2 · 𝑁 ) ) ) + ( ( ( 2 · 𝑁 ) / 3 ) · ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) ) = ( ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ 2 ) ) + ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ 𝑁 ) ) ) + ( ( ( 2 · 𝑁 ) / 3 ) · ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) ) ) |
| 368 |
58
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) / 3 ) · ( 𝐹 ‘ 𝑁 ) ) = ( ( ( 2 · 𝑁 ) / 3 ) · ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) + ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑁 ) ) ) ) ) ) |
| 369 |
89
|
recnd |
⊢ ( 𝜑 → ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) ∈ ℂ ) |
| 370 |
97
|
recnd |
⊢ ( 𝜑 → ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑁 ) ) ) ∈ ℂ ) |
| 371 |
214 369 370
|
adddid |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) / 3 ) · ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) + ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑁 ) ) ) ) ) = ( ( ( ( 2 · 𝑁 ) / 3 ) · ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) ) + ( ( ( 2 · 𝑁 ) / 3 ) · ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑁 ) ) ) ) ) ) |
| 372 |
368 371
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) / 3 ) · ( 𝐹 ‘ 𝑁 ) ) = ( ( ( ( 2 · 𝑁 ) / 3 ) · ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) ) + ( ( ( 2 · 𝑁 ) / 3 ) · ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑁 ) ) ) ) ) ) |
| 373 |
72
|
recnd |
⊢ ( 𝜑 → ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) ∈ ℂ ) |
| 374 |
214 373 361
|
adddid |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) / 3 ) · ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) ) = ( ( ( ( 2 · 𝑁 ) / 3 ) · ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) ) + ( ( ( 2 · 𝑁 ) / 3 ) · ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) ) ) |
| 375 |
94
|
rpge0d |
⊢ ( 𝜑 → 0 ≤ ( 2 · 𝑁 ) ) |
| 376 |
|
remsqsqrt |
⊢ ( ( ( 2 · 𝑁 ) ∈ ℝ ∧ 0 ≤ ( 2 · 𝑁 ) ) → ( ( √ ‘ ( 2 · 𝑁 ) ) · ( √ ‘ ( 2 · 𝑁 ) ) ) = ( 2 · 𝑁 ) ) |
| 377 |
237 375 376
|
syl2anc |
⊢ ( 𝜑 → ( ( √ ‘ ( 2 · 𝑁 ) ) · ( √ ‘ ( 2 · 𝑁 ) ) ) = ( 2 · 𝑁 ) ) |
| 378 |
377
|
oveq1d |
⊢ ( 𝜑 → ( ( ( √ ‘ ( 2 · 𝑁 ) ) · ( √ ‘ ( 2 · 𝑁 ) ) ) / 3 ) = ( ( 2 · 𝑁 ) / 3 ) ) |
| 379 |
113
|
recnd |
⊢ ( 𝜑 → ( √ ‘ ( 2 · 𝑁 ) ) ∈ ℂ ) |
| 380 |
224
|
a1i |
⊢ ( 𝜑 → 3 ≠ 0 ) |
| 381 |
379 379 334 380
|
div23d |
⊢ ( 𝜑 → ( ( ( √ ‘ ( 2 · 𝑁 ) ) · ( √ ‘ ( 2 · 𝑁 ) ) ) / 3 ) = ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( √ ‘ ( 2 · 𝑁 ) ) ) ) |
| 382 |
378 381
|
eqtr3d |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) / 3 ) = ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( √ ‘ ( 2 · 𝑁 ) ) ) ) |
| 383 |
382
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) / 3 ) · ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) ) = ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( √ ‘ ( 2 · 𝑁 ) ) ) · ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) ) ) |
