Step |
Hyp |
Ref |
Expression |
1 |
|
bposlem7.1 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑛 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑛 / 2 ) ) ) ) + ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑛 ) ) ) ) ) |
2 |
|
bposlem7.2 |
⊢ 𝐺 = ( 𝑥 ∈ ℝ+ ↦ ( ( log ‘ 𝑥 ) / 𝑥 ) ) |
3 |
|
6nn0 |
⊢ 6 ∈ ℕ0 |
4 |
|
4nn |
⊢ 4 ∈ ℕ |
5 |
3 4
|
decnncl |
⊢ ; 6 4 ∈ ℕ |
6 |
|
fveq2 |
⊢ ( 𝑛 = ; 6 4 → ( √ ‘ 𝑛 ) = ( √ ‘ ; 6 4 ) ) |
7 |
|
8cn |
⊢ 8 ∈ ℂ |
8 |
7
|
sqvali |
⊢ ( 8 ↑ 2 ) = ( 8 · 8 ) |
9 |
|
8t8e64 |
⊢ ( 8 · 8 ) = ; 6 4 |
10 |
8 9
|
eqtri |
⊢ ( 8 ↑ 2 ) = ; 6 4 |
11 |
10
|
fveq2i |
⊢ ( √ ‘ ( 8 ↑ 2 ) ) = ( √ ‘ ; 6 4 ) |
12 |
|
0re |
⊢ 0 ∈ ℝ |
13 |
|
8re |
⊢ 8 ∈ ℝ |
14 |
|
8pos |
⊢ 0 < 8 |
15 |
12 13 14
|
ltleii |
⊢ 0 ≤ 8 |
16 |
13
|
sqrtsqi |
⊢ ( 0 ≤ 8 → ( √ ‘ ( 8 ↑ 2 ) ) = 8 ) |
17 |
15 16
|
ax-mp |
⊢ ( √ ‘ ( 8 ↑ 2 ) ) = 8 |
18 |
11 17
|
eqtr3i |
⊢ ( √ ‘ ; 6 4 ) = 8 |
19 |
6 18
|
eqtrdi |
⊢ ( 𝑛 = ; 6 4 → ( √ ‘ 𝑛 ) = 8 ) |
20 |
19
|
fveq2d |
⊢ ( 𝑛 = ; 6 4 → ( 𝐺 ‘ ( √ ‘ 𝑛 ) ) = ( 𝐺 ‘ 8 ) ) |
21 |
|
8nn |
⊢ 8 ∈ ℕ |
22 |
|
nnrp |
⊢ ( 8 ∈ ℕ → 8 ∈ ℝ+ ) |
23 |
|
fveq2 |
⊢ ( 𝑥 = 8 → ( log ‘ 𝑥 ) = ( log ‘ 8 ) ) |
24 |
|
cu2 |
⊢ ( 2 ↑ 3 ) = 8 |
25 |
24
|
fveq2i |
⊢ ( log ‘ ( 2 ↑ 3 ) ) = ( log ‘ 8 ) |
26 |
|
2rp |
⊢ 2 ∈ ℝ+ |
27 |
|
3z |
⊢ 3 ∈ ℤ |
28 |
|
relogexp |
⊢ ( ( 2 ∈ ℝ+ ∧ 3 ∈ ℤ ) → ( log ‘ ( 2 ↑ 3 ) ) = ( 3 · ( log ‘ 2 ) ) ) |
29 |
26 27 28
|
mp2an |
⊢ ( log ‘ ( 2 ↑ 3 ) ) = ( 3 · ( log ‘ 2 ) ) |
30 |
25 29
|
eqtr3i |
⊢ ( log ‘ 8 ) = ( 3 · ( log ‘ 2 ) ) |
31 |
23 30
|
eqtrdi |
⊢ ( 𝑥 = 8 → ( log ‘ 𝑥 ) = ( 3 · ( log ‘ 2 ) ) ) |
32 |
|
id |
⊢ ( 𝑥 = 8 → 𝑥 = 8 ) |
33 |
31 32
|
oveq12d |
⊢ ( 𝑥 = 8 → ( ( log ‘ 𝑥 ) / 𝑥 ) = ( ( 3 · ( log ‘ 2 ) ) / 8 ) ) |
34 |
|
3cn |
⊢ 3 ∈ ℂ |
35 |
|
2nn |
⊢ 2 ∈ ℕ |
36 |
|
nnrp |
⊢ ( 2 ∈ ℕ → 2 ∈ ℝ+ ) |
37 |
|
relogcl |
⊢ ( 2 ∈ ℝ+ → ( log ‘ 2 ) ∈ ℝ ) |
38 |
35 36 37
|
mp2b |
⊢ ( log ‘ 2 ) ∈ ℝ |
39 |
38
|
recni |
⊢ ( log ‘ 2 ) ∈ ℂ |
40 |
21
|
nnne0i |
⊢ 8 ≠ 0 |
41 |
34 39 7 40
|
div23i |
⊢ ( ( 3 · ( log ‘ 2 ) ) / 8 ) = ( ( 3 / 8 ) · ( log ‘ 2 ) ) |
42 |
33 41
|
eqtrdi |
⊢ ( 𝑥 = 8 → ( ( log ‘ 𝑥 ) / 𝑥 ) = ( ( 3 / 8 ) · ( log ‘ 2 ) ) ) |
43 |
|
ovex |
⊢ ( ( 3 / 8 ) · ( log ‘ 2 ) ) ∈ V |
44 |
42 2 43
|
fvmpt |
⊢ ( 8 ∈ ℝ+ → ( 𝐺 ‘ 8 ) = ( ( 3 / 8 ) · ( log ‘ 2 ) ) ) |
45 |
21 22 44
|
mp2b |
⊢ ( 𝐺 ‘ 8 ) = ( ( 3 / 8 ) · ( log ‘ 2 ) ) |
46 |
20 45
|
eqtrdi |
⊢ ( 𝑛 = ; 6 4 → ( 𝐺 ‘ ( √ ‘ 𝑛 ) ) = ( ( 3 / 8 ) · ( log ‘ 2 ) ) ) |
47 |
46
|
oveq2d |
⊢ ( 𝑛 = ; 6 4 → ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑛 ) ) ) = ( ( √ ‘ 2 ) · ( ( 3 / 8 ) · ( log ‘ 2 ) ) ) ) |
48 |
|
sqrt2re |
⊢ ( √ ‘ 2 ) ∈ ℝ |
49 |
48
|
recni |
⊢ ( √ ‘ 2 ) ∈ ℂ |
50 |
34 7 40
|
divcli |
⊢ ( 3 / 8 ) ∈ ℂ |
51 |
49 50 39
|
mulassi |
⊢ ( ( ( √ ‘ 2 ) · ( 3 / 8 ) ) · ( log ‘ 2 ) ) = ( ( √ ‘ 2 ) · ( ( 3 / 8 ) · ( log ‘ 2 ) ) ) |
52 |
|
4cn |
⊢ 4 ∈ ℂ |
53 |
49 52 49
|
mul12i |
⊢ ( ( √ ‘ 2 ) · ( 4 · ( √ ‘ 2 ) ) ) = ( 4 · ( ( √ ‘ 2 ) · ( √ ‘ 2 ) ) ) |
54 |
|
2re |
⊢ 2 ∈ ℝ |
55 |
|
0le2 |
⊢ 0 ≤ 2 |
56 |
|
remsqsqrt |
⊢ ( ( 2 ∈ ℝ ∧ 0 ≤ 2 ) → ( ( √ ‘ 2 ) · ( √ ‘ 2 ) ) = 2 ) |
57 |
54 55 56
|
mp2an |
⊢ ( ( √ ‘ 2 ) · ( √ ‘ 2 ) ) = 2 |
58 |
57
|
oveq2i |
⊢ ( 4 · ( ( √ ‘ 2 ) · ( √ ‘ 2 ) ) ) = ( 4 · 2 ) |
59 |
|
4t2e8 |
⊢ ( 4 · 2 ) = 8 |
60 |
53 58 59
|
3eqtri |
⊢ ( ( √ ‘ 2 ) · ( 4 · ( √ ‘ 2 ) ) ) = 8 |
