| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bposlem7.1 |
|- F = ( n e. NN |-> ( ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` n ) ) ) + ( ( 9 / 4 ) x. ( G ` ( n / 2 ) ) ) ) + ( ( log ` 2 ) / ( sqrt ` ( 2 x. n ) ) ) ) ) |
| 2 |
|
bposlem7.2 |
|- G = ( x e. RR+ |-> ( ( log ` x ) / x ) ) |
| 3 |
|
bposlem7.3 |
|- ( ph -> A e. NN ) |
| 4 |
|
bposlem7.4 |
|- ( ph -> B e. NN ) |
| 5 |
|
bposlem7.5 |
|- ( ph -> ( _e ^ 2 ) <_ A ) |
| 6 |
|
bposlem7.6 |
|- ( ph -> ( _e ^ 2 ) <_ B ) |
| 7 |
4
|
nnrpd |
|- ( ph -> B e. RR+ ) |
| 8 |
7
|
rpsqrtcld |
|- ( ph -> ( sqrt ` B ) e. RR+ ) |
| 9 |
|
fveq2 |
|- ( x = ( sqrt ` B ) -> ( log ` x ) = ( log ` ( sqrt ` B ) ) ) |
| 10 |
|
id |
|- ( x = ( sqrt ` B ) -> x = ( sqrt ` B ) ) |
| 11 |
9 10
|
oveq12d |
|- ( x = ( sqrt ` B ) -> ( ( log ` x ) / x ) = ( ( log ` ( sqrt ` B ) ) / ( sqrt ` B ) ) ) |
| 12 |
|
ovex |
|- ( ( log ` ( sqrt ` B ) ) / ( sqrt ` B ) ) e. _V |
| 13 |
11 2 12
|
fvmpt |
|- ( ( sqrt ` B ) e. RR+ -> ( G ` ( sqrt ` B ) ) = ( ( log ` ( sqrt ` B ) ) / ( sqrt ` B ) ) ) |
| 14 |
8 13
|
syl |
|- ( ph -> ( G ` ( sqrt ` B ) ) = ( ( log ` ( sqrt ` B ) ) / ( sqrt ` B ) ) ) |
| 15 |
3
|
nnrpd |
|- ( ph -> A e. RR+ ) |
| 16 |
15
|
rpsqrtcld |
|- ( ph -> ( sqrt ` A ) e. RR+ ) |
| 17 |
|
fveq2 |
|- ( x = ( sqrt ` A ) -> ( log ` x ) = ( log ` ( sqrt ` A ) ) ) |
| 18 |
|
id |
|- ( x = ( sqrt ` A ) -> x = ( sqrt ` A ) ) |
| 19 |
17 18
|
oveq12d |
|- ( x = ( sqrt ` A ) -> ( ( log ` x ) / x ) = ( ( log ` ( sqrt ` A ) ) / ( sqrt ` A ) ) ) |
| 20 |
|
ovex |
|- ( ( log ` ( sqrt ` A ) ) / ( sqrt ` A ) ) e. _V |
| 21 |
19 2 20
|
fvmpt |
|- ( ( sqrt ` A ) e. RR+ -> ( G ` ( sqrt ` A ) ) = ( ( log ` ( sqrt ` A ) ) / ( sqrt ` A ) ) ) |
| 22 |
16 21
|
syl |
|- ( ph -> ( G ` ( sqrt ` A ) ) = ( ( log ` ( sqrt ` A ) ) / ( sqrt ` A ) ) ) |
| 23 |
14 22
|
breq12d |
|- ( ph -> ( ( G ` ( sqrt ` B ) ) < ( G ` ( sqrt ` A ) ) <-> ( ( log ` ( sqrt ` B ) ) / ( sqrt ` B ) ) < ( ( log ` ( sqrt ` A ) ) / ( sqrt ` A ) ) ) ) |
| 24 |
16
|
rpred |
|- ( ph -> ( sqrt ` A ) e. RR ) |
| 25 |
15
|
rprege0d |
|- ( ph -> ( A e. RR /\ 0 <_ A ) ) |
| 26 |
|
resqrtth |
|- ( ( A e. RR /\ 0 <_ A ) -> ( ( sqrt ` A ) ^ 2 ) = A ) |
| 27 |
25 26
|
syl |
|- ( ph -> ( ( sqrt ` A ) ^ 2 ) = A ) |
| 28 |
5 27
|
breqtrrd |
|- ( ph -> ( _e ^ 2 ) <_ ( ( sqrt ` A ) ^ 2 ) ) |
| 29 |
16
|
rpge0d |
|- ( ph -> 0 <_ ( sqrt ` A ) ) |
| 30 |
|
ere |
|- _e e. RR |
| 31 |
|
0re |
|- 0 e. RR |
| 32 |
|
epos |
|- 0 < _e |
| 33 |
31 30 32
|
ltleii |
|- 0 <_ _e |
| 34 |
|
le2sq |
|- ( ( ( _e e. RR /\ 0 <_ _e ) /\ ( ( sqrt ` A ) e. RR /\ 0 <_ ( sqrt ` A ) ) ) -> ( _e <_ ( sqrt ` A ) <-> ( _e ^ 2 ) <_ ( ( sqrt ` A ) ^ 2 ) ) ) |
| 35 |
30 33 34
|
mpanl12 |
|- ( ( ( sqrt ` A ) e. RR /\ 0 <_ ( sqrt ` A ) ) -> ( _e <_ ( sqrt ` A ) <-> ( _e ^ 2 ) <_ ( ( sqrt ` A ) ^ 2 ) ) ) |
| 36 |
24 29 35
|
syl2anc |
|- ( ph -> ( _e <_ ( sqrt ` A ) <-> ( _e ^ 2 ) <_ ( ( sqrt ` A ) ^ 2 ) ) ) |
| 37 |
28 36
|
mpbird |
|- ( ph -> _e <_ ( sqrt ` A ) ) |
| 38 |
8
|
rpred |
|- ( ph -> ( sqrt ` B ) e. RR ) |
| 39 |
7
