| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bpos.1 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 5 ) ) |
| 2 |
|
bpos.2 |
⊢ ( 𝜑 → ¬ ∃ 𝑝 ∈ ℙ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ ( 2 · 𝑁 ) ) ) |
| 3 |
|
bpos.3 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ ( 𝑛 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) ) , 1 ) ) |
| 4 |
|
bpos.4 |
⊢ 𝐾 = ( ⌊ ‘ ( ( 2 · 𝑁 ) / 3 ) ) |
| 5 |
|
bpos.5 |
⊢ 𝑀 = ( ⌊ ‘ ( √ ‘ ( 2 · 𝑁 ) ) ) |
| 6 |
|
4nn |
⊢ 4 ∈ ℕ |
| 7 |
|
5nn |
⊢ 5 ∈ ℕ |
| 8 |
|
eluznn |
⊢ ( ( 5 ∈ ℕ ∧ 𝑁 ∈ ( ℤ≥ ‘ 5 ) ) → 𝑁 ∈ ℕ ) |
| 9 |
7 1 8
|
sylancr |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 10 |
9
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 11 |
|
nnexpcl |
⊢ ( ( 4 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 4 ↑ 𝑁 ) ∈ ℕ ) |
| 12 |
6 10 11
|
sylancr |
⊢ ( 𝜑 → ( 4 ↑ 𝑁 ) ∈ ℕ ) |
| 13 |
12
|
nnred |
⊢ ( 𝜑 → ( 4 ↑ 𝑁 ) ∈ ℝ ) |
| 14 |
13 9
|
nndivred |
⊢ ( 𝜑 → ( ( 4 ↑ 𝑁 ) / 𝑁 ) ∈ ℝ ) |
| 15 |
|
fzctr |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ( 0 ... ( 2 · 𝑁 ) ) ) |
| 16 |
10 15
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ( 0 ... ( 2 · 𝑁 ) ) ) |
| 17 |
|
bccl2 |
⊢ ( 𝑁 ∈ ( 0 ... ( 2 · 𝑁 ) ) → ( ( 2 · 𝑁 ) C 𝑁 ) ∈ ℕ ) |
| 18 |
16 17
|
syl |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) C 𝑁 ) ∈ ℕ ) |
| 19 |
18
|
nnred |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) C 𝑁 ) ∈ ℝ ) |
| 20 |
|
2nn |
⊢ 2 ∈ ℕ |
| 21 |
|
nnmulcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 2 · 𝑁 ) ∈ ℕ ) |
| 22 |
20 9 21
|
sylancr |
⊢ ( 𝜑 → ( 2 · 𝑁 ) ∈ ℕ ) |
| 23 |
22
|
nnrpd |
⊢ ( 𝜑 → ( 2 · 𝑁 ) ∈ ℝ+ ) |
| 24 |
22
|
nnred |
⊢ ( 𝜑 → ( 2 · 𝑁 ) ∈ ℝ ) |
| 25 |
23
|
rpge0d |
⊢ ( 𝜑 → 0 ≤ ( 2 · 𝑁 ) ) |
| 26 |
24 25
|
resqrtcld |
⊢ ( 𝜑 → ( √ ‘ ( 2 · 𝑁 ) ) ∈ ℝ ) |
| 27 |
|
3nn |
⊢ 3 ∈ ℕ |
| 28 |
|
nndivre |
⊢ ( ( ( √ ‘ ( 2 · 𝑁 ) ) ∈ ℝ ∧ 3 ∈ ℕ ) → ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) ∈ ℝ ) |
| 29 |
26 27 28
|
sylancl |
⊢ ( 𝜑 → ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) ∈ ℝ ) |
| 30 |
|
2re |
⊢ 2 ∈ ℝ |
| 31 |
|
readdcl |
⊢ ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) ∈ ℝ ∧ 2 ∈ ℝ ) → ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) ∈ ℝ ) |
| 32 |
29 30 31
|
sylancl |
⊢ ( 𝜑 → ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) ∈ ℝ ) |
| 33 |
23 32
|
rpcxpcld |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) ↑𝑐 ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) ) ∈ ℝ+ ) |
| 34 |
33
|
rpred |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) ↑𝑐 ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) ) ∈ ℝ ) |
| 35 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 36 |
|
nnmulcl |
⊢ ( ( 4 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 4 · 𝑁 ) ∈ ℕ ) |