61 |
60
|
oveq2i |
⊢ ( ( ( √ ‘ 2 ) · 3 ) / ( ( √ ‘ 2 ) · ( 4 · ( √ ‘ 2 ) ) ) ) = ( ( ( √ ‘ 2 ) · 3 ) / 8 ) |
62 |
52 49
|
mulcli |
⊢ ( 4 · ( √ ‘ 2 ) ) ∈ ℂ |
63 |
|
nnrp |
⊢ ( 4 ∈ ℕ → 4 ∈ ℝ+ ) |
64 |
4 63
|
ax-mp |
⊢ 4 ∈ ℝ+ |
65 |
|
rpsqrtcl |
⊢ ( 2 ∈ ℝ+ → ( √ ‘ 2 ) ∈ ℝ+ ) |
66 |
35 36 65
|
mp2b |
⊢ ( √ ‘ 2 ) ∈ ℝ+ |
67 |
|
rpmulcl |
⊢ ( ( 4 ∈ ℝ+ ∧ ( √ ‘ 2 ) ∈ ℝ+ ) → ( 4 · ( √ ‘ 2 ) ) ∈ ℝ+ ) |
68 |
64 66 67
|
mp2an |
⊢ ( 4 · ( √ ‘ 2 ) ) ∈ ℝ+ |
69 |
|
rpne0 |
⊢ ( ( 4 · ( √ ‘ 2 ) ) ∈ ℝ+ → ( 4 · ( √ ‘ 2 ) ) ≠ 0 ) |
70 |
68 69
|
ax-mp |
⊢ ( 4 · ( √ ‘ 2 ) ) ≠ 0 |
71 |
|
rpne0 |
⊢ ( ( √ ‘ 2 ) ∈ ℝ+ → ( √ ‘ 2 ) ≠ 0 ) |
72 |
26 65 71
|
mp2b |
⊢ ( √ ‘ 2 ) ≠ 0 |
73 |
|
divcan5 |
⊢ ( ( 3 ∈ ℂ ∧ ( ( 4 · ( √ ‘ 2 ) ) ∈ ℂ ∧ ( 4 · ( √ ‘ 2 ) ) ≠ 0 ) ∧ ( ( √ ‘ 2 ) ∈ ℂ ∧ ( √ ‘ 2 ) ≠ 0 ) ) → ( ( ( √ ‘ 2 ) · 3 ) / ( ( √ ‘ 2 ) · ( 4 · ( √ ‘ 2 ) ) ) ) = ( 3 / ( 4 · ( √ ‘ 2 ) ) ) ) |
74 |
34 73
|
mp3an1 |
⊢ ( ( ( ( 4 · ( √ ‘ 2 ) ) ∈ ℂ ∧ ( 4 · ( √ ‘ 2 ) ) ≠ 0 ) ∧ ( ( √ ‘ 2 ) ∈ ℂ ∧ ( √ ‘ 2 ) ≠ 0 ) ) → ( ( ( √ ‘ 2 ) · 3 ) / ( ( √ ‘ 2 ) · ( 4 · ( √ ‘ 2 ) ) ) ) = ( 3 / ( 4 · ( √ ‘ 2 ) ) ) ) |
75 |
62 70 49 72 74
|
mp4an |
⊢ ( ( ( √ ‘ 2 ) · 3 ) / ( ( √ ‘ 2 ) · ( 4 · ( √ ‘ 2 ) ) ) ) = ( 3 / ( 4 · ( √ ‘ 2 ) ) ) |
76 |
|
4ne0 |
⊢ 4 ≠ 0 |
77 |
|
divdiv1 |
⊢ ( ( 3 ∈ ℂ ∧ ( 4 ∈ ℂ ∧ 4 ≠ 0 ) ∧ ( ( √ ‘ 2 ) ∈ ℂ ∧ ( √ ‘ 2 ) ≠ 0 ) ) → ( ( 3 / 4 ) / ( √ ‘ 2 ) ) = ( 3 / ( 4 · ( √ ‘ 2 ) ) ) ) |
78 |
34 77
|
mp3an1 |
⊢ ( ( ( 4 ∈ ℂ ∧ 4 ≠ 0 ) ∧ ( ( √ ‘ 2 ) ∈ ℂ ∧ ( √ ‘ 2 ) ≠ 0 ) ) → ( ( 3 / 4 ) / ( √ ‘ 2 ) ) = ( 3 / ( 4 · ( √ ‘ 2 ) ) ) ) |
79 |
52 76 49 72 78
|
mp4an |
⊢ ( ( 3 / 4 ) / ( √ ‘ 2 ) ) = ( 3 / ( 4 · ( √ ‘ 2 ) ) ) |
80 |
75 79
|
eqtr4i |
⊢ ( ( ( √ ‘ 2 ) · 3 ) / ( ( √ ‘ 2 ) · ( 4 · ( √ ‘ 2 ) ) ) ) = ( ( 3 / 4 ) / ( √ ‘ 2 ) ) |
81 |
49 34 7 40
|
divassi |
⊢ ( ( ( √ ‘ 2 ) · 3 ) / 8 ) = ( ( √ ‘ 2 ) · ( 3 / 8 ) ) |
82 |
61 80 81
|
3eqtr3ri |
⊢ ( ( √ ‘ 2 ) · ( 3 / 8 ) ) = ( ( 3 / 4 ) / ( √ ‘ 2 ) ) |
83 |
82
|
oveq1i |
⊢ ( ( ( √ ‘ 2 ) · ( 3 / 8 ) ) · ( log ‘ 2 ) ) = ( ( ( 3 / 4 ) / ( √ ‘ 2 ) ) · ( log ‘ 2 ) ) |
84 |
51 83
|
eqtr3i |
⊢ ( ( √ ‘ 2 ) · ( ( 3 / 8 ) · ( log ‘ 2 ) ) ) = ( ( ( 3 / 4 ) / ( √ ‘ 2 ) ) · ( log ‘ 2 ) ) |
85 |
47 84
|
eqtrdi |
⊢ ( 𝑛 = ; 6 4 → ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑛 ) ) ) = ( ( ( 3 / 4 ) / ( √ ‘ 2 ) ) · ( log ‘ 2 ) ) ) |
86 |
|
oveq1 |
⊢ ( 𝑛 = ; 6 4 → ( 𝑛 / 2 ) = ( ; 6 4 / 2 ) ) |
87 |
|
df-6 |
⊢ 6 = ( 5 + 1 ) |
88 |
87
|
oveq2i |
⊢ ( 2 ↑ 6 ) = ( 2 ↑ ( 5 + 1 ) ) |
89 |
|
2exp6 |
⊢ ( 2 ↑ 6 ) = ; 6 4 |
90 |
|
2cn |
⊢ 2 ∈ ℂ |
91 |
|
5nn0 |
⊢ 5 ∈ ℕ0 |
92 |
|
expp1 |
⊢ ( ( 2 ∈ ℂ ∧ 5 ∈ ℕ0 ) → ( 2 ↑ ( 5 + 1 ) ) = ( ( 2 ↑ 5 ) · 2 ) ) |
93 |
90 91 92
|
mp2an |
⊢ ( 2 ↑ ( 5 + 1 ) ) = ( ( 2 ↑ 5 ) · 2 ) |
94 |
88 89 93
|
3eqtr3i |
⊢ ; 6 4 = ( ( 2 ↑ 5 ) · 2 ) |
95 |
94
|
oveq1i |
⊢ ( ; 6 4 / 2 ) = ( ( ( 2 ↑ 5 ) · 2 ) / 2 ) |
96 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ 5 ∈ ℕ0 ) → ( 2 ↑ 5 ) ∈ ℕ ) |
97 |
35 91 96
|
mp2an |
⊢ ( 2 ↑ 5 ) ∈ ℕ |
98 |
97
|
nncni |
⊢ ( 2 ↑ 5 ) ∈ ℂ |
99 |
|
2ne0 |
⊢ 2 ≠ 0 |
100 |
98 90 99
|
divcan4i |
⊢ ( ( ( 2 ↑ 5 ) · 2 ) / 2 ) = ( 2 ↑ 5 ) |
101 |
95 100
|
eqtri |
⊢ ( ; 6 4 / 2 ) = ( 2 ↑ 5 ) |
102 |
86 101
|
eqtrdi |
⊢ ( 𝑛 = ; 6 4 → ( 𝑛 / 2 ) = ( 2 ↑ 5 ) ) |
103 |
102
|
fveq2d |
⊢ ( 𝑛 = ; 6 4 → ( 𝐺 ‘ ( 𝑛 / 2 ) ) = ( 𝐺 ‘ ( 2 ↑ 5 ) ) ) |
104 |
