| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bposlem7.1 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑛 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑛 / 2 ) ) ) ) + ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑛 ) ) ) ) ) |
| 2 |
|
bposlem7.2 |
⊢ 𝐺 = ( 𝑥 ∈ ℝ+ ↦ ( ( log ‘ 𝑥 ) / 𝑥 ) ) |
| 3 |
|
bposlem7.3 |
⊢ ( 𝜑 → 𝐴 ∈ ℕ ) |
| 4 |
|
bposlem7.4 |
⊢ ( 𝜑 → 𝐵 ∈ ℕ ) |
| 5 |
|
bposlem7.5 |
⊢ ( 𝜑 → ( e ↑ 2 ) ≤ 𝐴 ) |
| 6 |
|
bposlem7.6 |
⊢ ( 𝜑 → ( e ↑ 2 ) ≤ 𝐵 ) |
| 7 |
4
|
nnrpd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) |
| 8 |
7
|
rpsqrtcld |
⊢ ( 𝜑 → ( √ ‘ 𝐵 ) ∈ ℝ+ ) |
| 9 |
|
fveq2 |
⊢ ( 𝑥 = ( √ ‘ 𝐵 ) → ( log ‘ 𝑥 ) = ( log ‘ ( √ ‘ 𝐵 ) ) ) |
| 10 |
|
id |
⊢ ( 𝑥 = ( √ ‘ 𝐵 ) → 𝑥 = ( √ ‘ 𝐵 ) ) |
| 11 |
9 10
|
oveq12d |
⊢ ( 𝑥 = ( √ ‘ 𝐵 ) → ( ( log ‘ 𝑥 ) / 𝑥 ) = ( ( log ‘ ( √ ‘ 𝐵 ) ) / ( √ ‘ 𝐵 ) ) ) |
| 12 |
|
ovex |
⊢ ( ( log ‘ ( √ ‘ 𝐵 ) ) / ( √ ‘ 𝐵 ) ) ∈ V |
| 13 |
11 2 12
|
fvmpt |
⊢ ( ( √ ‘ 𝐵 ) ∈ ℝ+ → ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) = ( ( log ‘ ( √ ‘ 𝐵 ) ) / ( √ ‘ 𝐵 ) ) ) |
| 14 |
8 13
|
syl |
⊢ ( 𝜑 → ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) = ( ( log ‘ ( √ ‘ 𝐵 ) ) / ( √ ‘ 𝐵 ) ) ) |
| 15 |
3
|
nnrpd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |
| 16 |
15
|
rpsqrtcld |
⊢ ( 𝜑 → ( √ ‘ 𝐴 ) ∈ ℝ+ ) |
| 17 |
|
fveq2 |
⊢ ( 𝑥 = ( √ ‘ 𝐴 ) → ( log ‘ 𝑥 ) = ( log ‘ ( √ ‘ 𝐴 ) ) ) |
| 18 |
|
id |
⊢ ( 𝑥 = ( √ ‘ 𝐴 ) → 𝑥 = ( √ ‘ 𝐴 ) ) |
| 19 |
17 18
|
oveq12d |
⊢ ( 𝑥 = ( √ ‘ 𝐴 ) → ( ( log ‘ 𝑥 ) / 𝑥 ) = ( ( log ‘ ( √ ‘ 𝐴 ) ) / ( √ ‘ 𝐴 ) ) ) |
| 20 |
|
ovex |
⊢ ( ( log ‘ ( √ ‘ 𝐴 ) ) / ( √ ‘ 𝐴 ) ) ∈ V |
| 21 |
19 2 20
|
fvmpt |
⊢ ( ( √ ‘ 𝐴 ) ∈ ℝ+ → ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) = ( ( log ‘ ( √ ‘ 𝐴 ) ) / ( √ ‘ 𝐴 ) ) ) |
| 22 |
16 21
|
syl |
⊢ ( 𝜑 → ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) = ( ( log ‘ ( √ ‘ 𝐴 ) ) / ( √ ‘ 𝐴 ) ) ) |
| 23 |
14 22
|
breq12d |
⊢ ( 𝜑 → ( ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) < ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ↔ ( ( log ‘ ( √ ‘ 𝐵 ) ) / ( √ ‘ 𝐵 ) ) < ( ( log ‘ ( √ ‘ 𝐴 ) ) / ( √ ‘ 𝐴 ) ) ) ) |
| 24 |
16
|
rpred |
⊢ ( 𝜑 → ( √ ‘ 𝐴 ) ∈ ℝ ) |
| 25 |
15
|
rprege0d |
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) |
| 26 |
|
resqrtth |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ) |
| 27 |
25 26
|
syl |
⊢ ( 𝜑 → ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ) |
| 28 |
5 27
|
breqtrrd |
⊢ ( 𝜑 → ( e ↑ 2 ) ≤ ( ( √ ‘ 𝐴 ) ↑ 2 ) ) |
| 29 |
16
|
rpge0d |
⊢ ( 𝜑 → 0 ≤ ( √ ‘ 𝐴 ) ) |
| 30 |
|
ere |
⊢ e ∈ ℝ |
| 31 |
|
0re |
⊢ 0 ∈ ℝ |
| 32 |
|
epos |
⊢ 0 < e |
| 33 |
31 30 32
|
ltleii |
⊢ 0 ≤ e |
| 34 |
|
le2sq |
⊢ ( ( ( e ∈ ℝ ∧ 0 ≤ e ) ∧ ( ( √ ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( √ ‘ 𝐴 ) ) ) → ( e ≤ ( √ ‘ 𝐴 ) ↔ ( e ↑ 2 ) ≤ ( ( √ ‘ 𝐴 ) ↑ 2 ) ) ) |
| 35 |
30 33 34
|
mpanl12 |
⊢ ( ( ( √ ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( √ ‘ 𝐴 ) ) → ( e ≤ ( √ ‘ 𝐴 ) ↔ ( e ↑ 2 ) ≤ ( ( √ ‘ 𝐴 ) ↑ 2 ) ) ) |
| 36 |
24 29 35
|
syl2anc |
⊢ ( 𝜑 → ( e ≤ ( √ ‘ 𝐴 ) ↔ ( e ↑ 2 ) ≤ ( ( √ ‘ 𝐴 ) ↑ 2 ) ) ) |