| 37 |
6 9 36
|
sylancr |
⊢ ( 𝜑 → ( 4 · 𝑁 ) ∈ ℕ ) |
| 38 |
37
|
nnred |
⊢ ( 𝜑 → ( 4 · 𝑁 ) ∈ ℝ ) |
| 39 |
|
nndivre |
⊢ ( ( ( 4 · 𝑁 ) ∈ ℝ ∧ 3 ∈ ℕ ) → ( ( 4 · 𝑁 ) / 3 ) ∈ ℝ ) |
| 40 |
38 27 39
|
sylancl |
⊢ ( 𝜑 → ( ( 4 · 𝑁 ) / 3 ) ∈ ℝ ) |
| 41 |
|
5re |
⊢ 5 ∈ ℝ |
| 42 |
|
resubcl |
⊢ ( ( ( ( 4 · 𝑁 ) / 3 ) ∈ ℝ ∧ 5 ∈ ℝ ) → ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) ∈ ℝ ) |
| 43 |
40 41 42
|
sylancl |
⊢ ( 𝜑 → ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) ∈ ℝ ) |
| 44 |
|
rpcxpcl |
⊢ ( ( 2 ∈ ℝ+ ∧ ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) ∈ ℝ ) → ( 2 ↑𝑐 ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) ) ∈ ℝ+ ) |
| 45 |
35 43 44
|
sylancr |
⊢ ( 𝜑 → ( 2 ↑𝑐 ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) ) ∈ ℝ+ ) |
| 46 |
45
|
rpred |
⊢ ( 𝜑 → ( 2 ↑𝑐 ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) ) ∈ ℝ ) |
| 47 |
34 46
|
remulcld |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) ↑𝑐 ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) ) · ( 2 ↑𝑐 ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) ) ) ∈ ℝ ) |
| 48 |
|
df-5 |
⊢ 5 = ( 4 + 1 ) |
| 49 |
|
4z |
⊢ 4 ∈ ℤ |
| 50 |
|
uzid |
⊢ ( 4 ∈ ℤ → 4 ∈ ( ℤ≥ ‘ 4 ) ) |
| 51 |
|
peano2uz |
⊢ ( 4 ∈ ( ℤ≥ ‘ 4 ) → ( 4 + 1 ) ∈ ( ℤ≥ ‘ 4 ) ) |
| 52 |
49 50 51
|
mp2b |
⊢ ( 4 + 1 ) ∈ ( ℤ≥ ‘ 4 ) |
| 53 |
48 52
|
eqeltri |
⊢ 5 ∈ ( ℤ≥ ‘ 4 ) |
| 54 |
|
eqid |
⊢ ( ℤ≥ ‘ 4 ) = ( ℤ≥ ‘ 4 ) |
| 55 |
54
|
uztrn2 |
⊢ ( ( 5 ∈ ( ℤ≥ ‘ 4 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ 5 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 4 ) ) |
| 56 |
53 1 55
|
sylancr |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 4 ) ) |
| 57 |
|
bclbnd |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) → ( ( 4 ↑ 𝑁 ) / 𝑁 ) < ( ( 2 · 𝑁 ) C 𝑁 ) ) |
| 58 |
56 57
|
syl |
⊢ ( 𝜑 → ( ( 4 ↑ 𝑁 ) / 𝑁 ) < ( ( 2 · 𝑁 ) C 𝑁 ) ) |
| 59 |
|
id |
⊢ ( 𝑛 ∈ ℙ → 𝑛 ∈ ℙ ) |
| 60 |
|
pccl |
⊢ ( ( 𝑛 ∈ ℙ ∧ ( ( 2 · 𝑁 ) C 𝑁 ) ∈ ℕ ) → ( 𝑛 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) ∈ ℕ0 ) |
| 61 |
59 18 60
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℙ ) → ( 𝑛 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) ∈ ℕ0 ) |
| 62 |
61
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℙ ( 𝑛 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) ∈ ℕ0 ) |
| 63 |
3 62
|
pcmptcl |
⊢ ( 𝜑 → ( 𝐹 : ℕ ⟶ ℕ ∧ seq 1 ( · , 𝐹 ) : ℕ ⟶ ℕ ) ) |
| 64 |
63
|
simprd |
⊢ ( 𝜑 → seq 1 ( · , 𝐹 ) : ℕ ⟶ ℕ ) |
| 65 |
1 2 3 4 5
|
bposlem4 |
⊢ ( 𝜑 → 𝑀 ∈ ( 3 ... 𝐾 ) ) |
| 66 |
|
elfzuz |
⊢ ( 𝑀 ∈ ( 3 ... 𝐾 ) → 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) |
| 67 |
65 66
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) |
| 68 |
|
eluznn |
⊢ ( ( 3 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → 𝑀 ∈ ℕ ) |