|
nnrp |
⊢ ( ( 2 ↑ 5 ) ∈ ℕ → ( 2 ↑ 5 ) ∈ ℝ+ ) |
105 |
|
fveq2 |
⊢ ( 𝑥 = ( 2 ↑ 5 ) → ( log ‘ 𝑥 ) = ( log ‘ ( 2 ↑ 5 ) ) ) |
106 |
|
5nn |
⊢ 5 ∈ ℕ |
107 |
106
|
nnzi |
⊢ 5 ∈ ℤ |
108 |
|
relogexp |
⊢ ( ( 2 ∈ ℝ+ ∧ 5 ∈ ℤ ) → ( log ‘ ( 2 ↑ 5 ) ) = ( 5 · ( log ‘ 2 ) ) ) |
109 |
26 107 108
|
mp2an |
⊢ ( log ‘ ( 2 ↑ 5 ) ) = ( 5 · ( log ‘ 2 ) ) |
110 |
105 109
|
eqtrdi |
⊢ ( 𝑥 = ( 2 ↑ 5 ) → ( log ‘ 𝑥 ) = ( 5 · ( log ‘ 2 ) ) ) |
111 |
|
id |
⊢ ( 𝑥 = ( 2 ↑ 5 ) → 𝑥 = ( 2 ↑ 5 ) ) |
112 |
110 111
|
oveq12d |
⊢ ( 𝑥 = ( 2 ↑ 5 ) → ( ( log ‘ 𝑥 ) / 𝑥 ) = ( ( 5 · ( log ‘ 2 ) ) / ( 2 ↑ 5 ) ) ) |
113 |
|
5cn |
⊢ 5 ∈ ℂ |
114 |
97
|
nnne0i |
⊢ ( 2 ↑ 5 ) ≠ 0 |
115 |
113 39 98 114
|
div23i |
⊢ ( ( 5 · ( log ‘ 2 ) ) / ( 2 ↑ 5 ) ) = ( ( 5 / ( 2 ↑ 5 ) ) · ( log ‘ 2 ) ) |
116 |
112 115
|
eqtrdi |
⊢ ( 𝑥 = ( 2 ↑ 5 ) → ( ( log ‘ 𝑥 ) / 𝑥 ) = ( ( 5 / ( 2 ↑ 5 ) ) · ( log ‘ 2 ) ) ) |
117 |
|
ovex |
⊢ ( ( 5 / ( 2 ↑ 5 ) ) · ( log ‘ 2 ) ) ∈ V |
118 |
116 2 117
|
fvmpt |
⊢ ( ( 2 ↑ 5 ) ∈ ℝ+ → ( 𝐺 ‘ ( 2 ↑ 5 ) ) = ( ( 5 / ( 2 ↑ 5 ) ) · ( log ‘ 2 ) ) ) |
119 |
97 104 118
|
mp2b |
⊢ ( 𝐺 ‘ ( 2 ↑ 5 ) ) = ( ( 5 / ( 2 ↑ 5 ) ) · ( log ‘ 2 ) ) |
120 |
103 119
|
eqtrdi |
⊢ ( 𝑛 = ; 6 4 → ( 𝐺 ‘ ( 𝑛 / 2 ) ) = ( ( 5 / ( 2 ↑ 5 ) ) · ( log ‘ 2 ) ) ) |
121 |
120
|
oveq2d |
⊢ ( 𝑛 = ; 6 4 → ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑛 / 2 ) ) ) = ( ( 9 / 4 ) · ( ( 5 / ( 2 ↑ 5 ) ) · ( log ‘ 2 ) ) ) ) |
122 |
|
9cn |
⊢ 9 ∈ ℂ |
123 |
122 52 76
|
divcli |
⊢ ( 9 / 4 ) ∈ ℂ |
124 |
113 98 114
|
divcli |
⊢ ( 5 / ( 2 ↑ 5 ) ) ∈ ℂ |
125 |
123 124 39
|
mulassi |
⊢ ( ( ( 9 / 4 ) · ( 5 / ( 2 ↑ 5 ) ) ) · ( log ‘ 2 ) ) = ( ( 9 / 4 ) · ( ( 5 / ( 2 ↑ 5 ) ) · ( log ‘ 2 ) ) ) |
126 |
121 125
|
eqtr4di |
⊢ ( 𝑛 = ; 6 4 → ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑛 / 2 ) ) ) = ( ( ( 9 / 4 ) · ( 5 / ( 2 ↑ 5 ) ) ) · ( log ‘ 2 ) ) ) |
127 |
85 126
|
oveq12d |
⊢ ( 𝑛 = ; 6 4 → ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑛 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑛 / 2 ) ) ) ) = ( ( ( ( 3 / 4 ) / ( √ ‘ 2 ) ) · ( log ‘ 2 ) ) + ( ( ( 9 / 4 ) · ( 5 / ( 2 ↑ 5 ) ) ) · ( log ‘ 2 ) ) ) ) |
128 |
34 52 76
|
divcli |
⊢ ( 3 / 4 ) ∈ ℂ |
129 |
128 49 72
|
divcli |
⊢ ( ( 3 / 4 ) / ( √ ‘ 2 ) ) ∈ ℂ |
130 |
123 124
|
mulcli |
⊢ ( ( 9 / 4 ) · ( 5 / ( 2 ↑ 5 ) ) ) ∈ ℂ |
131 |
129 130 39
|
adddiri |
⊢ ( ( ( ( 3 / 4 ) / ( √ ‘ 2 ) ) + ( ( 9 / 4 ) · ( 5 / ( 2 ↑ 5 ) ) ) ) · ( log ‘ 2 ) ) = ( ( ( ( 3 / 4 ) / ( √ ‘ 2 ) ) · ( log ‘ 2 ) ) + ( ( ( 9 / 4 ) · ( 5 / ( 2 ↑ 5 ) ) ) · ( log ‘ 2 ) ) ) |
132 |
127 131
|
eqtr4di |
⊢ ( 𝑛 = ; 6 4 → ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑛 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑛 / 2 ) ) ) ) = ( ( ( ( 3 / 4 ) / ( √ ‘ 2 ) ) + ( ( 9 / 4 ) · ( 5 / ( 2 ↑ 5 ) ) ) ) · ( log ‘ 2 ) ) ) |
133 |
|
oveq2 |
⊢ ( 𝑛 = ; 6 4 → ( 2 · 𝑛 ) = ( 2 · ; 6 4 ) ) |
134 |
133
|
fveq2d |
⊢ ( 𝑛 = ; 6 4 → ( √ ‘ ( 2 · 𝑛 ) ) = ( √ ‘ ( 2 · ; 6 4 ) ) ) |
135 |
5
|
nnrei |
⊢ ; 6 4 ∈ ℝ |
136 |
5
|
nngt0i |
⊢ 0 < ; 6 4 |
137 |
12 135 136
|
ltleii |
⊢ 0 ≤ ; 6 4 |
138 |
54 135 55 137
|
sqrtmulii |
⊢ ( √ ‘ ( 2 · ; 6 4 ) ) = ( ( √ ‘ 2 ) · ( √ ‘ ; 6 4 ) ) |
139 |
18
|
oveq2i |
⊢ ( ( √ ‘ 2 ) · ( √ ‘ ; 6 4 ) ) = ( ( √ ‘ 2 ) · 8 ) |
140 |
138 139
|
eqtri |
⊢ ( √ ‘ ( 2 · ; 6 4 ) ) = ( ( √ ‘ 2 ) · 8 ) |
141 |
134 140
|
eqtrdi |