| 37 |
28 36
|
mpbird |
⊢ ( 𝜑 → e ≤ ( √ ‘ 𝐴 ) ) |
| 38 |
8
|
rpred |
⊢ ( 𝜑 → ( √ ‘ 𝐵 ) ∈ ℝ ) |
| 39 |
7
|
rprege0d |
⊢ ( 𝜑 → ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) |
| 40 |
|
resqrtth |
⊢ ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) → ( ( √ ‘ 𝐵 ) ↑ 2 ) = 𝐵 ) |
| 41 |
39 40
|
syl |
⊢ ( 𝜑 → ( ( √ ‘ 𝐵 ) ↑ 2 ) = 𝐵 ) |
| 42 |
6 41
|
breqtrrd |
⊢ ( 𝜑 → ( e ↑ 2 ) ≤ ( ( √ ‘ 𝐵 ) ↑ 2 ) ) |
| 43 |
8
|
rpge0d |
⊢ ( 𝜑 → 0 ≤ ( √ ‘ 𝐵 ) ) |
| 44 |
|
le2sq |
⊢ ( ( ( e ∈ ℝ ∧ 0 ≤ e ) ∧ ( ( √ ‘ 𝐵 ) ∈ ℝ ∧ 0 ≤ ( √ ‘ 𝐵 ) ) ) → ( e ≤ ( √ ‘ 𝐵 ) ↔ ( e ↑ 2 ) ≤ ( ( √ ‘ 𝐵 ) ↑ 2 ) ) ) |
| 45 |
30 33 44
|
mpanl12 |
⊢ ( ( ( √ ‘ 𝐵 ) ∈ ℝ ∧ 0 ≤ ( √ ‘ 𝐵 ) ) → ( e ≤ ( √ ‘ 𝐵 ) ↔ ( e ↑ 2 ) ≤ ( ( √ ‘ 𝐵 ) ↑ 2 ) ) ) |
| 46 |
38 43 45
|
syl2anc |
⊢ ( 𝜑 → ( e ≤ ( √ ‘ 𝐵 ) ↔ ( e ↑ 2 ) ≤ ( ( √ ‘ 𝐵 ) ↑ 2 ) ) ) |
| 47 |
42 46
|
mpbird |
⊢ ( 𝜑 → e ≤ ( √ ‘ 𝐵 ) ) |
| 48 |
|
logdivlt |
⊢ ( ( ( ( √ ‘ 𝐴 ) ∈ ℝ ∧ e ≤ ( √ ‘ 𝐴 ) ) ∧ ( ( √ ‘ 𝐵 ) ∈ ℝ ∧ e ≤ ( √ ‘ 𝐵 ) ) ) → ( ( √ ‘ 𝐴 ) < ( √ ‘ 𝐵 ) ↔ ( ( log ‘ ( √ ‘ 𝐵 ) ) / ( √ ‘ 𝐵 ) ) < ( ( log ‘ ( √ ‘ 𝐴 ) ) / ( √ ‘ 𝐴 ) ) ) ) |
| 49 |
24 37 38 47 48
|
syl22anc |
⊢ ( 𝜑 → ( ( √ ‘ 𝐴 ) < ( √ ‘ 𝐵 ) ↔ ( ( log ‘ ( √ ‘ 𝐵 ) ) / ( √ ‘ 𝐵 ) ) < ( ( log ‘ ( √ ‘ 𝐴 ) ) / ( √ ‘ 𝐴 ) ) ) ) |
| 50 |
24 38 29 43
|
lt2sqd |
⊢ ( 𝜑 → ( ( √ ‘ 𝐴 ) < ( √ ‘ 𝐵 ) ↔ ( ( √ ‘ 𝐴 ) ↑ 2 ) < ( ( √ ‘ 𝐵 ) ↑ 2 ) ) ) |
| 51 |
23 49 50
|
3bitr2rd |
⊢ ( 𝜑 → ( ( ( √ ‘ 𝐴 ) ↑ 2 ) < ( ( √ ‘ 𝐵 ) ↑ 2 ) ↔ ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) < ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) ) |
| 52 |
27 41
|
breq12d |
⊢ ( 𝜑 → ( ( ( √ ‘ 𝐴 ) ↑ 2 ) < ( ( √ ‘ 𝐵 ) ↑ 2 ) ↔ 𝐴 < 𝐵 ) ) |
| 53 |
|
relogcl |
⊢ ( 𝑥 ∈ ℝ+ → ( log ‘ 𝑥 ) ∈ ℝ ) |
| 54 |
|
rerpdivcl |
⊢ ( ( ( log ‘ 𝑥 ) ∈ ℝ ∧ 𝑥 ∈ ℝ+ ) → ( ( log ‘ 𝑥 ) / 𝑥 ) ∈ ℝ ) |
| 55 |
53 54
|
mpancom |
⊢ ( 𝑥 ∈ ℝ+ → ( ( log ‘ 𝑥 ) / 𝑥 ) ∈ ℝ ) |
| 56 |
2 55
|
fmpti |
⊢ 𝐺 : ℝ+ ⟶ ℝ |
| 57 |
56
|
ffvelcdmi |
⊢ ( ( √ ‘ 𝐵 ) ∈ ℝ+ → ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ∈ ℝ ) |
| 58 |
8 57
|
syl |
⊢ ( 𝜑 → ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ∈ ℝ ) |
| 59 |
56
|
ffvelcdmi |
⊢ ( ( √ ‘ 𝐴 ) ∈ ℝ+ → ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ∈ ℝ ) |
| 60 |
16 59
|
syl |
⊢ ( 𝜑 → ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ∈ ℝ ) |
| 61 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 62 |
|
rpsqrtcl |
⊢ ( 2 ∈ ℝ+ → ( √ ‘ 2 ) ∈ ℝ+ ) |
| 63 |
61 62
|
mp1i |
⊢ ( 𝜑 → ( √ ‘ 2 ) ∈ ℝ+ ) |
| 64 |
58 60 63
|
ltmul2d |
⊢ ( 𝜑 → ( ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) < ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ↔ ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ) < ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) ) ) |
| 65 |
51 52 64
|
3bitr3d |
⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ) < ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) ) ) |
| 66 |
65
|
biimpd |
⊢ ( 𝜑 → ( 𝐴 < 𝐵 → ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ) < ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) ) ) |
| 67 |
3
|