|
rprege0d |
|- ( ph -> ( B e. RR /\ 0 <_ B ) ) |
| 40 |
|
resqrtth |
|- ( ( B e. RR /\ 0 <_ B ) -> ( ( sqrt ` B ) ^ 2 ) = B ) |
| 41 |
39 40
|
syl |
|- ( ph -> ( ( sqrt ` B ) ^ 2 ) = B ) |
| 42 |
6 41
|
breqtrrd |
|- ( ph -> ( _e ^ 2 ) <_ ( ( sqrt ` B ) ^ 2 ) ) |
| 43 |
8
|
rpge0d |
|- ( ph -> 0 <_ ( sqrt ` B ) ) |
| 44 |
|
le2sq |
|- ( ( ( _e e. RR /\ 0 <_ _e ) /\ ( ( sqrt ` B ) e. RR /\ 0 <_ ( sqrt ` B ) ) ) -> ( _e <_ ( sqrt ` B ) <-> ( _e ^ 2 ) <_ ( ( sqrt ` B ) ^ 2 ) ) ) |
| 45 |
30 33 44
|
mpanl12 |
|- ( ( ( sqrt ` B ) e. RR /\ 0 <_ ( sqrt ` B ) ) -> ( _e <_ ( sqrt ` B ) <-> ( _e ^ 2 ) <_ ( ( sqrt ` B ) ^ 2 ) ) ) |
| 46 |
38 43 45
|
syl2anc |
|- ( ph -> ( _e <_ ( sqrt ` B ) <-> ( _e ^ 2 ) <_ ( ( sqrt ` B ) ^ 2 ) ) ) |
| 47 |
42 46
|
mpbird |
|- ( ph -> _e <_ ( sqrt ` B ) ) |
| 48 |
|
logdivlt |
|- ( ( ( ( sqrt ` A ) e. RR /\ _e <_ ( sqrt ` A ) ) /\ ( ( sqrt ` B ) e. RR /\ _e <_ ( sqrt ` B ) ) ) -> ( ( sqrt ` A ) < ( sqrt ` B ) <-> ( ( log ` ( sqrt ` B ) ) / ( sqrt ` B ) ) < ( ( log ` ( sqrt ` A ) ) / ( sqrt ` A ) ) ) ) |
| 49 |
24 37 38 47 48
|
syl22anc |
|- ( ph -> ( ( sqrt ` A ) < ( sqrt ` B ) <-> ( ( log ` ( sqrt ` B ) ) / ( sqrt ` B ) ) < ( ( log ` ( sqrt ` A ) ) / ( sqrt ` A ) ) ) ) |
| 50 |
24 38 29 43
|
lt2sqd |
|- ( ph -> ( ( sqrt ` A ) < ( sqrt ` B ) <-> ( ( sqrt ` A ) ^ 2 ) < ( ( sqrt ` B ) ^ 2 ) ) ) |
| 51 |
23 49 50
|
3bitr2rd |
|- ( ph -> ( ( ( sqrt ` A ) ^ 2 ) < ( ( sqrt ` B ) ^ 2 ) <-> ( G ` ( sqrt ` B ) ) < ( G ` ( sqrt ` A ) ) ) ) |
| 52 |
27 41
|
breq12d |
|- ( ph -> ( ( ( sqrt ` A ) ^ 2 ) < ( ( sqrt ` B ) ^ 2 ) <-> A < B ) ) |
| 53 |
|
relogcl |
|- ( x e. RR+ -> ( log ` x ) e. RR ) |
| 54 |
|
rerpdivcl |
|- ( ( ( log ` x ) e. RR /\ x e. RR+ ) -> ( ( log ` x ) / x ) e. RR ) |
| 55 |
53 54
|
mpancom |
|- ( x e. RR+ -> ( ( log ` x ) / x ) e. RR ) |
| 56 |
2 55
|
fmpti |
|- G : RR+ --> RR |
| 57 |
56
|
ffvelcdmi |
|- ( ( sqrt ` B ) e. RR+ -> ( G ` ( sqrt ` B ) ) e. RR ) |
| 58 |
8 57
|
syl |
|- ( ph -> ( G ` ( sqrt ` B ) ) e. RR ) |
| 59 |
56
|
ffvelcdmi |
|- ( ( sqrt ` A ) e. RR+ -> ( G ` ( sqrt ` A ) ) e. RR ) |
| 60 |
16 59
|
syl |
|- ( ph -> ( G ` ( sqrt ` A ) ) e. RR ) |
| 61 |
|
2rp |
|- 2 e. RR+ |
| 62 |
|
rpsqrtcl |
|- ( 2 e. RR+ -> ( sqrt ` 2 ) e. RR+ ) |
| 63 |
61 62
|
mp1i |
|- ( ph -> ( sqrt ` 2 ) e. RR+ ) |
| 64 |
58 60 63
|
ltmul2d |
|- ( ph -> ( ( G ` ( sqrt ` B ) ) < ( G ` ( sqrt ` A ) ) <-> ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` B ) ) ) < ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` A ) ) ) ) ) |
| 65 |
51 52 64
|
3bitr3d |
|- ( ph -> ( A < B <-> ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` B ) ) ) < ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` A ) ) ) ) ) |
| 66 |
65
|
biimpd |
|- ( ph -> ( A < B -> ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` B ) ) ) < ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` A ) ) ) ) ) |
| 67 |
3
|
nnred |
|- ( ph -> A e. RR ) |
| 68 |
4
|
nnred |
|- ( ph -> B e. RR ) |
| 69 |
|
2re |
|- 2 e. RR |
| 70 |
|
2pos |
|- 0 < 2 |
| 71 |
69 70
|