⊢ ( 𝑛 = ; 6 4 → ( √ ‘ ( 2 · 𝑛 ) ) = ( ( √ ‘ 2 ) · 8 ) ) |
142 |
141
|
oveq2d |
⊢ ( 𝑛 = ; 6 4 → ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑛 ) ) ) = ( ( log ‘ 2 ) / ( ( √ ‘ 2 ) · 8 ) ) ) |
143 |
49 7
|
mulcli |
⊢ ( ( √ ‘ 2 ) · 8 ) ∈ ℂ |
144 |
|
rpmulcl |
⊢ ( ( ( √ ‘ 2 ) ∈ ℝ+ ∧ 8 ∈ ℝ+ ) → ( ( √ ‘ 2 ) · 8 ) ∈ ℝ+ ) |
145 |
66 22 144
|
sylancr |
⊢ ( 8 ∈ ℕ → ( ( √ ‘ 2 ) · 8 ) ∈ ℝ+ ) |
146 |
|
rpne0 |
⊢ ( ( ( √ ‘ 2 ) · 8 ) ∈ ℝ+ → ( ( √ ‘ 2 ) · 8 ) ≠ 0 ) |
147 |
21 145 146
|
mp2b |
⊢ ( ( √ ‘ 2 ) · 8 ) ≠ 0 |
148 |
|
divrec2 |
⊢ ( ( ( log ‘ 2 ) ∈ ℂ ∧ ( ( √ ‘ 2 ) · 8 ) ∈ ℂ ∧ ( ( √ ‘ 2 ) · 8 ) ≠ 0 ) → ( ( log ‘ 2 ) / ( ( √ ‘ 2 ) · 8 ) ) = ( ( 1 / ( ( √ ‘ 2 ) · 8 ) ) · ( log ‘ 2 ) ) ) |
149 |
39 143 147 148
|
mp3an |
⊢ ( ( log ‘ 2 ) / ( ( √ ‘ 2 ) · 8 ) ) = ( ( 1 / ( ( √ ‘ 2 ) · 8 ) ) · ( log ‘ 2 ) ) |
150 |
49 7
|
mulcomi |
⊢ ( ( √ ‘ 2 ) · 8 ) = ( 8 · ( √ ‘ 2 ) ) |
151 |
150
|
oveq2i |
⊢ ( 1 / ( ( √ ‘ 2 ) · 8 ) ) = ( 1 / ( 8 · ( √ ‘ 2 ) ) ) |
152 |
|
recdiv2 |
⊢ ( ( ( 8 ∈ ℂ ∧ 8 ≠ 0 ) ∧ ( ( √ ‘ 2 ) ∈ ℂ ∧ ( √ ‘ 2 ) ≠ 0 ) ) → ( ( 1 / 8 ) / ( √ ‘ 2 ) ) = ( 1 / ( 8 · ( √ ‘ 2 ) ) ) ) |
153 |
7 40 49 72 152
|
mp4an |
⊢ ( ( 1 / 8 ) / ( √ ‘ 2 ) ) = ( 1 / ( 8 · ( √ ‘ 2 ) ) ) |
154 |
151 153
|
eqtr4i |
⊢ ( 1 / ( ( √ ‘ 2 ) · 8 ) ) = ( ( 1 / 8 ) / ( √ ‘ 2 ) ) |
155 |
154
|
oveq1i |
⊢ ( ( 1 / ( ( √ ‘ 2 ) · 8 ) ) · ( log ‘ 2 ) ) = ( ( ( 1 / 8 ) / ( √ ‘ 2 ) ) · ( log ‘ 2 ) ) |
156 |
149 155
|
eqtri |
⊢ ( ( log ‘ 2 ) / ( ( √ ‘ 2 ) · 8 ) ) = ( ( ( 1 / 8 ) / ( √ ‘ 2 ) ) · ( log ‘ 2 ) ) |
157 |
142 156
|
eqtrdi |
⊢ ( 𝑛 = ; 6 4 → ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑛 ) ) ) = ( ( ( 1 / 8 ) / ( √ ‘ 2 ) ) · ( log ‘ 2 ) ) ) |
158 |
132 157
|
oveq12d |
⊢ ( 𝑛 = ; 6 4 → ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑛 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑛 / 2 ) ) ) ) + ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑛 ) ) ) ) = ( ( ( ( ( 3 / 4 ) / ( √ ‘ 2 ) ) + ( ( 9 / 4 ) · ( 5 / ( 2 ↑ 5 ) ) ) ) · ( log ‘ 2 ) ) + ( ( ( 1 / 8 ) / ( √ ‘ 2 ) ) · ( log ‘ 2 ) ) ) ) |
159 |
129 130
|
addcli |
⊢ ( ( ( 3 / 4 ) / ( √ ‘ 2 ) ) + ( ( 9 / 4 ) · ( 5 / ( 2 ↑ 5 ) ) ) ) ∈ ℂ |
160 |
7 40
|
reccli |
⊢ ( 1 / 8 ) ∈ ℂ |
161 |
160 49 72
|
divcli |
⊢ ( ( 1 / 8 ) / ( √ ‘ 2 ) ) ∈ ℂ |
162 |
159 161 39
|
adddiri |
⊢ ( ( ( ( ( 3 / 4 ) / ( √ ‘ 2 ) ) + ( ( 9 / 4 ) · ( 5 / ( 2 ↑ 5 ) ) ) ) + ( ( 1 / 8 ) / ( √ ‘ 2 ) ) ) · ( log ‘ 2 ) ) = ( ( ( ( ( 3 / 4 ) / ( √ ‘ 2 ) ) + ( ( 9 / 4 ) · ( 5 / ( 2 ↑ 5 ) ) ) ) · ( log ‘ 2 ) ) + ( ( ( 1 / 8 ) / ( √ ‘ 2 ) ) · ( log ‘ 2 ) ) ) |
163 |
158 162
|
eqtr4di |
⊢ ( 𝑛 = ; 6 4 → ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑛 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑛 / 2 ) ) ) ) + ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑛 ) ) ) ) = ( ( ( ( ( 3 / 4 ) / ( √ ‘ 2 ) ) + ( ( 9 / 4 ) · ( 5 / ( 2 ↑ 5 ) ) ) ) + ( ( 1 / 8 ) / ( √ ‘ 2 ) ) ) · ( log ‘ 2 ) ) ) |
164 |
|
ovex |
⊢ ( ( ( ( ( 3 / 4 ) / ( √ ‘ 2 ) ) + ( ( 9 / 4 ) · ( 5 / ( 2 ↑ 5 ) ) ) ) + ( ( 1 / 8 ) / ( √ ‘ 2 ) ) ) · ( log ‘ 2 ) ) ∈ V |
165 |
163 1 164
|
fvmpt |
⊢ ( ; 6 4 ∈ ℕ → ( 𝐹 ‘ ; 6 4 ) = ( ( ( ( ( 3 / 4 ) / ( √ ‘ 2 ) ) + ( ( 9 / 4 ) · ( 5 / ( 2 ↑ 5 ) ) ) ) + ( ( 1 / 8 ) / ( √ ‘ 2 ) ) ) · ( log ‘ 2 ) ) ) |
166 |
5 165
|
ax-mp |