nnred |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 68 |
4
|
nnred |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 69 |
|
2re |
⊢ 2 ∈ ℝ |
| 70 |
|
2pos |
⊢ 0 < 2 |
| 71 |
69 70
|
pm3.2i |
⊢ ( 2 ∈ ℝ ∧ 0 < 2 ) |
| 72 |
71
|
a1i |
⊢ ( 𝜑 → ( 2 ∈ ℝ ∧ 0 < 2 ) ) |
| 73 |
|
ltdiv1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( 𝐴 < 𝐵 ↔ ( 𝐴 / 2 ) < ( 𝐵 / 2 ) ) ) |
| 74 |
67 68 72 73
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ ( 𝐴 / 2 ) < ( 𝐵 / 2 ) ) ) |
| 75 |
15
|
rphalfcld |
⊢ ( 𝜑 → ( 𝐴 / 2 ) ∈ ℝ+ ) |
| 76 |
75
|
rpred |
⊢ ( 𝜑 → ( 𝐴 / 2 ) ∈ ℝ ) |
| 77 |
30 69
|
remulcli |
⊢ ( e · 2 ) ∈ ℝ |
| 78 |
77
|
a1i |
⊢ ( 𝜑 → ( e · 2 ) ∈ ℝ ) |
| 79 |
30
|
resqcli |
⊢ ( e ↑ 2 ) ∈ ℝ |
| 80 |
79
|
a1i |
⊢ ( 𝜑 → ( e ↑ 2 ) ∈ ℝ ) |
| 81 |
|
egt2lt3 |
⊢ ( 2 < e ∧ e < 3 ) |
| 82 |
81
|
simpli |
⊢ 2 < e |
| 83 |
69 30 82
|
ltleii |
⊢ 2 ≤ e |
| 84 |
69 30 30
|
lemul2i |
⊢ ( 0 < e → ( 2 ≤ e ↔ ( e · 2 ) ≤ ( e · e ) ) ) |
| 85 |
32 84
|
ax-mp |
⊢ ( 2 ≤ e ↔ ( e · 2 ) ≤ ( e · e ) ) |
| 86 |
83 85
|
mpbi |
⊢ ( e · 2 ) ≤ ( e · e ) |
| 87 |
30
|
recni |
⊢ e ∈ ℂ |
| 88 |
87
|
sqvali |
⊢ ( e ↑ 2 ) = ( e · e ) |
| 89 |
86 88
|
breqtrri |
⊢ ( e · 2 ) ≤ ( e ↑ 2 ) |
| 90 |
89
|
a1i |
⊢ ( 𝜑 → ( e · 2 ) ≤ ( e ↑ 2 ) ) |
| 91 |
78 80 67 90 5
|
letrd |
⊢ ( 𝜑 → ( e · 2 ) ≤ 𝐴 ) |
| 92 |
|
lemuldiv |
⊢ ( ( e ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( e · 2 ) ≤ 𝐴 ↔ e ≤ ( 𝐴 / 2 ) ) ) |
| 93 |
30 71 92
|
mp3an13 |
⊢ ( 𝐴 ∈ ℝ → ( ( e · 2 ) ≤ 𝐴 ↔ e ≤ ( 𝐴 / 2 ) ) ) |
| 94 |
67 93
|
syl |
⊢ ( 𝜑 → ( ( e · 2 ) ≤ 𝐴 ↔ e ≤ ( 𝐴 / 2 ) ) ) |
| 95 |
91 94
|
mpbid |
⊢ ( 𝜑 → e ≤ ( 𝐴 / 2 ) ) |
| 96 |
7
|
rphalfcld |
⊢ ( 𝜑 → ( 𝐵 / 2 ) ∈ ℝ+ ) |
| 97 |
96
|
rpred |
⊢ ( 𝜑 → ( 𝐵 / 2 ) ∈ ℝ ) |
| 98 |
78 80 68 90 6
|
letrd |
⊢ ( 𝜑 → ( e · 2 ) ≤ 𝐵 ) |
| 99 |
|
lemuldiv |
⊢ ( ( e ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( e · 2 ) ≤ 𝐵 ↔ e ≤ ( 𝐵 / 2 ) ) ) |
| 100 |
30 71 99
|
mp3an13 |
⊢ ( 𝐵 ∈ ℝ → ( ( e · 2 ) ≤ 𝐵 ↔ e ≤ ( 𝐵 / 2 ) ) ) |
| 101 |
68 100
|
syl |
⊢ ( 𝜑 → ( ( e · 2 ) ≤ 𝐵 ↔ e ≤ ( 𝐵 / 2 ) ) ) |
| 102 |
98 101
|
mpbid |
⊢ ( 𝜑 → e ≤ ( 𝐵 / 2 ) ) |
| 103 |
|
logdivlt |
⊢ ( ( ( ( 𝐴 / 2 ) ∈ ℝ ∧ e ≤ ( 𝐴 / 2 ) ) ∧ ( ( 𝐵 / 2 ) ∈ ℝ ∧ e ≤ ( 𝐵 / 2 ) ) ) → ( ( 𝐴 / 2 ) < ( 𝐵 / 2 ) ↔ ( ( log ‘ ( 𝐵 / 2 ) ) / ( 𝐵 / 2 ) ) < ( ( log ‘ ( 𝐴 / 2 ) ) / ( 𝐴 / 2 ) ) ) ) |
| 104 |
76 95 97 102 103
|
syl22anc |
⊢ ( 𝜑 → ( ( 𝐴 / 2 ) < ( 𝐵 / 2 ) ↔ ( ( log ‘ ( 𝐵 / 2 ) ) / ( 𝐵 / 2 ) ) < ( ( log ‘ ( 𝐴 / 2 ) ) / ( 𝐴 / 2 ) ) ) ) |
| 105 |
74 104
|
bitrd |
⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ ( ( log ‘ ( 𝐵 / 2 ) ) / ( 𝐵 / 2 ) ) < ( ( log ‘ ( 𝐴 / 2 ) ) / ( 𝐴 / 2 ) ) ) ) |
| 106 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝐵 / 2 ) → ( log ‘ 𝑥 ) = ( log ‘ ( 𝐵 / 2 ) ) ) |
| 107 |
|
id |
⊢ ( 𝑥 = ( 𝐵 / 2 ) → 𝑥 = ( 𝐵 / 2 ) ) |
| 108 |
106 107
|
oveq12d |
⊢ ( 𝑥 = ( 𝐵 / 2 ) → ( ( log ‘ 𝑥 ) / 𝑥 ) = ( ( log ‘ ( 𝐵 / 2 ) ) / ( 𝐵 / 2 ) ) ) |
| 109 |
|
ovex |
⊢ ( ( log ‘ ( 𝐵 / 2 ) ) / ( 𝐵 / 2 ) ) ∈ V |
| 110 |
108 2 109
|
fvmpt |
⊢ ( ( 𝐵 / 2 ) ∈ ℝ+ → ( 𝐺 ‘ ( 𝐵 / 2 ) ) = ( ( log ‘ ( 𝐵 / 2 ) ) / ( 𝐵 / 2 ) ) ) |
| 111 |
96 110
|