pm3.2i |
|- ( 2 e. RR /\ 0 < 2 ) |
| 72 |
71
|
a1i |
|- ( ph -> ( 2 e. RR /\ 0 < 2 ) ) |
| 73 |
|
ltdiv1 |
|- ( ( A e. RR /\ B e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( A < B <-> ( A / 2 ) < ( B / 2 ) ) ) |
| 74 |
67 68 72 73
|
syl3anc |
|- ( ph -> ( A < B <-> ( A / 2 ) < ( B / 2 ) ) ) |
| 75 |
15
|
rphalfcld |
|- ( ph -> ( A / 2 ) e. RR+ ) |
| 76 |
75
|
rpred |
|- ( ph -> ( A / 2 ) e. RR ) |
| 77 |
30 69
|
remulcli |
|- ( _e x. 2 ) e. RR |
| 78 |
77
|
a1i |
|- ( ph -> ( _e x. 2 ) e. RR ) |
| 79 |
30
|
resqcli |
|- ( _e ^ 2 ) e. RR |
| 80 |
79
|
a1i |
|- ( ph -> ( _e ^ 2 ) e. RR ) |
| 81 |
|
egt2lt3 |
|- ( 2 < _e /\ _e < 3 ) |
| 82 |
81
|
simpli |
|- 2 < _e |
| 83 |
69 30 82
|
ltleii |
|- 2 <_ _e |
| 84 |
69 30 30
|
lemul2i |
|- ( 0 < _e -> ( 2 <_ _e <-> ( _e x. 2 ) <_ ( _e x. _e ) ) ) |
| 85 |
32 84
|
ax-mp |
|- ( 2 <_ _e <-> ( _e x. 2 ) <_ ( _e x. _e ) ) |
| 86 |
83 85
|
mpbi |
|- ( _e x. 2 ) <_ ( _e x. _e ) |
| 87 |
30
|
recni |
|- _e e. CC |
| 88 |
87
|
sqvali |
|- ( _e ^ 2 ) = ( _e x. _e ) |
| 89 |
86 88
|
breqtrri |
|- ( _e x. 2 ) <_ ( _e ^ 2 ) |
| 90 |
89
|
a1i |
|- ( ph -> ( _e x. 2 ) <_ ( _e ^ 2 ) ) |
| 91 |
78 80 67 90 5
|
letrd |
|- ( ph -> ( _e x. 2 ) <_ A ) |
| 92 |
|
lemuldiv |
|- ( ( _e e. RR /\ A e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( _e x. 2 ) <_ A <-> _e <_ ( A / 2 ) ) ) |
| 93 |
30 71 92
|
mp3an13 |
|- ( A e. RR -> ( ( _e x. 2 ) <_ A <-> _e <_ ( A / 2 ) ) ) |
| 94 |
67 93
|
syl |
|- ( ph -> ( ( _e x. 2 ) <_ A <-> _e <_ ( A / 2 ) ) ) |
| 95 |
91 94
|
mpbid |
|- ( ph -> _e <_ ( A / 2 ) ) |
| 96 |
7
|
rphalfcld |
|- ( ph -> ( B / 2 ) e. RR+ ) |
| 97 |
96
|
rpred |
|- ( ph -> ( B / 2 ) e. RR ) |
| 98 |
78 80 68 90 6
|
letrd |
|- ( ph -> ( _e x. 2 ) <_ B ) |
| 99 |
|
lemuldiv |
|- ( ( _e e. RR /\ B e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( _e x. 2 ) <_ B <-> _e <_ ( B / 2 ) ) ) |
| 100 |
30 71 99
|
mp3an13 |
|- ( B e. RR -> ( ( _e x. 2 ) <_ B <-> _e <_ ( B / 2 ) ) ) |
| 101 |
68 100
|
syl |
|- ( ph -> ( ( _e x. 2 ) <_ B <-> _e <_ ( B / 2 ) ) ) |
| 102 |
98 101
|
mpbid |
|- ( ph -> _e <_ ( B / 2 ) ) |
| 103 |
|
logdivlt |
|- ( ( ( ( A / 2 ) e. RR /\ _e <_ ( A / 2 ) ) /\ ( ( B / 2 ) e. RR /\ _e <_ ( B / 2 ) ) ) -> ( ( A / 2 ) < ( B / 2 ) <-> ( ( log ` ( B / 2 ) ) / ( B / 2 ) ) < ( ( log ` ( A / 2 ) ) / ( A / 2 ) ) ) ) |
| 104 |
76 95 97 102 103
|
syl22anc |
|- ( ph -> ( ( A / 2 ) < ( B / 2 ) <-> ( ( log ` ( B / 2 ) ) / ( B / 2 ) ) < ( ( log ` ( A / 2 ) ) / ( A / 2 ) ) ) ) |
| 105 |
74 104
|
bitrd |
|- ( ph -> ( A < B <-> ( ( log ` ( B / 2 ) ) / ( B / 2 ) ) < ( ( log ` ( A / 2 ) ) / ( A / 2 ) ) ) ) |
| 106 |
|
fveq2 |
|- ( x = ( B / 2 ) -> ( log ` x ) = ( log ` ( B / 2 ) ) ) |
| 107 |
|
id |
|- ( x = ( B / 2 ) -> x = ( B / 2 ) ) |
| 108 |
106 107
|
oveq12d |
|- ( x = ( B / 2 ) -> ( ( log ` x ) / x ) = ( ( log ` ( B / 2 ) ) / ( B / 2 ) ) ) |
| 109 |
|
ovex |
|- ( ( log ` ( B / 2 ) ) / ( B / 2 ) ) e. _V |
| 110 |
108 2 109
|
fvmpt |
|- ( ( B / 2 ) e. RR+ -> ( G ` ( B / 2 ) ) = ( ( log ` ( B / 2 ) ) / ( B / 2 ) ) ) |
| 111 |