⊢ ( 𝐹 ‘ ; 6 4 ) = ( ( ( ( ( 3 / 4 ) / ( √ ‘ 2 ) ) + ( ( 9 / 4 ) · ( 5 / ( 2 ↑ 5 ) ) ) ) + ( ( 1 / 8 ) / ( √ ‘ 2 ) ) ) · ( log ‘ 2 ) ) |
167 |
|
3re |
⊢ 3 ∈ ℝ |
168 |
|
4re |
⊢ 4 ∈ ℝ |
169 |
167 168 76
|
redivcli |
⊢ ( 3 / 4 ) ∈ ℝ |
170 |
169 48 72
|
redivcli |
⊢ ( ( 3 / 4 ) / ( √ ‘ 2 ) ) ∈ ℝ |
171 |
|
9re |
⊢ 9 ∈ ℝ |
172 |
171 168 76
|
redivcli |
⊢ ( 9 / 4 ) ∈ ℝ |
173 |
|
5re |
⊢ 5 ∈ ℝ |
174 |
97
|
nnrei |
⊢ ( 2 ↑ 5 ) ∈ ℝ |
175 |
173 174 114
|
redivcli |
⊢ ( 5 / ( 2 ↑ 5 ) ) ∈ ℝ |
176 |
172 175
|
remulcli |
⊢ ( ( 9 / 4 ) · ( 5 / ( 2 ↑ 5 ) ) ) ∈ ℝ |
177 |
170 176
|
readdcli |
⊢ ( ( ( 3 / 4 ) / ( √ ‘ 2 ) ) + ( ( 9 / 4 ) · ( 5 / ( 2 ↑ 5 ) ) ) ) ∈ ℝ |
178 |
13 40
|
rereccli |
⊢ ( 1 / 8 ) ∈ ℝ |
179 |
178 48 72
|
redivcli |
⊢ ( ( 1 / 8 ) / ( √ ‘ 2 ) ) ∈ ℝ |
180 |
177 179
|
readdcli |
⊢ ( ( ( ( 3 / 4 ) / ( √ ‘ 2 ) ) + ( ( 9 / 4 ) · ( 5 / ( 2 ↑ 5 ) ) ) ) + ( ( 1 / 8 ) / ( √ ‘ 2 ) ) ) ∈ ℝ |
181 |
180 38
|
remulcli |
⊢ ( ( ( ( ( 3 / 4 ) / ( √ ‘ 2 ) ) + ( ( 9 / 4 ) · ( 5 / ( 2 ↑ 5 ) ) ) ) + ( ( 1 / 8 ) / ( √ ‘ 2 ) ) ) · ( log ‘ 2 ) ) ∈ ℝ |
182 |
166 181
|
eqeltri |
⊢ ( 𝐹 ‘ ; 6 4 ) ∈ ℝ |
183 |
129 130 161
|
add32i |
⊢ ( ( ( ( 3 / 4 ) / ( √ ‘ 2 ) ) + ( ( 9 / 4 ) · ( 5 / ( 2 ↑ 5 ) ) ) ) + ( ( 1 / 8 ) / ( √ ‘ 2 ) ) ) = ( ( ( ( 3 / 4 ) / ( √ ‘ 2 ) ) + ( ( 1 / 8 ) / ( √ ‘ 2 ) ) ) + ( ( 9 / 4 ) · ( 5 / ( 2 ↑ 5 ) ) ) ) |
184 |
|
6cn |
⊢ 6 ∈ ℂ |
185 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
186 |
184 185 7 40
|
divdiri |
⊢ ( ( 6 + 1 ) / 8 ) = ( ( 6 / 8 ) + ( 1 / 8 ) ) |
187 |
|
df-7 |
⊢ 7 = ( 6 + 1 ) |
188 |
187
|
oveq1i |
⊢ ( 7 / 8 ) = ( ( 6 + 1 ) / 8 ) |
189 |
|
divcan5 |
⊢ ( ( 3 ∈ ℂ ∧ ( 4 ∈ ℂ ∧ 4 ≠ 0 ) ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( ( 2 · 3 ) / ( 2 · 4 ) ) = ( 3 / 4 ) ) |
190 |
34 189
|
mp3an1 |
⊢ ( ( ( 4 ∈ ℂ ∧ 4 ≠ 0 ) ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( ( 2 · 3 ) / ( 2 · 4 ) ) = ( 3 / 4 ) ) |
191 |
52 76 90 99 190
|
mp4an |
⊢ ( ( 2 · 3 ) / ( 2 · 4 ) ) = ( 3 / 4 ) |
192 |
|
3t2e6 |
⊢ ( 3 · 2 ) = 6 |
193 |
34 90 192
|
mulcomli |
⊢ ( 2 · 3 ) = 6 |
194 |
52 90 59
|
mulcomli |
⊢ ( 2 · 4 ) = 8 |
195 |
193 194
|
oveq12i |
⊢ ( ( 2 · 3 ) / ( 2 · 4 ) ) = ( 6 / 8 ) |
196 |
191 195
|
eqtr3i |
⊢ ( 3 / 4 ) = ( 6 / 8 ) |
197 |
196
|
oveq1i |
⊢ ( ( 3 / 4 ) + ( 1 / 8 ) ) = ( ( 6 / 8 ) + ( 1 / 8 ) ) |
198 |
186 188 197
|
3eqtr4ri |
⊢ ( ( 3 / 4 ) + ( 1 / 8 ) ) = ( 7 / 8 ) |
199 |
198
|
oveq1i |
⊢ ( ( ( 3 / 4 ) + ( 1 / 8 ) ) / ( √ ‘ 2 ) ) = ( ( 7 / 8 ) / ( √ ‘ 2 ) ) |
200 |
128 160 49 72
|
divdiri |
⊢ ( ( ( 3 / 4 ) + ( 1 / 8 ) ) / ( √ ‘ 2 ) ) = ( ( ( 3 / 4 ) / ( √ ‘ 2 ) ) + ( ( 1 / 8 ) / ( √ ‘ 2 ) ) ) |
201 |
|
7cn |
⊢ 7 ∈ ℂ |
202 |
201 7 49 40 72
|
divdiv32i |
⊢ ( ( 7 / 8 ) / ( √ ‘ 2 ) ) = ( ( 7 / ( √ ‘ 2 ) ) / 8 ) |
203 |
199 200 202
|
3eqtr3i |
⊢ ( ( ( 3 / 4 ) / ( √ ‘ 2 ) ) + ( ( 1 / 8 ) / ( √ ‘ 2 ) ) ) = ( ( 7 / ( √ ‘ 2 ) ) / 8 ) |
204 |
203
|
oveq1i |
⊢ ( ( ( ( 3 / 4 ) / ( √ ‘ 2 ) ) + ( ( 1 / 8 ) / ( √ ‘ 2 ) ) ) + ( ( 9 / 4 ) · ( 5 / ( 2 ↑ 5 ) ) ) ) = ( ( ( 7 / ( √ ‘ 2 ) ) / 8 ) + ( ( 9 / 4 ) · ( 5 / ( 2 ↑ 5 ) ) ) ) |
205 |
183 204
|
eqtri |
⊢ ( ( ( ( 3 / 4 ) / ( √ ‘ 2 ) ) + ( ( 9 / 4 ) · ( 5 / ( 2 ↑ 5 ) ) ) ) + ( ( 1 / 8 ) / ( √ ‘ 2 ) ) ) = ( ( ( 7 / ( √ ‘ 2 ) ) / 8 ) + ( ( 9 / 4 ) · ( 5 / ( 2 ↑ 5 ) ) ) ) |
206 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
207 |
|
9nn0 |
⊢ 9 ∈ ℕ0 |