syl |
⊢ ( 𝜑 → ( 𝐺 ‘ ( 𝐵 / 2 ) ) = ( ( log ‘ ( 𝐵 / 2 ) ) / ( 𝐵 / 2 ) ) ) |
| 112 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝐴 / 2 ) → ( log ‘ 𝑥 ) = ( log ‘ ( 𝐴 / 2 ) ) ) |
| 113 |
|
id |
⊢ ( 𝑥 = ( 𝐴 / 2 ) → 𝑥 = ( 𝐴 / 2 ) ) |
| 114 |
112 113
|
oveq12d |
⊢ ( 𝑥 = ( 𝐴 / 2 ) → ( ( log ‘ 𝑥 ) / 𝑥 ) = ( ( log ‘ ( 𝐴 / 2 ) ) / ( 𝐴 / 2 ) ) ) |
| 115 |
|
ovex |
⊢ ( ( log ‘ ( 𝐴 / 2 ) ) / ( 𝐴 / 2 ) ) ∈ V |
| 116 |
114 2 115
|
fvmpt |
⊢ ( ( 𝐴 / 2 ) ∈ ℝ+ → ( 𝐺 ‘ ( 𝐴 / 2 ) ) = ( ( log ‘ ( 𝐴 / 2 ) ) / ( 𝐴 / 2 ) ) ) |
| 117 |
75 116
|
syl |
⊢ ( 𝜑 → ( 𝐺 ‘ ( 𝐴 / 2 ) ) = ( ( log ‘ ( 𝐴 / 2 ) ) / ( 𝐴 / 2 ) ) ) |
| 118 |
111 117
|
breq12d |
⊢ ( 𝜑 → ( ( 𝐺 ‘ ( 𝐵 / 2 ) ) < ( 𝐺 ‘ ( 𝐴 / 2 ) ) ↔ ( ( log ‘ ( 𝐵 / 2 ) ) / ( 𝐵 / 2 ) ) < ( ( log ‘ ( 𝐴 / 2 ) ) / ( 𝐴 / 2 ) ) ) ) |
| 119 |
56
|
ffvelcdmi |
⊢ ( ( 𝐵 / 2 ) ∈ ℝ+ → ( 𝐺 ‘ ( 𝐵 / 2 ) ) ∈ ℝ ) |
| 120 |
96 119
|
syl |
⊢ ( 𝜑 → ( 𝐺 ‘ ( 𝐵 / 2 ) ) ∈ ℝ ) |
| 121 |
56
|
ffvelcdmi |
⊢ ( ( 𝐴 / 2 ) ∈ ℝ+ → ( 𝐺 ‘ ( 𝐴 / 2 ) ) ∈ ℝ ) |
| 122 |
75 121
|
syl |
⊢ ( 𝜑 → ( 𝐺 ‘ ( 𝐴 / 2 ) ) ∈ ℝ ) |
| 123 |
|
9nn |
⊢ 9 ∈ ℕ |
| 124 |
|
4nn |
⊢ 4 ∈ ℕ |
| 125 |
|
nnrp |
⊢ ( 9 ∈ ℕ → 9 ∈ ℝ+ ) |
| 126 |
|
nnrp |
⊢ ( 4 ∈ ℕ → 4 ∈ ℝ+ ) |
| 127 |
|
rpdivcl |
⊢ ( ( 9 ∈ ℝ+ ∧ 4 ∈ ℝ+ ) → ( 9 / 4 ) ∈ ℝ+ ) |
| 128 |
125 126 127
|
syl2an |
⊢ ( ( 9 ∈ ℕ ∧ 4 ∈ ℕ ) → ( 9 / 4 ) ∈ ℝ+ ) |
| 129 |
123 124 128
|
mp2an |
⊢ ( 9 / 4 ) ∈ ℝ+ |
| 130 |
129
|
a1i |
⊢ ( 𝜑 → ( 9 / 4 ) ∈ ℝ+ ) |
| 131 |
120 122 130
|
ltmul2d |
⊢ ( 𝜑 → ( ( 𝐺 ‘ ( 𝐵 / 2 ) ) < ( 𝐺 ‘ ( 𝐴 / 2 ) ) ↔ ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐵 / 2 ) ) ) < ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐴 / 2 ) ) ) ) ) |
| 132 |
105 118 131
|
3bitr2d |
⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐵 / 2 ) ) ) < ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐴 / 2 ) ) ) ) ) |
| 133 |
132
|
biimpd |
⊢ ( 𝜑 → ( 𝐴 < 𝐵 → ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐵 / 2 ) ) ) < ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐴 / 2 ) ) ) ) ) |
| 134 |
66 133
|
jcad |
⊢ ( 𝜑 → ( 𝐴 < 𝐵 → ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ) < ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) ∧ ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐵 / 2 ) ) ) < ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐴 / 2 ) ) ) ) ) ) |
| 135 |
|
sqrt2re |
⊢ ( √ ‘ 2 ) ∈ ℝ |
| 136 |
|
remulcl |
⊢ ( ( ( √ ‘ 2 ) ∈ ℝ ∧ ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ∈ ℝ ) → ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ) ∈ ℝ ) |
| 137 |
135 58 136
|
sylancr |
⊢ ( 𝜑 → ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ) ∈ ℝ ) |
| 138 |
|
9re |
⊢ 9 ∈ ℝ |
| 139 |
|
4re |
⊢ 4 ∈ ℝ |
| 140 |
|
4ne0 |
⊢ 4 ≠ 0 |
| 141 |
138 139 140
|
redivcli |
⊢ ( 9 / 4 ) ∈ ℝ |
| 142 |
|
remulcl |
⊢ ( ( ( 9 / 4 ) ∈ ℝ ∧ ( 𝐺 ‘ ( 𝐵 / 2 ) ) ∈ ℝ ) → ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐵 / 2 ) ) ) ∈ ℝ ) |
| 143 |
141 120 142
|
sylancr |
⊢ ( 𝜑 → ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐵 / 2 ) ) ) ∈ ℝ ) |
| 144 |
|
remulcl |