96 110
|
syl |
|- ( ph -> ( G ` ( B / 2 ) ) = ( ( log ` ( B / 2 ) ) / ( B / 2 ) ) ) |
| 112 |
|
fveq2 |
|- ( x = ( A / 2 ) -> ( log ` x ) = ( log ` ( A / 2 ) ) ) |
| 113 |
|
id |
|- ( x = ( A / 2 ) -> x = ( A / 2 ) ) |
| 114 |
112 113
|
oveq12d |
|- ( x = ( A / 2 ) -> ( ( log ` x ) / x ) = ( ( log ` ( A / 2 ) ) / ( A / 2 ) ) ) |
| 115 |
|
ovex |
|- ( ( log ` ( A / 2 ) ) / ( A / 2 ) ) e. _V |
| 116 |
114 2 115
|
fvmpt |
|- ( ( A / 2 ) e. RR+ -> ( G ` ( A / 2 ) ) = ( ( log ` ( A / 2 ) ) / ( A / 2 ) ) ) |
| 117 |
75 116
|
syl |
|- ( ph -> ( G ` ( A / 2 ) ) = ( ( log ` ( A / 2 ) ) / ( A / 2 ) ) ) |
| 118 |
111 117
|
breq12d |
|- ( ph -> ( ( G ` ( B / 2 ) ) < ( G ` ( A / 2 ) ) <-> ( ( log ` ( B / 2 ) ) / ( B / 2 ) ) < ( ( log ` ( A / 2 ) ) / ( A / 2 ) ) ) ) |
| 119 |
56
|
ffvelcdmi |
|- ( ( B / 2 ) e. RR+ -> ( G ` ( B / 2 ) ) e. RR ) |
| 120 |
96 119
|
syl |
|- ( ph -> ( G ` ( B / 2 ) ) e. RR ) |
| 121 |
56
|
ffvelcdmi |
|- ( ( A / 2 ) e. RR+ -> ( G ` ( A / 2 ) ) e. RR ) |
| 122 |
75 121
|
syl |
|- ( ph -> ( G ` ( A / 2 ) ) e. RR ) |
| 123 |
|
9nn |
|- 9 e. NN |
| 124 |
|
4nn |
|- 4 e. NN |
| 125 |
|
nnrp |
|- ( 9 e. NN -> 9 e. RR+ ) |
| 126 |
|
nnrp |
|- ( 4 e. NN -> 4 e. RR+ ) |
| 127 |
|
rpdivcl |
|- ( ( 9 e. RR+ /\ 4 e. RR+ ) -> ( 9 / 4 ) e. RR+ ) |
| 128 |
125 126 127
|
syl2an |
|- ( ( 9 e. NN /\ 4 e. NN ) -> ( 9 / 4 ) e. RR+ ) |
| 129 |
123 124 128
|
mp2an |
|- ( 9 / 4 ) e. RR+ |
| 130 |
129
|
a1i |
|- ( ph -> ( 9 / 4 ) e. RR+ ) |
| 131 |
120 122 130
|
ltmul2d |
|- ( ph -> ( ( G ` ( B / 2 ) ) < ( G ` ( A / 2 ) ) <-> ( ( 9 / 4 ) x. ( G ` ( B / 2 ) ) ) < ( ( 9 / 4 ) x. ( G ` ( A / 2 ) ) ) ) ) |
| 132 |
105 118 131
|
3bitr2d |
|- ( ph -> ( A < B <-> ( ( 9 / 4 ) x. ( G ` ( B / 2 ) ) ) < ( ( 9 / 4 ) x. ( G ` ( A / 2 ) ) ) ) ) |
| 133 |
132
|
biimpd |
|- ( ph -> ( A < B -> ( ( 9 / 4 ) x. ( G ` ( B / 2 ) ) ) < ( ( 9 / 4 ) x. ( G ` ( A / 2 ) ) ) ) ) |
| 134 |
66 133
|
jcad |
|- ( ph -> ( A < B -> ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` B ) ) ) < ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` A ) ) ) /\ ( ( 9 / 4 ) x. ( G ` ( B / 2 ) ) ) < ( ( 9 / 4 ) x. ( G ` ( A / 2 ) ) ) ) ) ) |
| 135 |
|
sqrt2re |
|- ( sqrt ` 2 ) e. RR |
| 136 |
|
remulcl |
|- ( ( ( sqrt ` 2 ) e. RR /\ ( G ` ( sqrt ` B ) ) e. RR ) -> ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` B ) ) ) e. RR ) |
| 137 |
135 58 136
|
sylancr |
|- ( ph -> ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` B ) ) ) e. RR ) |
| 138 |
|
9re |
|- 9 e. RR |
| 139 |
|
4re |
|- 4 e. RR |
| 140 |
|
4ne0 |
|- 4 =/= 0 |
| 141 |
138 139 140
|
redivcli |
|- ( 9 / 4 ) e. RR |
| 142 |
|
remulcl |
|- ( ( ( 9 / 4 ) e. RR /\ ( G ` ( B / 2 ) ) e. RR ) -> ( ( 9 / 4 ) x. ( G ` ( B / 2 ) ) ) e. RR ) |
| 143 |
141 120 142
|
sylancr |
|- ( ph -> ( ( 9 / 4 ) x. ( G ` ( B / 2 ) ) ) e. RR ) |
| 144 |
|
remulcl |
|- ( ( ( sqrt ` 2 ) e. RR /\ ( G ` ( sqrt ` A ) ) e. RR ) -> ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` A ) ) ) e. RR ) |
| 145 |
135 60 144
|
sylancr |