208 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
209 |
|
9lt10 |
⊢ 9 < ; 1 0 |
210 |
|
4lt5 |
⊢ 4 < 5 |
211 |
206 91 207 208 209 210
|
decltc |
⊢ ; 4 9 < ; 5 0 |
212 |
|
7t7e49 |
⊢ ( 7 · 7 ) = ; 4 9 |
213 |
57
|
oveq1i |
⊢ ( ( ( √ ‘ 2 ) · ( √ ‘ 2 ) ) · ( 5 · 5 ) ) = ( 2 · ( 5 · 5 ) ) |
214 |
49 49 113 113
|
mul4i |
⊢ ( ( ( √ ‘ 2 ) · ( √ ‘ 2 ) ) · ( 5 · 5 ) ) = ( ( ( √ ‘ 2 ) · 5 ) · ( ( √ ‘ 2 ) · 5 ) ) |
215 |
|
5t2e10 |
⊢ ( 5 · 2 ) = ; 1 0 |
216 |
113 90 215
|
mulcomli |
⊢ ( 2 · 5 ) = ; 1 0 |
217 |
216
|
oveq1i |
⊢ ( ( 2 · 5 ) · 5 ) = ( ; 1 0 · 5 ) |
218 |
90 113 113
|
mulassi |
⊢ ( ( 2 · 5 ) · 5 ) = ( 2 · ( 5 · 5 ) ) |
219 |
91
|
dec0u |
⊢ ( ; 1 0 · 5 ) = ; 5 0 |
220 |
217 218 219
|
3eqtr3i |
⊢ ( 2 · ( 5 · 5 ) ) = ; 5 0 |
221 |
213 214 220
|
3eqtr3i |
⊢ ( ( ( √ ‘ 2 ) · 5 ) · ( ( √ ‘ 2 ) · 5 ) ) = ; 5 0 |
222 |
211 212 221
|
3brtr4i |
⊢ ( 7 · 7 ) < ( ( ( √ ‘ 2 ) · 5 ) · ( ( √ ‘ 2 ) · 5 ) ) |
223 |
|
7re |
⊢ 7 ∈ ℝ |
224 |
|
7pos |
⊢ 0 < 7 |
225 |
12 223 224
|
ltleii |
⊢ 0 ≤ 7 |
226 |
|
nnrp |
⊢ ( 5 ∈ ℕ → 5 ∈ ℝ+ ) |
227 |
106 226
|
ax-mp |
⊢ 5 ∈ ℝ+ |
228 |
|
rpmulcl |
⊢ ( ( ( √ ‘ 2 ) ∈ ℝ+ ∧ 5 ∈ ℝ+ ) → ( ( √ ‘ 2 ) · 5 ) ∈ ℝ+ ) |
229 |
66 227 228
|
mp2an |
⊢ ( ( √ ‘ 2 ) · 5 ) ∈ ℝ+ |
230 |
|
rpge0 |
⊢ ( ( ( √ ‘ 2 ) · 5 ) ∈ ℝ+ → 0 ≤ ( ( √ ‘ 2 ) · 5 ) ) |
231 |
229 230
|
ax-mp |
⊢ 0 ≤ ( ( √ ‘ 2 ) · 5 ) |
232 |
|
rpre |
⊢ ( ( ( √ ‘ 2 ) · 5 ) ∈ ℝ+ → ( ( √ ‘ 2 ) · 5 ) ∈ ℝ ) |
233 |
229 232
|
ax-mp |
⊢ ( ( √ ‘ 2 ) · 5 ) ∈ ℝ |
234 |
223 233
|
lt2msqi |
⊢ ( ( 0 ≤ 7 ∧ 0 ≤ ( ( √ ‘ 2 ) · 5 ) ) → ( 7 < ( ( √ ‘ 2 ) · 5 ) ↔ ( 7 · 7 ) < ( ( ( √ ‘ 2 ) · 5 ) · ( ( √ ‘ 2 ) · 5 ) ) ) ) |
235 |
225 231 234
|
mp2an |
⊢ ( 7 < ( ( √ ‘ 2 ) · 5 ) ↔ ( 7 · 7 ) < ( ( ( √ ‘ 2 ) · 5 ) · ( ( √ ‘ 2 ) · 5 ) ) ) |
236 |
222 235
|
mpbir |
⊢ 7 < ( ( √ ‘ 2 ) · 5 ) |
237 |
|
rpgt0 |
⊢ ( ( √ ‘ 2 ) ∈ ℝ+ → 0 < ( √ ‘ 2 ) ) |
238 |
26 65 237
|
mp2b |
⊢ 0 < ( √ ‘ 2 ) |
239 |
|
ltdivmul |
⊢ ( ( 7 ∈ ℝ ∧ 5 ∈ ℝ ∧ ( ( √ ‘ 2 ) ∈ ℝ ∧ 0 < ( √ ‘ 2 ) ) ) → ( ( 7 / ( √ ‘ 2 ) ) < 5 ↔ 7 < ( ( √ ‘ 2 ) · 5 ) ) ) |
240 |
223 173 239
|
mp3an12 |
⊢ ( ( ( √ ‘ 2 ) ∈ ℝ ∧ 0 < ( √ ‘ 2 ) ) → ( ( 7 / ( √ ‘ 2 ) ) < 5 ↔ 7 < ( ( √ ‘ 2 ) · 5 ) ) ) |
241 |
48 238 240
|
mp2an |
⊢ ( ( 7 / ( √ ‘ 2 ) ) < 5 ↔ 7 < ( ( √ ‘ 2 ) · 5 ) ) |
242 |
236 241
|
mpbir |
⊢ ( 7 / ( √ ‘ 2 ) ) < 5 |
243 |
223 48 72
|
redivcli |
⊢ ( 7 / ( √ ‘ 2 ) ) ∈ ℝ |
244 |
243 173 13 14
|
ltdiv1ii |
⊢ ( ( 7 / ( √ ‘ 2 ) ) < 5 ↔ ( ( 7 / ( √ ‘ 2 ) ) / 8 ) < ( 5 / 8 ) ) |
245 |
242 244
|
mpbi |
⊢ ( ( 7 / ( √ ‘ 2 ) ) / 8 ) < ( 5 / 8 ) |
246 |
|
divsubdir |
⊢ ( ( 8 ∈ ℂ ∧ 3 ∈ ℂ ∧ ( 8 ∈ ℂ ∧ 8 ≠ 0 ) ) → ( ( 8 − 3 ) / 8 ) = ( ( 8 / 8 ) − ( 3 / 8 ) ) ) |
247 |
7 34 246
|
mp3an12 |
⊢ ( ( 8 ∈ ℂ ∧ 8 ≠ 0 ) → ( ( 8 − 3 ) / 8 ) = ( ( 8 / 8 ) − ( 3 / 8 ) ) ) |
248 |
7 40 247
|
mp2an |
⊢ ( ( 8 − 3 ) / 8 ) = ( ( 8 / 8 ) − ( 3 / 8 ) ) |
249 |
|
5p3e8 |
⊢ ( 5 + 3 ) = 8 |
250 |
249
|
oveq1i |
⊢ ( ( 5 + 3 ) − 3 ) = ( 8 − 3 ) |
251 |
113 34
|
pncan3oi |
⊢ ( ( 5 + 3 ) − 3 ) = 5 |
252 |
250 251
|
eqtr3i |
⊢ ( 8 − 3 ) = 5 |
253 |
252
|
oveq1i |
⊢ ( ( 8 − 3 ) / 8 ) = ( 5 / 8 ) |
254 |
7 40
|
dividi |
⊢ ( 8 / 8 ) = 1 |
255 |
254
|
oveq1i |
⊢ ( ( 8 / 8 ) − ( 3 / 8 ) ) = ( 1 − ( 3 / 8 ) ) |
256 |
248 253 255
|
3eqtr3ri |
⊢ ( 1 − ( 3 / 8 ) ) = ( 5 / 8 ) |
257 |
|
5lt8 |
⊢ 5 < 8 |
258 |
13 173
|
remulcli |