⊢ ( ( ( √ ‘ 2 ) ∈ ℝ ∧ ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ∈ ℝ ) → ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 145 |
135 60 144
|
sylancr |
⊢ ( 𝜑 → ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 146 |
|
remulcl |
⊢ ( ( ( 9 / 4 ) ∈ ℝ ∧ ( 𝐺 ‘ ( 𝐴 / 2 ) ) ∈ ℝ ) → ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐴 / 2 ) ) ) ∈ ℝ ) |
| 147 |
141 122 146
|
sylancr |
⊢ ( 𝜑 → ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐴 / 2 ) ) ) ∈ ℝ ) |
| 148 |
|
lt2add |
⊢ ( ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ) ∈ ℝ ∧ ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐵 / 2 ) ) ) ∈ ℝ ) ∧ ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) ∈ ℝ ∧ ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐴 / 2 ) ) ) ∈ ℝ ) ) → ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ) < ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) ∧ ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐵 / 2 ) ) ) < ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐴 / 2 ) ) ) ) → ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐵 / 2 ) ) ) ) < ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐴 / 2 ) ) ) ) ) ) |
| 149 |
137 143 145 147 148
|
syl22anc |
⊢ ( 𝜑 → ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ) < ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) ∧ ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐵 / 2 ) ) ) < ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐴 / 2 ) ) ) ) → ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐵 / 2 ) ) ) ) < ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐴 / 2 ) ) ) ) ) ) |
| 150 |
134 149
|
syld |
⊢ ( 𝜑 → ( 𝐴 < 𝐵 → ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐵 / 2 ) ) ) ) < ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐴 / 2 ) ) ) ) ) ) |
| 151 |
|
ltmul2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( 𝐴 < 𝐵 ↔ ( 2 · 𝐴 ) < ( 2 · 𝐵 ) ) ) |
| 152 |
67 68 72 151
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ ( 2 · 𝐴 ) < ( 2 · 𝐵 ) ) ) |
| 153 |
|
rpmulcl |
⊢ ( ( 2 ∈ ℝ+ ∧ 𝐴 ∈ ℝ+ ) → ( 2 · 𝐴 ) ∈ ℝ+ ) |
| 154 |
61 15 153
|
sylancr |
⊢ ( 𝜑 → ( 2 · 𝐴 ) ∈ ℝ+ ) |
| 155 |
154
|
rpsqrtcld |
⊢ ( 𝜑 → ( √ ‘ ( 2 · 𝐴 ) ) ∈ ℝ+ ) |
| 156 |
|
rpmulcl |
⊢ ( ( 2 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → ( 2 · 𝐵 ) ∈ ℝ+ ) |
| 157 |
61 7 156
|
sylancr |
⊢ ( 𝜑 → ( 2 · 𝐵 ) ∈ ℝ+ ) |
| 158 |
157
|
rpsqrtcld |
⊢ ( 𝜑 → ( √ ‘ ( 2 · 𝐵 ) ) ∈ ℝ+ ) |
| 159 |
|
rprege0 |
⊢ ( ( √ ‘ ( 2 · 𝐴 ) ) ∈ ℝ+ → ( ( √ ‘ ( 2 · 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( √ ‘ ( 2 · 𝐴 ) ) ) ) |
| 160 |
|
rprege0 |
⊢ ( ( √ ‘ ( 2 · 𝐵 ) ) ∈ ℝ+ → ( ( √ ‘ ( 2 · 𝐵 ) ) ∈ ℝ ∧ 0 ≤ ( √ ‘ ( 2 · 𝐵 ) ) ) ) |
| 161 |
|
lt2sq |
⊢ ( ( ( ( √ ‘ ( 2 · 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( √ ‘ ( 2 · 𝐴 ) ) ) ∧ ( ( √ ‘ ( 2 · 𝐵 ) ) ∈ ℝ ∧ 0 ≤ ( √ ‘ ( 2 · 𝐵 ) ) ) ) → ( ( √ ‘ ( 2 · 𝐴 ) ) < ( √ ‘ ( 2 · 𝐵 ) ) ↔ ( ( √ ‘ ( 2 · 𝐴 ) ) ↑ 2 ) < ( ( √ ‘ ( 2 · 𝐵 ) ) ↑ 2 ) ) ) |
| 162 |
159 160 161
|
syl2an |
⊢ ( ( ( √ ‘ ( 2 · 𝐴 ) ) ∈ ℝ+ ∧ ( √ ‘ ( 2 · 𝐵 ) ) ∈ ℝ+ ) → ( ( √ ‘ ( 2 · 𝐴 ) ) < ( √ ‘ ( 2 · 𝐵 ) ) ↔ ( ( √ ‘ ( 2 · 𝐴 ) ) ↑ 2 ) < ( ( √ ‘ ( 2 · 𝐵 ) ) ↑ 2 ) ) ) |