|- ( ph -> ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` A ) ) ) e. RR ) |
| 146 |
|
remulcl |
|- ( ( ( 9 / 4 ) e. RR /\ ( G ` ( A / 2 ) ) e. RR ) -> ( ( 9 / 4 ) x. ( G ` ( A / 2 ) ) ) e. RR ) |
| 147 |
141 122 146
|
sylancr |
|- ( ph -> ( ( 9 / 4 ) x. ( G ` ( A / 2 ) ) ) e. RR ) |
| 148 |
|
lt2add |
|- ( ( ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` B ) ) ) e. RR /\ ( ( 9 / 4 ) x. ( G ` ( B / 2 ) ) ) e. RR ) /\ ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` A ) ) ) e. RR /\ ( ( 9 / 4 ) x. ( G ` ( A / 2 ) ) ) e. RR ) ) -> ( ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` B ) ) ) < ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` A ) ) ) /\ ( ( 9 / 4 ) x. ( G ` ( B / 2 ) ) ) < ( ( 9 / 4 ) x. ( G ` ( A / 2 ) ) ) ) -> ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` B ) ) ) + ( ( 9 / 4 ) x. ( G ` ( B / 2 ) ) ) ) < ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` A ) ) ) + ( ( 9 / 4 ) x. ( G ` ( A / 2 ) ) ) ) ) ) |
| 149 |
137 143 145 147 148
|
syl22anc |
|- ( ph -> ( ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` B ) ) ) < ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` A ) ) ) /\ ( ( 9 / 4 ) x. ( G ` ( B / 2 ) ) ) < ( ( 9 / 4 ) x. ( G ` ( A / 2 ) ) ) ) -> ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` B ) ) ) + ( ( 9 / 4 ) x. ( G ` ( B / 2 ) ) ) ) < ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` A ) ) ) + ( ( 9 / 4 ) x. ( G ` ( A / 2 ) ) ) ) ) ) |
| 150 |
134 149
|
syld |
|- ( ph -> ( A < B -> ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` B ) ) ) + ( ( 9 / 4 ) x. ( G ` ( B / 2 ) ) ) ) < ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` A ) ) ) + ( ( 9 / 4 ) x. ( G ` ( A / 2 ) ) ) ) ) ) |
| 151 |
|
ltmul2 |
|- ( ( A e. RR /\ B e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( A < B <-> ( 2 x. A ) < ( 2 x. B ) ) ) |
| 152 |
67 68 72 151
|
syl3anc |
|- ( ph -> ( A < B <-> ( 2 x. A ) < ( 2 x. B ) ) ) |
| 153 |
|
rpmulcl |
|- ( ( 2 e. RR+ /\ A e. RR+ ) -> ( 2 x. A ) e. RR+ ) |
| 154 |
61 15 153
|
sylancr |
|- ( ph -> ( 2 x. A ) e. RR+ ) |
| 155 |
154
|
rpsqrtcld |
|- ( ph -> ( sqrt ` ( 2 x. A ) ) e. RR+ ) |
| 156 |
|
rpmulcl |
|- ( ( 2 e. RR+ /\ B e. RR+ ) -> ( 2 x. B ) e. RR+ ) |
| 157 |
61 7 156
|
sylancr |
|- ( ph -> ( 2 x. B ) e. RR+ ) |
| 158 |
157
|
rpsqrtcld |
|- ( ph -> ( sqrt ` ( 2 x. B ) ) e. RR+ ) |
| 159 |
|
rprege0 |
|- ( ( sqrt ` ( 2 x. A ) ) e. RR+ -> ( ( sqrt ` ( 2 x. A ) ) e. RR /\ 0 <_ ( sqrt ` ( 2 x. A ) ) ) ) |
| 160 |
|
rprege0 |
|- ( ( sqrt ` ( 2 x. B ) ) e. RR+ -> ( ( sqrt ` ( 2 x. B ) ) e. RR /\ 0 <_ ( sqrt ` ( 2 x. B ) ) ) ) |
| 161 |
|
lt2sq |
|- ( ( ( ( sqrt ` ( 2 x. A ) ) e. RR /\ 0 <_ ( sqrt ` ( 2 x. A ) ) ) /\ ( ( sqrt ` ( 2 x. B ) ) e. RR /\ 0 <_ ( sqrt ` ( 2 x. B ) ) ) ) -> ( ( sqrt ` ( 2 x. A ) ) < ( sqrt ` ( 2 x. B ) ) <-> ( ( sqrt ` ( 2 x. A ) ) ^ 2 ) < ( ( sqrt ` ( 2 x. B ) ) ^ 2 ) ) ) |
| 162 |
159 160 161
|
syl2an |
|- ( ( ( sqrt ` ( 2 x. A ) ) e. RR+ /\ ( sqrt ` ( 2 x. B ) ) e. RR+ ) -> ( ( sqrt ` ( 2 x. A ) ) < ( sqrt ` ( 2 x. B ) ) <-> ( ( sqrt ` ( 2 x. A ) ) ^ 2 ) < ( ( sqrt ` ( 2 x. B ) ) ^ 2 ) ) ) |