| 69 |
27 67 68
|
sylancr |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 70 |
64 69
|
ffvelcdmd |
⊢ ( 𝜑 → ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) ∈ ℕ ) |
| 71 |
70
|
nnred |
⊢ ( 𝜑 → ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) ∈ ℝ ) |
| 72 |
|
2z |
⊢ 2 ∈ ℤ |
| 73 |
|
nndivre |
⊢ ( ( ( 2 · 𝑁 ) ∈ ℝ ∧ 3 ∈ ℕ ) → ( ( 2 · 𝑁 ) / 3 ) ∈ ℝ ) |
| 74 |
24 27 73
|
sylancl |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) / 3 ) ∈ ℝ ) |
| 75 |
74
|
flcld |
⊢ ( 𝜑 → ( ⌊ ‘ ( ( 2 · 𝑁 ) / 3 ) ) ∈ ℤ ) |
| 76 |
4 75
|
eqeltrid |
⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |
| 77 |
|
zmulcl |
⊢ ( ( 2 ∈ ℤ ∧ 𝐾 ∈ ℤ ) → ( 2 · 𝐾 ) ∈ ℤ ) |
| 78 |
72 76 77
|
sylancr |
⊢ ( 𝜑 → ( 2 · 𝐾 ) ∈ ℤ ) |
| 79 |
7
|
nnzi |
⊢ 5 ∈ ℤ |
| 80 |
|
zsubcl |
⊢ ( ( ( 2 · 𝐾 ) ∈ ℤ ∧ 5 ∈ ℤ ) → ( ( 2 · 𝐾 ) − 5 ) ∈ ℤ ) |
| 81 |
78 79 80
|
sylancl |
⊢ ( 𝜑 → ( ( 2 · 𝐾 ) − 5 ) ∈ ℤ ) |
| 82 |
81
|
zred |
⊢ ( 𝜑 → ( ( 2 · 𝐾 ) − 5 ) ∈ ℝ ) |
| 83 |
|
rpcxpcl |
⊢ ( ( 2 ∈ ℝ+ ∧ ( ( 2 · 𝐾 ) − 5 ) ∈ ℝ ) → ( 2 ↑𝑐 ( ( 2 · 𝐾 ) − 5 ) ) ∈ ℝ+ ) |
| 84 |
35 82 83
|
sylancr |
⊢ ( 𝜑 → ( 2 ↑𝑐 ( ( 2 · 𝐾 ) − 5 ) ) ∈ ℝ+ ) |
| 85 |
84
|
rpred |
⊢ ( 𝜑 → ( 2 ↑𝑐 ( ( 2 · 𝐾 ) − 5 ) ) ∈ ℝ ) |
| 86 |
71 85
|
remulcld |
⊢ ( 𝜑 → ( ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) · ( 2 ↑𝑐 ( ( 2 · 𝐾 ) − 5 ) ) ) ∈ ℝ ) |
| 87 |
1 2 3 4
|
bposlem3 |
⊢ ( 𝜑 → ( seq 1 ( · , 𝐹 ) ‘ 𝐾 ) = ( ( 2 · 𝑁 ) C 𝑁 ) ) |
| 88 |
|
elfzuz3 |
⊢ ( 𝑀 ∈ ( 3 ... 𝐾 ) → 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 89 |
65 88
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 90 |
3 62 69 89
|
pcmptdvds |
⊢ ( 𝜑 → ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) ∥ ( seq 1 ( · , 𝐹 ) ‘ 𝐾 ) ) |
| 91 |
70
|
nnzd |
⊢ ( 𝜑 → ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) ∈ ℤ ) |
| 92 |
70
|
nnne0d |
⊢ ( 𝜑 → ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) ≠ 0 ) |
| 93 |
|
uztrn |
⊢ ( ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → 𝐾 ∈ ( ℤ≥ ‘ 3 ) ) |
| 94 |
89 67 93
|
syl2anc |
⊢ ( 𝜑 → 𝐾 ∈ ( ℤ≥ ‘ 3 ) ) |
| 95 |
|
eluznn |
⊢ ( ( 3 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ 3 ) ) → 𝐾 ∈ ℕ ) |
| 96 |
27 94 95
|
sylancr |
⊢ ( 𝜑 → 𝐾 ∈ ℕ ) |
| 97 |
64 96
|
ffvelcdmd |
⊢ ( 𝜑 → ( seq 1 ( · , 𝐹 ) ‘ 𝐾 ) ∈ ℕ ) |
| 98 |
97
|
nnzd |
⊢ ( 𝜑 → ( seq 1 ( · , 𝐹 ) ‘ 𝐾 ) ∈ ℤ ) |
| 99 |
|
dvdsval2 |
⊢ ( ( ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) ∈ ℤ ∧ ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) ≠ 0 ∧ ( seq 1 ( · , 𝐹 ) ‘ 𝐾 ) ∈ ℤ ) → ( ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) ∥ ( seq 1 ( · , 𝐹 ) ‘ 𝐾 ) ↔ ( ( seq 1 ( · , 𝐹 ) ‘ 𝐾 ) / ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) ) ∈ ℤ ) ) |
| 100 |
91 92 98 99
|
syl3anc |