| 163 |
155 158 162
|
syl2anc |
⊢ ( 𝜑 → ( ( √ ‘ ( 2 · 𝐴 ) ) < ( √ ‘ ( 2 · 𝐵 ) ) ↔ ( ( √ ‘ ( 2 · 𝐴 ) ) ↑ 2 ) < ( ( √ ‘ ( 2 · 𝐵 ) ) ↑ 2 ) ) ) |
| 164 |
154
|
rprege0d |
⊢ ( 𝜑 → ( ( 2 · 𝐴 ) ∈ ℝ ∧ 0 ≤ ( 2 · 𝐴 ) ) ) |
| 165 |
|
resqrtth |
⊢ ( ( ( 2 · 𝐴 ) ∈ ℝ ∧ 0 ≤ ( 2 · 𝐴 ) ) → ( ( √ ‘ ( 2 · 𝐴 ) ) ↑ 2 ) = ( 2 · 𝐴 ) ) |
| 166 |
164 165
|
syl |
⊢ ( 𝜑 → ( ( √ ‘ ( 2 · 𝐴 ) ) ↑ 2 ) = ( 2 · 𝐴 ) ) |
| 167 |
157
|
rprege0d |
⊢ ( 𝜑 → ( ( 2 · 𝐵 ) ∈ ℝ ∧ 0 ≤ ( 2 · 𝐵 ) ) ) |
| 168 |
|
resqrtth |
⊢ ( ( ( 2 · 𝐵 ) ∈ ℝ ∧ 0 ≤ ( 2 · 𝐵 ) ) → ( ( √ ‘ ( 2 · 𝐵 ) ) ↑ 2 ) = ( 2 · 𝐵 ) ) |
| 169 |
167 168
|
syl |
⊢ ( 𝜑 → ( ( √ ‘ ( 2 · 𝐵 ) ) ↑ 2 ) = ( 2 · 𝐵 ) ) |
| 170 |
166 169
|
breq12d |
⊢ ( 𝜑 → ( ( ( √ ‘ ( 2 · 𝐴 ) ) ↑ 2 ) < ( ( √ ‘ ( 2 · 𝐵 ) ) ↑ 2 ) ↔ ( 2 · 𝐴 ) < ( 2 · 𝐵 ) ) ) |
| 171 |
163 170
|
bitr2d |
⊢ ( 𝜑 → ( ( 2 · 𝐴 ) < ( 2 · 𝐵 ) ↔ ( √ ‘ ( 2 · 𝐴 ) ) < ( √ ‘ ( 2 · 𝐵 ) ) ) ) |
| 172 |
|
1lt2 |
⊢ 1 < 2 |
| 173 |
|
rplogcl |
⊢ ( ( 2 ∈ ℝ ∧ 1 < 2 ) → ( log ‘ 2 ) ∈ ℝ+ ) |
| 174 |
69 172 173
|
mp2an |
⊢ ( log ‘ 2 ) ∈ ℝ+ |
| 175 |
174
|
a1i |
⊢ ( 𝜑 → ( log ‘ 2 ) ∈ ℝ+ ) |
| 176 |
155 158 175
|
ltdiv2d |
⊢ ( 𝜑 → ( ( √ ‘ ( 2 · 𝐴 ) ) < ( √ ‘ ( 2 · 𝐵 ) ) ↔ ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐵 ) ) ) < ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐴 ) ) ) ) ) |
| 177 |
152 171 176
|
3bitrd |
⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐵 ) ) ) < ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐴 ) ) ) ) ) |
| 178 |
177
|
biimpd |
⊢ ( 𝜑 → ( 𝐴 < 𝐵 → ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐵 ) ) ) < ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐴 ) ) ) ) ) |
| 179 |
150 178
|
jcad |
⊢ ( 𝜑 → ( 𝐴 < 𝐵 → ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐵 / 2 ) ) ) ) < ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐴 / 2 ) ) ) ) ∧ ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐵 ) ) ) < ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐴 ) ) ) ) ) ) |
| 180 |
137 143
|
readdcld |
⊢ ( 𝜑 → ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐵 / 2 ) ) ) ) ∈ ℝ ) |
| 181 |
|
rpre |
⊢ ( ( log ‘ 2 ) ∈ ℝ+ → ( log ‘ 2 ) ∈ ℝ ) |
| 182 |
174 181
|
ax-mp |
⊢ ( log ‘ 2 ) ∈ ℝ |
| 183 |
|
rerpdivcl |
⊢ ( ( ( log ‘ 2 ) ∈ ℝ ∧ ( √ ‘ ( 2 · 𝐵 ) ) ∈ ℝ+ ) → ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐵 ) ) ) ∈ ℝ ) |
| 184 |
182 158 183
|
sylancr |
⊢ ( 𝜑 → ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐵 ) ) ) ∈ ℝ ) |
| 185 |
145 147
|
readdcld |
⊢ ( 𝜑 → ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐴 / 2 ) ) ) ) ∈ ℝ ) |
| 186 |
|
rerpdivcl |
⊢ ( ( ( log ‘ 2 ) ∈ ℝ ∧ ( √ ‘ ( 2 · 𝐴 ) ) ∈ ℝ+ ) → ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐴 ) ) ) ∈ ℝ ) |
| 187 |
182 155 186
|
sylancr |
⊢ ( 𝜑 → ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐴 ) ) ) ∈ ℝ ) |
| 188 |
|
lt2add |