⊢ ( 8 · 5 ) ∈ ℝ |
259 |
173 13 258
|
ltadd2i |
⊢ ( 5 < 8 ↔ ( ( 8 · 5 ) + 5 ) < ( ( 8 · 5 ) + 8 ) ) |
260 |
257 259
|
mpbi |
⊢ ( ( 8 · 5 ) + 5 ) < ( ( 8 · 5 ) + 8 ) |
261 |
|
df-9 |
⊢ 9 = ( 8 + 1 ) |
262 |
261
|
oveq1i |
⊢ ( 9 · 5 ) = ( ( 8 + 1 ) · 5 ) |
263 |
7 185 113
|
adddiri |
⊢ ( ( 8 + 1 ) · 5 ) = ( ( 8 · 5 ) + ( 1 · 5 ) ) |
264 |
113
|
mulid2i |
⊢ ( 1 · 5 ) = 5 |
265 |
264
|
oveq2i |
⊢ ( ( 8 · 5 ) + ( 1 · 5 ) ) = ( ( 8 · 5 ) + 5 ) |
266 |
262 263 265
|
3eqtri |
⊢ ( 9 · 5 ) = ( ( 8 · 5 ) + 5 ) |
267 |
87
|
oveq2i |
⊢ ( 8 · 6 ) = ( 8 · ( 5 + 1 ) ) |
268 |
7 113 185
|
adddii |
⊢ ( 8 · ( 5 + 1 ) ) = ( ( 8 · 5 ) + ( 8 · 1 ) ) |
269 |
7
|
mulid1i |
⊢ ( 8 · 1 ) = 8 |
270 |
269
|
oveq2i |
⊢ ( ( 8 · 5 ) + ( 8 · 1 ) ) = ( ( 8 · 5 ) + 8 ) |
271 |
267 268 270
|
3eqtri |
⊢ ( 8 · 6 ) = ( ( 8 · 5 ) + 8 ) |
272 |
260 266 271
|
3brtr4i |
⊢ ( 9 · 5 ) < ( 8 · 6 ) |
273 |
171 173
|
remulcli |
⊢ ( 9 · 5 ) ∈ ℝ |
274 |
|
6re |
⊢ 6 ∈ ℝ |
275 |
13 274
|
remulcli |
⊢ ( 8 · 6 ) ∈ ℝ |
276 |
168 174
|
remulcli |
⊢ ( 4 · ( 2 ↑ 5 ) ) ∈ ℝ |
277 |
4 97
|
nnmulcli |
⊢ ( 4 · ( 2 ↑ 5 ) ) ∈ ℕ |
278 |
277
|
nngt0i |
⊢ 0 < ( 4 · ( 2 ↑ 5 ) ) |
279 |
273 275 276 278
|
ltdiv1ii |
⊢ ( ( 9 · 5 ) < ( 8 · 6 ) ↔ ( ( 9 · 5 ) / ( 4 · ( 2 ↑ 5 ) ) ) < ( ( 8 · 6 ) / ( 4 · ( 2 ↑ 5 ) ) ) ) |
280 |
272 279
|
mpbi |
⊢ ( ( 9 · 5 ) / ( 4 · ( 2 ↑ 5 ) ) ) < ( ( 8 · 6 ) / ( 4 · ( 2 ↑ 5 ) ) ) |
281 |
122 52 113 98 76 114
|
divmuldivi |
⊢ ( ( 9 / 4 ) · ( 5 / ( 2 ↑ 5 ) ) ) = ( ( 9 · 5 ) / ( 4 · ( 2 ↑ 5 ) ) ) |
282 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ 4 ∈ ℕ0 ) → ( 2 ↑ 4 ) ∈ ℕ ) |
283 |
35 206 282
|
mp2an |
⊢ ( 2 ↑ 4 ) ∈ ℕ |
284 |
283
|
nncni |
⊢ ( 2 ↑ 4 ) ∈ ℂ |
285 |
283
|
nnne0i |
⊢ ( 2 ↑ 4 ) ≠ 0 |
286 |
|
divcan5 |
⊢ ( ( 3 ∈ ℂ ∧ ( 8 ∈ ℂ ∧ 8 ≠ 0 ) ∧ ( ( 2 ↑ 4 ) ∈ ℂ ∧ ( 2 ↑ 4 ) ≠ 0 ) ) → ( ( ( 2 ↑ 4 ) · 3 ) / ( ( 2 ↑ 4 ) · 8 ) ) = ( 3 / 8 ) ) |
287 |
34 286
|
mp3an1 |
⊢ ( ( ( 8 ∈ ℂ ∧ 8 ≠ 0 ) ∧ ( ( 2 ↑ 4 ) ∈ ℂ ∧ ( 2 ↑ 4 ) ≠ 0 ) ) → ( ( ( 2 ↑ 4 ) · 3 ) / ( ( 2 ↑ 4 ) · 8 ) ) = ( 3 / 8 ) ) |
288 |
7 40 284 285 287
|
mp4an |
⊢ ( ( ( 2 ↑ 4 ) · 3 ) / ( ( 2 ↑ 4 ) · 8 ) ) = ( 3 / 8 ) |
289 |
|
df-4 |
⊢ 4 = ( 3 + 1 ) |
290 |
289
|
oveq2i |
⊢ ( 2 ↑ 4 ) = ( 2 ↑ ( 3 + 1 ) ) |
291 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
292 |
|
expp1 |
⊢ ( ( 2 ∈ ℂ ∧ 3 ∈ ℕ0 ) → ( 2 ↑ ( 3 + 1 ) ) = ( ( 2 ↑ 3 ) · 2 ) ) |
293 |
90 291 292
|
mp2an |
⊢ ( 2 ↑ ( 3 + 1 ) ) = ( ( 2 ↑ 3 ) · 2 ) |
294 |
24
|
oveq1i |
⊢ ( ( 2 ↑ 3 ) · 2 ) = ( 8 · 2 ) |
295 |
290 293 294
|
3eqtri |
⊢ ( 2 ↑ 4 ) = ( 8 · 2 ) |
296 |
295
|
oveq1i |
⊢ ( ( 2 ↑ 4 ) · 3 ) = ( ( 8 · 2 ) · 3 ) |
297 |
7 90 34
|
mulassi |
⊢ ( ( 8 · 2 ) · 3 ) = ( 8 · ( 2 · 3 ) ) |
298 |
193
|
oveq2i |
⊢ ( 8 · ( 2 · 3 ) ) = ( 8 · 6 ) |
299 |
296 297 298
|
3eqtri |
⊢ ( ( 2 ↑ 4 ) · 3 ) = ( 8 · 6 ) |
300 |
|
4p3e7 |
⊢ ( 4 + 3 ) = 7 |
301 |
|
5p2e7 |
⊢ ( 5 + 2 ) = 7 |
302 |
113 90
|
addcomi |
⊢ ( 5 + 2 ) = ( 2 + 5 ) |
303 |
300 301 302
|
3eqtr2i |
⊢ ( 4 + 3 ) = ( 2 + 5 ) |
304 |
303
|
oveq2i |
⊢ ( 2 ↑ ( 4 + 3 ) ) = ( 2 ↑ ( 2 + 5 ) ) |
305 |
|
expadd |
⊢ ( ( 2 ∈ ℂ ∧ 4 ∈ ℕ0 ∧ 3 ∈ ℕ0 ) → ( 2 ↑ ( 4 + 3 ) ) = ( ( 2 ↑ 4 ) · ( 2 ↑ 3 ) ) ) |
306 |
90 206 291 305
|
mp3an |
⊢ ( 2 ↑ ( 4 + 3 ) ) = ( ( 2 ↑ 4 ) · ( 2 ↑ 3 ) ) |
307 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
308 |
|
expadd |