⊢ ( 𝜑 → ( ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) ∥ ( seq 1 ( · , 𝐹 ) ‘ 𝐾 ) ↔ ( ( seq 1 ( · , 𝐹 ) ‘ 𝐾 ) / ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) ) ∈ ℤ ) ) |
| 101 |
90 100
|
mpbid |
⊢ ( 𝜑 → ( ( seq 1 ( · , 𝐹 ) ‘ 𝐾 ) / ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) ) ∈ ℤ ) |
| 102 |
101
|
zred |
⊢ ( 𝜑 → ( ( seq 1 ( · , 𝐹 ) ‘ 𝐾 ) / ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) ) ∈ ℝ ) |
| 103 |
69
|
nnred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 104 |
76
|
zred |
⊢ ( 𝜑 → 𝐾 ∈ ℝ ) |
| 105 |
|
eluzle |
⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ≤ 𝐾 ) |
| 106 |
89 105
|
syl |
⊢ ( 𝜑 → 𝑀 ≤ 𝐾 ) |
| 107 |
|
efchtdvds |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑀 ≤ 𝐾 ) → ( exp ‘ ( θ ‘ 𝑀 ) ) ∥ ( exp ‘ ( θ ‘ 𝐾 ) ) ) |
| 108 |
103 104 106 107
|
syl3anc |
⊢ ( 𝜑 → ( exp ‘ ( θ ‘ 𝑀 ) ) ∥ ( exp ‘ ( θ ‘ 𝐾 ) ) ) |
| 109 |
|
efchtcl |
⊢ ( 𝑀 ∈ ℝ → ( exp ‘ ( θ ‘ 𝑀 ) ) ∈ ℕ ) |
| 110 |
103 109
|
syl |
⊢ ( 𝜑 → ( exp ‘ ( θ ‘ 𝑀 ) ) ∈ ℕ ) |
| 111 |
110
|
nnzd |
⊢ ( 𝜑 → ( exp ‘ ( θ ‘ 𝑀 ) ) ∈ ℤ ) |
| 112 |
110
|
nnne0d |
⊢ ( 𝜑 → ( exp ‘ ( θ ‘ 𝑀 ) ) ≠ 0 ) |
| 113 |
|
efchtcl |
⊢ ( 𝐾 ∈ ℝ → ( exp ‘ ( θ ‘ 𝐾 ) ) ∈ ℕ ) |
| 114 |
104 113
|
syl |
⊢ ( 𝜑 → ( exp ‘ ( θ ‘ 𝐾 ) ) ∈ ℕ ) |
| 115 |
114
|
nnzd |
⊢ ( 𝜑 → ( exp ‘ ( θ ‘ 𝐾 ) ) ∈ ℤ ) |
| 116 |
|
dvdsval2 |
⊢ ( ( ( exp ‘ ( θ ‘ 𝑀 ) ) ∈ ℤ ∧ ( exp ‘ ( θ ‘ 𝑀 ) ) ≠ 0 ∧ ( exp ‘ ( θ ‘ 𝐾 ) ) ∈ ℤ ) → ( ( exp ‘ ( θ ‘ 𝑀 ) ) ∥ ( exp ‘ ( θ ‘ 𝐾 ) ) ↔ ( ( exp ‘ ( θ ‘ 𝐾 ) ) / ( exp ‘ ( θ ‘ 𝑀 ) ) ) ∈ ℤ ) ) |
| 117 |
111 112 115 116
|
syl3anc |
⊢ ( 𝜑 → ( ( exp ‘ ( θ ‘ 𝑀 ) ) ∥ ( exp ‘ ( θ ‘ 𝐾 ) ) ↔ ( ( exp ‘ ( θ ‘ 𝐾 ) ) / ( exp ‘ ( θ ‘ 𝑀 ) ) ) ∈ ℤ ) ) |
| 118 |
108 117
|
mpbid |
⊢ ( 𝜑 → ( ( exp ‘ ( θ ‘ 𝐾 ) ) / ( exp ‘ ( θ ‘ 𝑀 ) ) ) ∈ ℤ ) |
| 119 |
118
|
zred |
⊢ ( 𝜑 → ( ( exp ‘ ( θ ‘ 𝐾 ) ) / ( exp ‘ ( θ ‘ 𝑀 ) ) ) ∈ ℝ ) |
| 120 |
|
prmz |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℤ ) |
| 121 |
|
fllt |
⊢ ( ( ( √ ‘ ( 2 · 𝑁 ) ) ∈ ℝ ∧ 𝑝 ∈ ℤ ) → ( ( √ ‘ ( 2 · 𝑁 ) ) < 𝑝 ↔ ( ⌊ ‘ ( √ ‘ ( 2 · 𝑁 ) ) ) < 𝑝 ) ) |
| 122 |
26 120 121
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( ( √ ‘ ( 2 · 𝑁 ) ) < 𝑝 ↔ ( ⌊ ‘ ( √ ‘ ( 2 · 𝑁 ) ) ) < 𝑝 ) ) |
| 123 |
5
|
breq1i |
⊢ ( 𝑀 < 𝑝 ↔ ( ⌊ ‘ ( √ ‘ ( 2 · 𝑁 ) ) ) < 𝑝 ) |
| 124 |
122 123
|
bitr4di |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( ( √ ‘ ( 2 · 𝑁 ) ) < 𝑝 ↔ 𝑀 < 𝑝 ) ) |
| 125 |
120
|
zred |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℝ ) |
| 126 |
|
ltnle |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑝 ∈ ℝ ) → ( 𝑀 < 𝑝 ↔ ¬ 𝑝 ≤ 𝑀 ) ) |
| 127 |
103 125 126
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( 𝑀 < 𝑝 ↔ ¬ 𝑝 ≤ 𝑀 ) ) |
| 128 |
124 127
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( ( √ ‘ ( 2 · 𝑁 ) ) < 𝑝 ↔ ¬ 𝑝 ≤ 𝑀 ) ) |