⊢ ( ( ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐵 / 2 ) ) ) ) ∈ ℝ ∧ ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐵 ) ) ) ∈ ℝ ) ∧ ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐴 / 2 ) ) ) ) ∈ ℝ ∧ ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐴 ) ) ) ∈ ℝ ) ) → ( ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐵 / 2 ) ) ) ) < ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐴 / 2 ) ) ) ) ∧ ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐵 ) ) ) < ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐴 ) ) ) ) → ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐵 / 2 ) ) ) ) + ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐵 ) ) ) ) < ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐴 / 2 ) ) ) ) + ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐴 ) ) ) ) ) ) |
| 189 |
180 184 185 187 188
|
syl22anc |
⊢ ( 𝜑 → ( ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐵 / 2 ) ) ) ) < ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐴 / 2 ) ) ) ) ∧ ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐵 ) ) ) < ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐴 ) ) ) ) → ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐵 / 2 ) ) ) ) + ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐵 ) ) ) ) < ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐴 / 2 ) ) ) ) + ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐴 ) ) ) ) ) ) |
| 190 |
179 189
|
syld |
⊢ ( 𝜑 → ( 𝐴 < 𝐵 → ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐵 / 2 ) ) ) ) + ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐵 ) ) ) ) < ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐴 / 2 ) ) ) ) + ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐴 ) ) ) ) ) ) |
| 191 |
|
2fveq3 |
⊢ ( 𝑛 = 𝐵 → ( 𝐺 ‘ ( √ ‘ 𝑛 ) ) = ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ) |
| 192 |
191
|
oveq2d |
⊢ ( 𝑛 = 𝐵 → ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑛 ) ) ) = ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ) ) |
| 193 |
|
fvoveq1 |
⊢ ( 𝑛 = 𝐵 → ( 𝐺 ‘ ( 𝑛 / 2 ) ) = ( 𝐺 ‘ ( 𝐵 / 2 ) ) ) |
| 194 |
193
|
oveq2d |
⊢ ( 𝑛 = 𝐵 → ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑛 / 2 ) ) ) = ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐵 / 2 ) ) ) ) |
| 195 |
192 194
|
oveq12d |
⊢ ( 𝑛 = 𝐵 → ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑛 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑛 / 2 ) ) ) ) = ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐵 / 2 ) ) ) ) ) |
| 196 |
|
oveq2 |
⊢ ( 𝑛 = 𝐵 → ( 2 · 𝑛 ) = ( 2 · 𝐵 ) ) |
| 197 |
196
|
fveq2d |
⊢ ( 𝑛 = 𝐵 → ( √ ‘ ( 2 · 𝑛 ) ) = ( √ ‘ ( 2 · 𝐵 ) ) ) |
| 198 |
197
|
oveq2d |
⊢ ( 𝑛 = 𝐵 → ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑛 ) ) ) = ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐵 ) ) ) ) |
| 199 |
195 198
|
oveq12d |
⊢ ( 𝑛 = 𝐵 → ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑛 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑛 / 2 ) ) ) ) + ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑛 ) ) ) ) = ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐵 / 2 ) ) ) ) + ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐵 ) ) ) ) ) |