| 163 |
155 158 162
|
syl2anc |
|- ( ph -> ( ( sqrt ` ( 2 x. A ) ) < ( sqrt ` ( 2 x. B ) ) <-> ( ( sqrt ` ( 2 x. A ) ) ^ 2 ) < ( ( sqrt ` ( 2 x. B ) ) ^ 2 ) ) ) |
| 164 |
154
|
rprege0d |
|- ( ph -> ( ( 2 x. A ) e. RR /\ 0 <_ ( 2 x. A ) ) ) |
| 165 |
|
resqrtth |
|- ( ( ( 2 x. A ) e. RR /\ 0 <_ ( 2 x. A ) ) -> ( ( sqrt ` ( 2 x. A ) ) ^ 2 ) = ( 2 x. A ) ) |
| 166 |
164 165
|
syl |
|- ( ph -> ( ( sqrt ` ( 2 x. A ) ) ^ 2 ) = ( 2 x. A ) ) |
| 167 |
157
|
rprege0d |
|- ( ph -> ( ( 2 x. B ) e. RR /\ 0 <_ ( 2 x. B ) ) ) |
| 168 |
|
resqrtth |
|- ( ( ( 2 x. B ) e. RR /\ 0 <_ ( 2 x. B ) ) -> ( ( sqrt ` ( 2 x. B ) ) ^ 2 ) = ( 2 x. B ) ) |
| 169 |
167 168
|
syl |
|- ( ph -> ( ( sqrt ` ( 2 x. B ) ) ^ 2 ) = ( 2 x. B ) ) |
| 170 |
166 169
|
breq12d |
|- ( ph -> ( ( ( sqrt ` ( 2 x. A ) ) ^ 2 ) < ( ( sqrt ` ( 2 x. B ) ) ^ 2 ) <-> ( 2 x. A ) < ( 2 x. B ) ) ) |
| 171 |
163 170
|
bitr2d |
|- ( ph -> ( ( 2 x. A ) < ( 2 x. B ) <-> ( sqrt ` ( 2 x. A ) ) < ( sqrt ` ( 2 x. B ) ) ) ) |
| 172 |
|
1lt2 |
|- 1 < 2 |
| 173 |
|
rplogcl |
|- ( ( 2 e. RR /\ 1 < 2 ) -> ( log ` 2 ) e. RR+ ) |
| 174 |
69 172 173
|
mp2an |
|- ( log ` 2 ) e. RR+ |
| 175 |
174
|
a1i |
|- ( ph -> ( log ` 2 ) e. RR+ ) |
| 176 |
155 158 175
|
ltdiv2d |
|- ( ph -> ( ( sqrt ` ( 2 x. A ) ) < ( sqrt ` ( 2 x. B ) ) <-> ( ( log ` 2 ) / ( sqrt ` ( 2 x. B ) ) ) < ( ( log ` 2 ) / ( sqrt ` ( 2 x. A ) ) ) ) ) |
| 177 |
152 171 176
|
3bitrd |
|- ( ph -> ( A < B <-> ( ( log ` 2 ) / ( sqrt ` ( 2 x. B ) ) ) < ( ( log ` 2 ) / ( sqrt ` ( 2 x. A ) ) ) ) ) |
| 178 |
177
|
biimpd |
|- ( ph -> ( A < B -> ( ( log ` 2 ) / ( sqrt ` ( 2 x. B ) ) ) < ( ( log ` 2 ) / ( sqrt ` ( 2 x. A ) ) ) ) ) |
| 179 |
150 178
|
jcad |
|- ( ph -> ( A < B -> ( ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` B ) ) ) + ( ( 9 / 4 ) x. ( G ` ( B / 2 ) ) ) ) < ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` A ) ) ) + ( ( 9 / 4 ) x. ( G ` ( A / 2 ) ) ) ) /\ ( ( log ` 2 ) / ( sqrt ` ( 2 x. B ) ) ) < ( ( log ` 2 ) / ( sqrt ` ( 2 x. A ) ) ) ) ) ) |
| 180 |
137 143
|
readdcld |
|- ( ph -> ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` B ) ) ) + ( ( 9 / 4 ) x. ( G ` ( B / 2 ) ) ) ) e. RR ) |
| 181 |
|
rpre |
|- ( ( log ` 2 ) e. RR+ -> ( log ` 2 ) e. RR ) |
| 182 |
174 181
|
ax-mp |
|- ( log ` 2 ) e. RR |
| 183 |
|
rerpdivcl |
|- ( ( ( log ` 2 ) e. RR /\ ( sqrt ` ( 2 x. B ) ) e. RR+ ) -> ( ( log ` 2 ) / ( sqrt ` ( 2 x. B ) ) ) e. RR ) |
| 184 |
182 158 183
|
sylancr |
|- ( ph -> ( ( log ` 2 ) / ( sqrt ` ( 2 x. B ) ) ) e. RR ) |
| 185 |
145 147
|
readdcld |
|- ( ph -> ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` A ) ) ) + ( ( 9 / 4 ) x. ( G ` ( A / 2 ) ) ) ) e. RR ) |
| 186 |
|
rerpdivcl |
|- ( ( ( log ` 2 ) e. RR /\ ( sqrt ` ( 2 x. A ) ) e. RR+ ) -> ( ( log ` 2 ) / ( sqrt ` ( 2 x. A ) ) ) e. RR ) |
| 187 |
182 155 186
|
sylancr |
|- ( ph -> ( ( log ` 2 ) / ( sqrt ` ( 2 x. A ) ) ) e. RR ) |
| 188 |
|
lt2add |
|- ( ( ( ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` B ) ) ) + ( ( 9 / 4 ) x. ( G ` ( B / 2 ) ) ) ) e. RR /\ ( ( log ` 2 ) / ( sqrt ` ( 2 x. B ) ) ) e. RR ) /\ ( ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` A ) ) ) + ( ( 9 / 4 ) x. ( G ` ( A / 2 ) ) ) ) e. RR /\ ( ( log ` 2 ) / ( sqrt ` ( 2 x. A ) ) ) e. RR ) ) -> ( ( ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` B ) ) ) + ( ( 9 / 4 ) x. ( G ` ( B / 2 ) ) ) ) < ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` A ) ) ) + ( ( 9 / 4 ) x. ( G ` ( A / 2 ) ) ) ) /\ ( ( log ` 2 ) / ( sqrt ` ( 2 x. B ) ) ) < ( ( log ` 2 ) / ( sqrt ` ( 2 x. A ) ) ) ) -> ( ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` B ) ) ) + ( ( 9 / 4 ) x. ( G ` ( B / 2 ) ) ) ) + ( ( log ` 2 ) / ( sqrt ` ( 2 x. B ) ) ) ) < ( ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` A ) ) ) + ( ( 9 / 4 ) x. ( G ` ( A / 2 ) ) ) ) + ( ( log ` 2 ) / ( sqrt ` ( 2 x. A ) ) ) ) ) ) |
| 189 |
180 184 185 187 188
|
syl22anc |
|- ( ph -> ( ( ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` B ) ) ) + ( ( 9 / 4 ) x. ( G ` ( B / 2 ) ) ) ) < ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` A ) ) ) + ( ( 9 / 4 ) x. ( G ` ( A / 2 ) ) ) ) /\ ( ( log ` 2 ) / ( sqrt ` ( 2 x. B ) ) ) < ( ( log ` 2 ) / ( sqrt ` ( 2 x. A ) ) ) ) -> ( ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` B ) ) ) + ( ( 9 / 4 ) x. ( G ` ( B / 2 ) ) ) ) + ( ( log ` 2 ) / ( sqrt ` ( 2 x. B ) ) ) ) < ( ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` A ) ) ) + ( ( 9 / 4 ) x. ( G ` ( A / 2 ) ) ) ) + ( ( log ` 2 ) / ( sqrt ` ( 2 x. A ) ) ) ) ) ) |
| 190 |
179 189
|
syld |
|- ( ph -> ( A < B -> ( ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` B ) ) ) + ( ( 9 / 4 ) x. ( G ` ( B / 2 ) ) ) ) + ( ( log ` 2 ) / ( sqrt ` ( 2 x. B ) ) ) ) < ( ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` A ) ) ) + ( ( 9 / 4 ) x. ( G ` ( A / 2 ) ) ) ) + ( ( log ` 2 ) / ( sqrt ` ( 2 x. A ) ) ) ) ) ) |
| 191 |
|
2fveq3 |
|- ( n = B -> ( G ` ( sqrt ` n ) ) = ( G ` ( sqrt ` B ) ) ) |
| 192 |
191
|
oveq2d |
|- ( n = B -> ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` n ) ) ) = ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` B ) ) ) ) |
| 193 |
|
fvoveq1 |
|- ( n = B -> ( G ` ( n / 2 ) ) = ( G ` ( B / 2 ) ) ) |
| 194 |
193
|
oveq2d |
|- ( n = B -> ( ( 9 / 4 ) x. ( G ` ( n / 2 ) ) ) = ( ( 9 / 4 ) x. ( G ` ( B / 2 ) ) ) ) |
| 195 |
192 194
|
oveq12d |
|- ( n = B -> ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` n ) ) ) + ( ( 9 / 4 ) x. ( G ` ( n / 2 ) ) ) ) = ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` B ) ) ) + ( ( 9 / 4 ) x. ( G ` ( B / 2 ) ) ) ) ) |
| 196 |
|
oveq2 |
|- ( n = B -> ( 2 x. n ) = ( 2 x. B ) ) |
| 197 |
196
|
fveq2d |
|- ( n = B -> ( sqrt ` ( 2 x. n ) ) = ( sqrt ` ( 2 x. B ) ) ) |
| 198 |
197
|
oveq2d |
|- ( n = B -> ( ( log ` 2 ) / ( sqrt ` ( 2 x. n ) ) ) = ( ( log ` 2 ) / ( sqrt ` ( 2 x. B ) ) ) ) |
| 199 |
195 198
|
oveq12d |
|- ( n = B -> ( ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` n ) ) ) + ( ( 9 / 4 ) x. ( G ` ( n / 2 ) ) ) ) + ( ( log ` 2 ) / ( sqrt ` ( 2 x. n ) ) ) ) = ( ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` B ) ) ) + ( ( 9 / 4 ) x. ( G ` ( B / 2 ) ) ) ) + ( ( log ` 2 ) / ( sqrt ` ( 2 x. B ) ) ) ) ) |