| 129 |
|
bposlem1 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ↑ ( 𝑝 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) ) ≤ ( 2 · 𝑁 ) ) |
| 130 |
9 129
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ↑ ( 𝑝 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) ) ≤ ( 2 · 𝑁 ) ) |
| 131 |
125
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℝ ) |
| 132 |
|
id |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℙ ) |
| 133 |
|
pccl |
⊢ ( ( 𝑝 ∈ ℙ ∧ ( ( 2 · 𝑁 ) C 𝑁 ) ∈ ℕ ) → ( 𝑝 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) ∈ ℕ0 ) |
| 134 |
132 18 133
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) ∈ ℕ0 ) |
| 135 |
131 134
|
reexpcld |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ↑ ( 𝑝 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) ) ∈ ℝ ) |
| 136 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( 2 · 𝑁 ) ∈ ℝ ) |
| 137 |
131
|
resqcld |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ↑ 2 ) ∈ ℝ ) |
| 138 |
|
lelttr |
⊢ ( ( ( 𝑝 ↑ ( 𝑝 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) ) ∈ ℝ ∧ ( 2 · 𝑁 ) ∈ ℝ ∧ ( 𝑝 ↑ 2 ) ∈ ℝ ) → ( ( ( 𝑝 ↑ ( 𝑝 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) ) ≤ ( 2 · 𝑁 ) ∧ ( 2 · 𝑁 ) < ( 𝑝 ↑ 2 ) ) → ( 𝑝 ↑ ( 𝑝 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) ) < ( 𝑝 ↑ 2 ) ) ) |
| 139 |
135 136 137 138
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( ( ( 𝑝 ↑ ( 𝑝 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) ) ≤ ( 2 · 𝑁 ) ∧ ( 2 · 𝑁 ) < ( 𝑝 ↑ 2 ) ) → ( 𝑝 ↑ ( 𝑝 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) ) < ( 𝑝 ↑ 2 ) ) ) |
| 140 |
130 139
|
mpand |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( ( 2 · 𝑁 ) < ( 𝑝 ↑ 2 ) → ( 𝑝 ↑ ( 𝑝 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) ) < ( 𝑝 ↑ 2 ) ) ) |
| 141 |
|
resqrtth |
⊢ ( ( ( 2 · 𝑁 ) ∈ ℝ ∧ 0 ≤ ( 2 · 𝑁 ) ) → ( ( √ ‘ ( 2 · 𝑁 ) ) ↑ 2 ) = ( 2 · 𝑁 ) ) |
| 142 |
24 25 141
|
syl2anc |
⊢ ( 𝜑 → ( ( √ ‘ ( 2 · 𝑁 ) ) ↑ 2 ) = ( 2 · 𝑁 ) ) |
| 143 |
142
|
breq1d |
⊢ ( 𝜑 → ( ( ( √ ‘ ( 2 · 𝑁 ) ) ↑ 2 ) < ( 𝑝 ↑ 2 ) ↔ ( 2 · 𝑁 ) < ( 𝑝 ↑ 2 ) ) ) |
| 144 |
143
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( ( ( √ ‘ ( 2 · 𝑁 ) ) ↑ 2 ) < ( 𝑝 ↑ 2 ) ↔ ( 2 · 𝑁 ) < ( 𝑝 ↑ 2 ) ) ) |
| 145 |
134
|
nn0zd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) ∈ ℤ ) |
| 146 |
72
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → 2 ∈ ℤ ) |
| 147 |
|
prmgt1 |
⊢ ( 𝑝 ∈ ℙ → 1 < 𝑝 ) |
| 148 |
147
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → 1 < 𝑝 ) |
| 149 |
131 145 146 148
|
ltexp2d |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) < 2 ↔ ( 𝑝 ↑ ( 𝑝 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) ) < ( 𝑝 ↑ 2 ) ) ) |
| 150 |
140 144 149
|