| 384 |
251 379 373
|
mulassd |
⊢ ( 𝜑 → ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( √ ‘ ( 2 · 𝑁 ) ) ) · ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) ) = ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) ) ) ) |
| 385 |
|
0le2 |
⊢ 0 ≤ 2 |
| 386 |
117 385
|
pm3.2i |
⊢ ( 2 ∈ ℝ ∧ 0 ≤ 2 ) |
| 387 |
60
|
rprege0d |
⊢ ( 𝜑 → ( 𝑁 ∈ ℝ ∧ 0 ≤ 𝑁 ) ) |
| 388 |
|
sqrtmul |
⊢ ( ( ( 2 ∈ ℝ ∧ 0 ≤ 2 ) ∧ ( 𝑁 ∈ ℝ ∧ 0 ≤ 𝑁 ) ) → ( √ ‘ ( 2 · 𝑁 ) ) = ( ( √ ‘ 2 ) · ( √ ‘ 𝑁 ) ) ) |
| 389 |
386 387 388
|
sylancr |
⊢ ( 𝜑 → ( √ ‘ ( 2 · 𝑁 ) ) = ( ( √ ‘ 2 ) · ( √ ‘ 𝑁 ) ) ) |
| 390 |
389
|
oveq1d |
⊢ ( 𝜑 → ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) ) = ( ( ( √ ‘ 2 ) · ( √ ‘ 𝑁 ) ) · ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) ) ) |
| 391 |
59
|
recni |
⊢ ( √ ‘ 2 ) ∈ ℂ |
| 392 |
391
|
a1i |
⊢ ( 𝜑 → ( √ ‘ 2 ) ∈ ℂ ) |
| 393 |
61
|
rpcnd |
⊢ ( 𝜑 → ( √ ‘ 𝑁 ) ∈ ℂ ) |
| 394 |
70
|
recnd |
⊢ ( 𝜑 → ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ∈ ℂ ) |
| 395 |
392 393 392 394
|
mul4d |
⊢ ( 𝜑 → ( ( ( √ ‘ 2 ) · ( √ ‘ 𝑁 ) ) · ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) ) = ( ( ( √ ‘ 2 ) · ( √ ‘ 2 ) ) · ( ( √ ‘ 𝑁 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) ) ) |
| 396 |
|
remsqsqrt |
⊢ ( ( 2 ∈ ℝ ∧ 0 ≤ 2 ) → ( ( √ ‘ 2 ) · ( √ ‘ 2 ) ) = 2 ) |
| 397 |
117 385 396
|
mp2an |
⊢ ( ( √ ‘ 2 ) · ( √ ‘ 2 ) ) = 2 |
| 398 |
397
|
a1i |
⊢ ( 𝜑 → ( ( √ ‘ 2 ) · ( √ ‘ 2 ) ) = 2 ) |
| 399 |
67
|
oveq2d |
⊢ ( 𝜑 → ( ( √ ‘ 𝑁 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) = ( ( √ ‘ 𝑁 ) · ( ( log ‘ ( √ ‘ 𝑁 ) ) / ( √ ‘ 𝑁 ) ) ) ) |
| 400 |
68
|
recnd |
⊢ ( 𝜑 → ( log ‘ ( √ ‘ 𝑁 ) ) ∈ ℂ ) |
| 401 |
61
|
rpne0d |
⊢ ( 𝜑 → ( √ ‘ 𝑁 ) ≠ 0 ) |
| 402 |
400 393 401
|
divcan2d |
⊢ ( 𝜑 → ( ( √ ‘ 𝑁 ) · ( ( log ‘ ( √ ‘ 𝑁 ) ) / ( √ ‘ 𝑁 ) ) ) = ( log ‘ ( √ ‘ 𝑁 ) ) ) |
| 403 |
399 402
|
eqtrd |
⊢ ( 𝜑 → ( ( √ ‘ 𝑁 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) = ( log ‘ ( √ ‘ 𝑁 ) ) ) |
| 404 |
398 403
|
oveq12d |
⊢ ( 𝜑 → ( ( ( √ ‘ 2 ) · ( √ ‘ 2 ) ) · ( ( √ ‘ 𝑁 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) ) = ( 2 · ( log ‘ ( √ ‘ 𝑁 ) ) ) ) |
| 405 |
400
|
2timesd |
⊢ ( 𝜑 → ( 2 · ( log ‘ ( √ ‘ 𝑁 ) ) ) = ( ( log ‘ ( √ ‘ 𝑁 ) ) + ( log ‘ ( √ ‘ 𝑁 ) ) ) ) |
| 406 |
61 61
|
relogmuld |
⊢ ( 𝜑 → ( log ‘ ( ( √ ‘ 𝑁 ) · ( √ ‘ 𝑁 ) ) ) = ( ( log ‘ ( √ ‘ 𝑁 ) ) + ( log ‘ ( √ ‘ 𝑁 ) ) ) ) |
| 407 |
|
remsqsqrt |
⊢ ( ( 𝑁 ∈ ℝ ∧ 0 ≤ 𝑁 ) → ( ( √ ‘ 𝑁 ) · ( √ ‘ 𝑁 ) ) = 𝑁 ) |
| 408 |
387 407
|
syl |
⊢ ( 𝜑 → ( ( √ ‘ 𝑁 ) · ( √ ‘ 𝑁 ) ) = 𝑁 ) |
| 409 |
408
|
fveq2d |
⊢ ( 𝜑 → ( log ‘ ( ( √ ‘ 𝑁 ) · ( √ ‘ 𝑁 ) ) ) = ( log ‘ 𝑁 ) ) |
| 410 |
406 409
|
eqtr3d |
⊢ ( 𝜑 → ( ( log ‘ ( √ ‘ 𝑁 ) ) + ( log ‘ ( √ ‘ 𝑁 ) ) ) = ( log ‘ 𝑁 ) ) |
| 411 |
404 405 410
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( √ ‘ 2 ) · ( √ ‘ 2 ) ) · ( ( √ ‘ 𝑁 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) ) = ( log ‘ 𝑁 ) ) |
| 412 |