| 200 |
|
ovex |
⊢ ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐵 / 2 ) ) ) ) + ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐵 ) ) ) ) ∈ V |
| 201 |
199 1 200
|
fvmpt |
⊢ ( 𝐵 ∈ ℕ → ( 𝐹 ‘ 𝐵 ) = ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐵 / 2 ) ) ) ) + ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐵 ) ) ) ) ) |
| 202 |
4 201
|
syl |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) = ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐵 / 2 ) ) ) ) + ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐵 ) ) ) ) ) |
| 203 |
|
2fveq3 |
⊢ ( 𝑛 = 𝐴 → ( 𝐺 ‘ ( √ ‘ 𝑛 ) ) = ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) |
| 204 |
203
|
oveq2d |
⊢ ( 𝑛 = 𝐴 → ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑛 ) ) ) = ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) ) |
| 205 |
|
fvoveq1 |
⊢ ( 𝑛 = 𝐴 → ( 𝐺 ‘ ( 𝑛 / 2 ) ) = ( 𝐺 ‘ ( 𝐴 / 2 ) ) ) |
| 206 |
205
|
oveq2d |
⊢ ( 𝑛 = 𝐴 → ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑛 / 2 ) ) ) = ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐴 / 2 ) ) ) ) |
| 207 |
204 206
|
oveq12d |
⊢ ( 𝑛 = 𝐴 → ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑛 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑛 / 2 ) ) ) ) = ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐴 / 2 ) ) ) ) ) |
| 208 |
|
oveq2 |
⊢ ( 𝑛 = 𝐴 → ( 2 · 𝑛 ) = ( 2 · 𝐴 ) ) |
| 209 |
208
|
fveq2d |
⊢ ( 𝑛 = 𝐴 → ( √ ‘ ( 2 · 𝑛 ) ) = ( √ ‘ ( 2 · 𝐴 ) ) ) |
| 210 |
209
|
oveq2d |
⊢ ( 𝑛 = 𝐴 → ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑛 ) ) ) = ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐴 ) ) ) ) |
| 211 |
207 210
|
oveq12d |
⊢ ( 𝑛 = 𝐴 → ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑛 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑛 / 2 ) ) ) ) + ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑛 ) ) ) ) = ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐴 / 2 ) ) ) ) + ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐴 ) ) ) ) ) |
| 212 |
|
ovex |
⊢ ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐴 / 2 ) ) ) ) + ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐴 ) ) ) ) ∈ V |
| 213 |
211 1 212
|
fvmpt |
⊢ ( 𝐴 ∈ ℕ → ( 𝐹 ‘ 𝐴 ) = ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐴 / 2 ) ) ) ) + ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐴 ) ) ) ) ) |
| 214 |
3 213
|
syl |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) = ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐴 / 2 ) ) ) ) + ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐴 ) ) ) ) ) |
| 215 |
202 214
|
breq12d |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐵 ) < ( 𝐹 ‘ 𝐴 ) ↔ ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐵 / 2 ) ) ) ) + ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐵 ) ) ) ) < ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐴 / 2 ) ) ) ) + ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐴 ) ) ) ) ) ) |
| 216 |
190 215
|
sylibrd |
⊢ ( 𝜑 → ( 𝐴 < 𝐵 → ( 𝐹 ‘ 𝐵 ) < ( 𝐹 ‘ 𝐴 ) ) ) |