3imtr4d |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( ( ( √ ‘ ( 2 · 𝑁 ) ) ↑ 2 ) < ( 𝑝 ↑ 2 ) → ( 𝑝 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) < 2 ) ) |
| 151 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
| 152 |
151
|
breq2i |
⊢ ( ( 𝑝 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) < 2 ↔ ( 𝑝 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) < ( 1 + 1 ) ) |
| 153 |
150 152
|
imbitrdi |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( ( ( √ ‘ ( 2 · 𝑁 ) ) ↑ 2 ) < ( 𝑝 ↑ 2 ) → ( 𝑝 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) < ( 1 + 1 ) ) ) |
| 154 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( √ ‘ ( 2 · 𝑁 ) ) ∈ ℝ ) |
| 155 |
24 25
|
sqrtge0d |
⊢ ( 𝜑 → 0 ≤ ( √ ‘ ( 2 · 𝑁 ) ) ) |
| 156 |
155
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → 0 ≤ ( √ ‘ ( 2 · 𝑁 ) ) ) |
| 157 |
|
prmnn |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℕ ) |
| 158 |
157
|
nnrpd |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℝ+ ) |
| 159 |
158
|
rpge0d |
⊢ ( 𝑝 ∈ ℙ → 0 ≤ 𝑝 ) |
| 160 |
159
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → 0 ≤ 𝑝 ) |
| 161 |
154 131 156 160
|
lt2sqd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( ( √ ‘ ( 2 · 𝑁 ) ) < 𝑝 ↔ ( ( √ ‘ ( 2 · 𝑁 ) ) ↑ 2 ) < ( 𝑝 ↑ 2 ) ) ) |
| 162 |
|
1z |
⊢ 1 ∈ ℤ |
| 163 |
|
zleltp1 |
⊢ ( ( ( 𝑝 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) ∈ ℤ ∧ 1 ∈ ℤ ) → ( ( 𝑝 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) ≤ 1 ↔ ( 𝑝 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) < ( 1 + 1 ) ) ) |
| 164 |
145 162 163
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) ≤ 1 ↔ ( 𝑝 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) < ( 1 + 1 ) ) ) |
| 165 |
153 161 164
|
3imtr4d |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( ( √ ‘ ( 2 · 𝑁 ) ) < 𝑝 → ( 𝑝 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) ≤ 1 ) ) |
| 166 |
128 165
|
sylbird |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( ¬ 𝑝 ≤ 𝑀 → ( 𝑝 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) ≤ 1 ) ) |
| 167 |
166
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ¬ 𝑝 ≤ 𝑀 ) → ( 𝑝 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) ≤ 1 ) |
| 168 |
167
|
adantrl |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ≤ 𝐾 ∧ ¬ 𝑝 ≤ 𝑀 ) ) → ( 𝑝 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) ≤ 1 ) |
| 169 |
|
iftrue |
⊢ ( ( 𝑝 ≤ 𝐾 ∧ ¬ 𝑝 ≤ 𝑀 ) → if ( ( 𝑝 ≤ 𝐾 ∧ ¬ 𝑝 ≤ 𝑀 ) , ( 𝑝 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) , 0 ) = ( 𝑝 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) ) |
| 170 |
169
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ≤ 𝐾 ∧ ¬ 𝑝 ≤ 𝑀 ) ) → if ( ( 𝑝 ≤ 𝐾 ∧ ¬ 𝑝 ≤ 𝑀 ) , ( 𝑝 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) , 0 ) = ( 𝑝 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) ) |