390 395 411
|
3eqtrd |
⊢ ( 𝜑 → ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) ) = ( log ‘ 𝑁 ) ) |
| 413 |
412
|
oveq2d |
⊢ ( 𝜑 → ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) ) ) = ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ 𝑁 ) ) ) |
| 414 |
383 384 413
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) / 3 ) · ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) ) = ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ 𝑁 ) ) ) |
| 415 |
414
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 2 · 𝑁 ) / 3 ) · ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) ) + ( ( ( 2 · 𝑁 ) / 3 ) · ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) ) = ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ 𝑁 ) ) + ( ( ( 2 · 𝑁 ) / 3 ) · ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) ) ) |
| 416 |
374 415
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) / 3 ) · ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) ) = ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ 𝑁 ) ) + ( ( ( 2 · 𝑁 ) / 3 ) · ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) ) ) |
| 417 |
382
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) / 3 ) · ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑁 ) ) ) ) = ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( √ ‘ ( 2 · 𝑁 ) ) ) · ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑁 ) ) ) ) ) |
| 418 |
251 379 370
|
mulassd |
⊢ ( 𝜑 → ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( √ ‘ ( 2 · 𝑁 ) ) ) · ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑁 ) ) ) ) = ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑁 ) ) ) ) ) ) |
| 419 |
95
|
rpne0d |
⊢ ( 𝜑 → ( √ ‘ ( 2 · 𝑁 ) ) ≠ 0 ) |
| 420 |
245 379 419
|
divcan2d |
⊢ ( 𝜑 → ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑁 ) ) ) ) = ( log ‘ 2 ) ) |
| 421 |
420
|
oveq2d |
⊢ ( 𝜑 → ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑁 ) ) ) ) ) = ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ 2 ) ) ) |
| 422 |
417 418 421
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) / 3 ) · ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑁 ) ) ) ) = ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ 2 ) ) ) |
| 423 |
416 422
|
oveq12d |
⊢ ( 𝜑 → ( ( ( ( 2 · 𝑁 ) / 3 ) · ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) ) + ( ( ( 2 · 𝑁 ) / 3 ) · ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑁 ) ) ) ) ) = ( ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ 𝑁 ) ) + ( ( ( 2 · 𝑁 ) / 3 ) · ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) ) + ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ 2 ) ) ) ) |
| 424 |
360 362
|
addcld |
⊢ ( 𝜑 → ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ 𝑁 ) ) + ( ( ( 2 · 𝑁 ) / 3 ) · ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) ) ∈ ℂ ) |
| 425 |
424 359
|
addcomd |