| 200 |
|
ovex |
|- ( ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` B ) ) ) + ( ( 9 / 4 ) x. ( G ` ( B / 2 ) ) ) ) + ( ( log ` 2 ) / ( sqrt ` ( 2 x. B ) ) ) ) e. _V |
| 201 |
199 1 200
|
fvmpt |
|- ( B e. NN -> ( F ` B ) = ( ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` B ) ) ) + ( ( 9 / 4 ) x. ( G ` ( B / 2 ) ) ) ) + ( ( log ` 2 ) / ( sqrt ` ( 2 x. B ) ) ) ) ) |
| 202 |
4 201
|
syl |
|- ( ph -> ( F ` B ) = ( ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` B ) ) ) + ( ( 9 / 4 ) x. ( G ` ( B / 2 ) ) ) ) + ( ( log ` 2 ) / ( sqrt ` ( 2 x. B ) ) ) ) ) |
| 203 |
|
2fveq3 |
|- ( n = A -> ( G ` ( sqrt ` n ) ) = ( G ` ( sqrt ` A ) ) ) |
| 204 |
203
|
oveq2d |
|- ( n = A -> ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` n ) ) ) = ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` A ) ) ) ) |
| 205 |
|
fvoveq1 |
|- ( n = A -> ( G ` ( n / 2 ) ) = ( G ` ( A / 2 ) ) ) |
| 206 |
205
|
oveq2d |
|- ( n = A -> ( ( 9 / 4 ) x. ( G ` ( n / 2 ) ) ) = ( ( 9 / 4 ) x. ( G ` ( A / 2 ) ) ) ) |
| 207 |
204 206
|
oveq12d |
|- ( n = A -> ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` n ) ) ) + ( ( 9 / 4 ) x. ( G ` ( n / 2 ) ) ) ) = ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` A ) ) ) + ( ( 9 / 4 ) x. ( G ` ( A / 2 ) ) ) ) ) |
| 208 |
|
oveq2 |
|- ( n = A -> ( 2 x. n ) = ( 2 x. A ) ) |
| 209 |
208
|
fveq2d |
|- ( n = A -> ( sqrt ` ( 2 x. n ) ) = ( sqrt ` ( 2 x. A ) ) ) |
| 210 |
209
|
oveq2d |
|- ( n = A -> ( ( log ` 2 ) / ( sqrt ` ( 2 x. n ) ) ) = ( ( log ` 2 ) / ( sqrt ` ( 2 x. A ) ) ) ) |
| 211 |
207 210
|
oveq12d |
|- ( n = A -> ( ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` n ) ) ) + ( ( 9 / 4 ) x. ( G ` ( n / 2 ) ) ) ) + ( ( log ` 2 ) / ( sqrt ` ( 2 x. n ) ) ) ) = ( ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` A ) ) ) + ( ( 9 / 4 ) x. ( G ` ( A / 2 ) ) ) ) + ( ( log ` 2 ) / ( sqrt ` ( 2 x. A ) ) ) ) ) |
| 212 |
|
ovex |
|- ( ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` A ) ) ) + ( ( 9 / 4 ) x. ( G ` ( A / 2 ) ) ) ) + ( ( log ` 2 ) / ( sqrt ` ( 2 x. A ) ) ) ) e. _V |
| 213 |
211 1 212
|
fvmpt |
|- ( A e. NN -> ( F ` A ) = ( ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` A ) ) ) + ( ( 9 / 4 ) x. ( G ` ( A / 2 ) ) ) ) + ( ( log ` 2 ) / ( sqrt ` ( 2 x. A ) ) ) ) ) |
| 214 |
3 213
|
syl |
|- ( ph -> ( F ` A ) = ( ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` A ) ) ) + ( ( 9 / 4 ) x. ( G ` ( A / 2 ) ) ) ) + ( ( log ` 2 ) / ( sqrt ` ( 2 x. A ) ) ) ) ) |
| 215 |
202 214
|
breq12d |
|- ( ph -> ( ( F ` B ) < ( F ` A ) <-> ( ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` B ) ) ) + ( ( 9 / 4 ) x. ( G ` ( B / 2 ) ) ) ) + ( ( log ` 2 ) / ( sqrt ` ( 2 x. B ) ) ) ) < ( ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` A ) ) ) + ( ( 9 / 4 ) x. ( G ` ( A / 2 ) ) ) ) + ( ( log ` 2 ) / ( sqrt ` ( 2 x. A ) ) ) ) ) ) |
| 216 |
190 215
|
sylibrd |
|- ( ph -> ( A < B -> ( F ` B ) < ( F ` A ) ) ) |