| 171 |
|
iftrue |
⊢ ( ( 𝑝 ≤ 𝐾 ∧ ¬ 𝑝 ≤ 𝑀 ) → if ( ( 𝑝 ≤ 𝐾 ∧ ¬ 𝑝 ≤ 𝑀 ) , 1 , 0 ) = 1 ) |
| 172 |
171
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ≤ 𝐾 ∧ ¬ 𝑝 ≤ 𝑀 ) ) → if ( ( 𝑝 ≤ 𝐾 ∧ ¬ 𝑝 ≤ 𝑀 ) , 1 , 0 ) = 1 ) |
| 173 |
168 170 172
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ≤ 𝐾 ∧ ¬ 𝑝 ≤ 𝑀 ) ) → if ( ( 𝑝 ≤ 𝐾 ∧ ¬ 𝑝 ≤ 𝑀 ) , ( 𝑝 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) , 0 ) ≤ if ( ( 𝑝 ≤ 𝐾 ∧ ¬ 𝑝 ≤ 𝑀 ) , 1 , 0 ) ) |
| 174 |
|
0le0 |
⊢ 0 ≤ 0 |
| 175 |
|
iffalse |
⊢ ( ¬ ( 𝑝 ≤ 𝐾 ∧ ¬ 𝑝 ≤ 𝑀 ) → if ( ( 𝑝 ≤ 𝐾 ∧ ¬ 𝑝 ≤ 𝑀 ) , ( 𝑝 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) , 0 ) = 0 ) |
| 176 |
|
iffalse |
⊢ ( ¬ ( 𝑝 ≤ 𝐾 ∧ ¬ 𝑝 ≤ 𝑀 ) → if ( ( 𝑝 ≤ 𝐾 ∧ ¬ 𝑝 ≤ 𝑀 ) , 1 , 0 ) = 0 ) |
| 177 |
175 176
|
breq12d |
⊢ ( ¬ ( 𝑝 ≤ 𝐾 ∧ ¬ 𝑝 ≤ 𝑀 ) → ( if ( ( 𝑝 ≤ 𝐾 ∧ ¬ 𝑝 ≤ 𝑀 ) , ( 𝑝 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) , 0 ) ≤ if ( ( 𝑝 ≤ 𝐾 ∧ ¬ 𝑝 ≤ 𝑀 ) , 1 , 0 ) ↔ 0 ≤ 0 ) ) |
| 178 |
174 177
|
mpbiri |
⊢ ( ¬ ( 𝑝 ≤ 𝐾 ∧ ¬ 𝑝 ≤ 𝑀 ) → if ( ( 𝑝 ≤ 𝐾 ∧ ¬ 𝑝 ≤ 𝑀 ) , ( 𝑝 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) , 0 ) ≤ if ( ( 𝑝 ≤ 𝐾 ∧ ¬ 𝑝 ≤ 𝑀 ) , 1 , 0 ) ) |
| 179 |
178
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ¬ ( 𝑝 ≤ 𝐾 ∧ ¬ 𝑝 ≤ 𝑀 ) ) → if ( ( 𝑝 ≤ 𝐾 ∧ ¬ 𝑝 ≤ 𝑀 ) , ( 𝑝 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) , 0 ) ≤ if ( ( 𝑝 ≤ 𝐾 ∧ ¬ 𝑝 ≤ 𝑀 ) , 1 , 0 ) ) |
| 180 |
173 179
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → if ( ( 𝑝 ≤ 𝐾 ∧ ¬ 𝑝 ≤ 𝑀 ) , ( 𝑝 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) , 0 ) ≤ if ( ( 𝑝 ≤ 𝐾 ∧ ¬ 𝑝 ≤ 𝑀 ) , 1 , 0 ) ) |
| 181 |
62
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ∀ 𝑛 ∈ ℙ ( 𝑛 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) ∈ ℕ0 ) |
| 182 |
69
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → 𝑀 ∈ ℕ ) |
| 183 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℙ ) |
| 184 |
|
oveq1 |
⊢ ( 𝑛 = 𝑝 → ( 𝑛 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) = ( 𝑝 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) ) |
| 185 |
89
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 186 |
3 181 182 183 184 185
|
pcmpt2 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt ( ( seq 1 ( · , 𝐹 ) ‘ 𝐾 ) / ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) ) ) = if ( ( 𝑝 ≤ 𝐾 ∧ ¬ 𝑝 ≤ 𝑀 ) , ( 𝑝 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) , 0 ) ) |
| 187 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , 𝑛 , 1 ) ) = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , 𝑛 , 1 ) ) |
| 188 |
187
|
prmorcht |
⊢ ( 𝐾 ∈ ℕ → ( exp ‘ ( θ ‘ 𝐾 ) ) = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , 𝑛 , 1 ) ) ) ‘ 𝐾 ) ) |
| 189 |
96 188
|
syl |
⊢ ( 𝜑 → ( exp ‘ ( θ ‘ 𝐾 ) ) = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , 𝑛 , 1 ) ) ) ‘ 𝐾 ) ) |