⊢ ( 𝜑 → ( ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ 𝑁 ) ) + ( ( ( 2 · 𝑁 ) / 3 ) · ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) ) + ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ 2 ) ) ) = ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ 2 ) ) + ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ 𝑁 ) ) + ( ( ( 2 · 𝑁 ) / 3 ) · ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) ) ) ) |
| 426 |
372 423 425
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) / 3 ) · ( 𝐹 ‘ 𝑁 ) ) = ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ 2 ) ) + ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ 𝑁 ) ) + ( ( ( 2 · 𝑁 ) / 3 ) · ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) ) ) ) |
| 427 |
363 367 426
|
3eqtr4rd |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) / 3 ) · ( 𝐹 ‘ 𝑁 ) ) = ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ ( 2 · 𝑁 ) ) ) + ( ( ( 2 · 𝑁 ) / 3 ) · ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) ) ) |
| 428 |
251 253
|
mulcld |
⊢ ( 𝜑 → ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ ( 2 · 𝑁 ) ) ) ∈ ℂ ) |
| 429 |
|
addcl |
⊢ ( ( ( 2 · ( log ‘ 2 ) ) ∈ ℂ ∧ ( 2 · ( log ‘ 𝑁 ) ) ∈ ℂ ) → ( ( 2 · ( log ‘ 2 ) ) + ( 2 · ( log ‘ 𝑁 ) ) ) ∈ ℂ ) |
| 430 |
351 283 429
|
sylancr |
⊢ ( 𝜑 → ( ( 2 · ( log ‘ 2 ) ) + ( 2 · ( log ‘ 𝑁 ) ) ) ∈ ℂ ) |
| 431 |
428 430 354
|
addassd |
⊢ ( 𝜑 → ( ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ ( 2 · 𝑁 ) ) ) + ( ( 2 · ( log ‘ 2 ) ) + ( 2 · ( log ‘ 𝑁 ) ) ) ) + ( ( log ‘ 𝑁 ) − ( 5 · ( log ‘ 2 ) ) ) ) = ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ ( 2 · 𝑁 ) ) ) + ( ( ( 2 · ( log ‘ 2 ) ) + ( 2 · ( log ‘ 𝑁 ) ) ) + ( ( log ‘ 𝑁 ) − ( 5 · ( log ‘ 2 ) ) ) ) ) ) |
| 432 |
357 427 431
|
3eqtr4d |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) / 3 ) · ( 𝐹 ‘ 𝑁 ) ) = ( ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ ( 2 · 𝑁 ) ) ) + ( ( 2 · ( log ‘ 2 ) ) + ( 2 · ( log ‘ 𝑁 ) ) ) ) + ( ( log ‘ 𝑁 ) − ( 5 · ( log ‘ 2 ) ) ) ) ) |
| 433 |
270 272 432
|
3eqtr4rd |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) / 3 ) · ( 𝐹 ‘ 𝑁 ) ) = ( ( ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) · ( log ‘ ( 2 · 𝑁 ) ) ) + ( ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) · ( log ‘ 2 ) ) ) − ( ( ( ( 4 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) − ( log ‘ 𝑁 ) ) ) ) |
| 434 |
191 250 433
|
3brtr4d |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) < ( ( ( 2 · 𝑁 ) / 3 ) · ( 𝐹 ‘ 𝑁 ) ) ) |
| 435 |
100 99 213
|
ltmul2d |
⊢ ( 𝜑 → ( ( log ‘ 2 ) < ( 𝐹 ‘ 𝑁 ) ↔ ( ( ( 2 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) < ( ( ( 2 · 𝑁 ) / 3 ) · ( 𝐹 ‘ 𝑁 ) ) ) ) |
| 436 |
434 435
|
mpbird |
⊢ ( 𝜑 → ( log ‘ 2 ) < ( 𝐹 ‘ 𝑁 ) ) |
| 437 |
46 100 99 101 436
|
lttrd |
⊢ ( 𝜑 → ( 𝐹 ‘ ; 6 4 ) < ( 𝐹 ‘ 𝑁 ) ) |
| 438 |
46 99 437
|
ltnsymd |
⊢ ( 𝜑 → ¬ ( 𝐹 ‘ 𝑁 ) < ( 𝐹 ‘ ; 6 4 ) ) |
| 439 |
43 438
|
pm2.21dd |
⊢ ( 𝜑 → 𝜓 ) |