⊢ ( ( 2 ∈ ℂ ∧ 2 ∈ ℕ0 ∧ 5 ∈ ℕ0 ) → ( 2 ↑ ( 2 + 5 ) ) = ( ( 2 ↑ 2 ) · ( 2 ↑ 5 ) ) ) |
309 |
90 307 91 308
|
mp3an |
⊢ ( 2 ↑ ( 2 + 5 ) ) = ( ( 2 ↑ 2 ) · ( 2 ↑ 5 ) ) |
310 |
304 306 309
|
3eqtr3i |
⊢ ( ( 2 ↑ 4 ) · ( 2 ↑ 3 ) ) = ( ( 2 ↑ 2 ) · ( 2 ↑ 5 ) ) |
311 |
24
|
oveq2i |
⊢ ( ( 2 ↑ 4 ) · ( 2 ↑ 3 ) ) = ( ( 2 ↑ 4 ) · 8 ) |
312 |
|
sq2 |
⊢ ( 2 ↑ 2 ) = 4 |
313 |
312
|
oveq1i |
⊢ ( ( 2 ↑ 2 ) · ( 2 ↑ 5 ) ) = ( 4 · ( 2 ↑ 5 ) ) |
314 |
310 311 313
|
3eqtr3i |
⊢ ( ( 2 ↑ 4 ) · 8 ) = ( 4 · ( 2 ↑ 5 ) ) |
315 |
299 314
|
oveq12i |
⊢ ( ( ( 2 ↑ 4 ) · 3 ) / ( ( 2 ↑ 4 ) · 8 ) ) = ( ( 8 · 6 ) / ( 4 · ( 2 ↑ 5 ) ) ) |
316 |
288 315
|
eqtr3i |
⊢ ( 3 / 8 ) = ( ( 8 · 6 ) / ( 4 · ( 2 ↑ 5 ) ) ) |
317 |
280 281 316
|
3brtr4i |
⊢ ( ( 9 / 4 ) · ( 5 / ( 2 ↑ 5 ) ) ) < ( 3 / 8 ) |
318 |
167 13 40
|
redivcli |
⊢ ( 3 / 8 ) ∈ ℝ |
319 |
|
1re |
⊢ 1 ∈ ℝ |
320 |
|
ltsub2 |
⊢ ( ( ( ( 9 / 4 ) · ( 5 / ( 2 ↑ 5 ) ) ) ∈ ℝ ∧ ( 3 / 8 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( ( 9 / 4 ) · ( 5 / ( 2 ↑ 5 ) ) ) < ( 3 / 8 ) ↔ ( 1 − ( 3 / 8 ) ) < ( 1 − ( ( 9 / 4 ) · ( 5 / ( 2 ↑ 5 ) ) ) ) ) ) |
321 |
176 318 319 320
|
mp3an |
⊢ ( ( ( 9 / 4 ) · ( 5 / ( 2 ↑ 5 ) ) ) < ( 3 / 8 ) ↔ ( 1 − ( 3 / 8 ) ) < ( 1 − ( ( 9 / 4 ) · ( 5 / ( 2 ↑ 5 ) ) ) ) ) |
322 |
317 321
|
mpbi |
⊢ ( 1 − ( 3 / 8 ) ) < ( 1 − ( ( 9 / 4 ) · ( 5 / ( 2 ↑ 5 ) ) ) ) |
323 |
256 322
|
eqbrtrri |
⊢ ( 5 / 8 ) < ( 1 − ( ( 9 / 4 ) · ( 5 / ( 2 ↑ 5 ) ) ) ) |
324 |
243 13 40
|
redivcli |
⊢ ( ( 7 / ( √ ‘ 2 ) ) / 8 ) ∈ ℝ |
325 |
173 13 40
|
redivcli |
⊢ ( 5 / 8 ) ∈ ℝ |
326 |
319 176
|
resubcli |
⊢ ( 1 − ( ( 9 / 4 ) · ( 5 / ( 2 ↑ 5 ) ) ) ) ∈ ℝ |
327 |
324 325 326
|
lttri |
⊢ ( ( ( ( 7 / ( √ ‘ 2 ) ) / 8 ) < ( 5 / 8 ) ∧ ( 5 / 8 ) < ( 1 − ( ( 9 / 4 ) · ( 5 / ( 2 ↑ 5 ) ) ) ) ) → ( ( 7 / ( √ ‘ 2 ) ) / 8 ) < ( 1 − ( ( 9 / 4 ) · ( 5 / ( 2 ↑ 5 ) ) ) ) ) |
328 |
245 323 327
|
mp2an |
⊢ ( ( 7 / ( √ ‘ 2 ) ) / 8 ) < ( 1 − ( ( 9 / 4 ) · ( 5 / ( 2 ↑ 5 ) ) ) ) |
329 |
324 176 319
|
ltaddsubi |
⊢ ( ( ( ( 7 / ( √ ‘ 2 ) ) / 8 ) + ( ( 9 / 4 ) · ( 5 / ( 2 ↑ 5 ) ) ) ) < 1 ↔ ( ( 7 / ( √ ‘ 2 ) ) / 8 ) < ( 1 − ( ( 9 / 4 ) · ( 5 / ( 2 ↑ 5 ) ) ) ) ) |
330 |
328 329
|
mpbir |
⊢ ( ( ( 7 / ( √ ‘ 2 ) ) / 8 ) + ( ( 9 / 4 ) · ( 5 / ( 2 ↑ 5 ) ) ) ) < 1 |
331 |
205 330
|
eqbrtri |
⊢ ( ( ( ( 3 / 4 ) / ( √ ‘ 2 ) ) + ( ( 9 / 4 ) · ( 5 / ( 2 ↑ 5 ) ) ) ) + ( ( 1 / 8 ) / ( √ ‘ 2 ) ) ) < 1 |
332 |
|
1lt2 |
⊢ 1 < 2 |
333 |
|
rplogcl |
⊢ ( ( 2 ∈ ℝ ∧ 1 < 2 ) → ( log ‘ 2 ) ∈ ℝ+ ) |
334 |
54 332 333
|
mp2an |
⊢ ( log ‘ 2 ) ∈ ℝ+ |
335 |
|
rpgt0 |
⊢ ( ( log ‘ 2 ) ∈ ℝ+ → 0 < ( log ‘ 2 ) ) |
336 |
334 335
|
ax-mp |
⊢ 0 < ( log ‘ 2 ) |
337 |
180 319 38 336
|
ltmul1ii |
⊢ ( ( ( ( ( 3 / 4 ) / ( √ ‘ 2 ) ) + ( ( 9 / 4 ) · ( 5 / ( 2 ↑ 5 ) ) ) ) + ( ( 1 / 8 ) / ( √ ‘ 2 ) ) ) < 1 ↔ ( ( ( ( ( 3 / 4 ) / ( √ ‘ 2 ) ) + ( ( 9 / 4 ) · ( 5 / ( 2 ↑ 5 ) ) ) ) + ( ( 1 / 8 ) / ( √ ‘ 2 ) ) ) · ( log ‘ 2 ) ) < ( 1 · ( log ‘ 2 ) ) ) |
338 |
331 337
|
mpbi |
⊢ ( ( ( ( ( 3 / 4 ) / ( √ ‘ 2 ) ) + ( ( 9 / 4 ) · ( 5 / ( 2 ↑ 5 ) ) ) ) + ( ( 1 / 8 ) / ( √ ‘ 2 ) ) ) · ( log ‘ 2 ) ) < ( 1 · ( log ‘ 2 ) ) |
339 |
39
|
mulid2i |
⊢ ( 1 · ( log ‘ 2 ) ) = ( log ‘ 2 ) |
340 |
339
|
eqcomi |
⊢ ( log ‘ 2 ) = ( 1 · ( log ‘ 2 ) ) |
341 |
338 166 340
|
3brtr4i |
⊢ ( 𝐹 ‘ ; 6 4 ) < ( log ‘ 2 ) |
342 |
182 341
|
pm3.2i |
⊢ ( ( 𝐹 ‘ ; 6 4 ) ∈ ℝ ∧ ( 𝐹 ‘ ; 6 4 ) < ( log ‘ 2 ) ) |