| 190 |
187
|
prmorcht |
⊢ ( 𝑀 ∈ ℕ → ( exp ‘ ( θ ‘ 𝑀 ) ) = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , 𝑛 , 1 ) ) ) ‘ 𝑀 ) ) |
| 191 |
69 190
|
syl |
⊢ ( 𝜑 → ( exp ‘ ( θ ‘ 𝑀 ) ) = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , 𝑛 , 1 ) ) ) ‘ 𝑀 ) ) |
| 192 |
189 191
|
oveq12d |
⊢ ( 𝜑 → ( ( exp ‘ ( θ ‘ 𝐾 ) ) / ( exp ‘ ( θ ‘ 𝑀 ) ) ) = ( ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , 𝑛 , 1 ) ) ) ‘ 𝐾 ) / ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , 𝑛 , 1 ) ) ) ‘ 𝑀 ) ) ) |
| 193 |
192
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( ( exp ‘ ( θ ‘ 𝐾 ) ) / ( exp ‘ ( θ ‘ 𝑀 ) ) ) = ( ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , 𝑛 , 1 ) ) ) ‘ 𝐾 ) / ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , 𝑛 , 1 ) ) ) ‘ 𝑀 ) ) ) |
| 194 |
193
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt ( ( exp ‘ ( θ ‘ 𝐾 ) ) / ( exp ‘ ( θ ‘ 𝑀 ) ) ) ) = ( 𝑝 pCnt ( ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , 𝑛 , 1 ) ) ) ‘ 𝐾 ) / ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , 𝑛 , 1 ) ) ) ‘ 𝑀 ) ) ) ) |
| 195 |
|
nncn |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℂ ) |
| 196 |
195
|
exp1d |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 ↑ 1 ) = 𝑛 ) |
| 197 |
196
|
ifeq1d |
⊢ ( 𝑛 ∈ ℕ → if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ 1 ) , 1 ) = if ( 𝑛 ∈ ℙ , 𝑛 , 1 ) ) |
| 198 |
197
|
mpteq2ia |
⊢ ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ 1 ) , 1 ) ) = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , 𝑛 , 1 ) ) |
| 199 |
198
|
eqcomi |
⊢ ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , 𝑛 , 1 ) ) = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ 1 ) , 1 ) ) |
| 200 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 201 |
200
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℙ ) → 1 ∈ ℕ0 ) |
| 202 |
201
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℙ 1 ∈ ℕ0 ) |
| 203 |
202
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ∀ 𝑛 ∈ ℙ 1 ∈ ℕ0 ) |
| 204 |
|
eqidd |
⊢ ( 𝑛 = 𝑝 → 1 = 1 ) |
| 205 |
199 203 182 183 204 185
|
pcmpt2 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt ( ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , 𝑛 , 1 ) ) ) ‘ 𝐾 ) / ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , 𝑛 , 1 ) ) ) ‘ 𝑀 ) ) ) = if ( ( 𝑝 ≤ 𝐾 ∧ ¬ 𝑝 ≤ 𝑀 ) , 1 , 0 ) ) |
| 206 |
194 205
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt ( ( exp ‘ ( θ ‘ 𝐾 ) ) / ( exp ‘ ( θ ‘ 𝑀 ) ) ) ) = if ( ( 𝑝 ≤ 𝐾 ∧ ¬ 𝑝 ≤ 𝑀 ) , 1 , 0 ) ) |
| 207 |
180 186 206
|
3brtr4d |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt ( ( seq 1 ( · , 𝐹 ) ‘ 𝐾 ) / ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) ) ) ≤ ( 𝑝 pCnt ( ( exp ‘ ( θ ‘ 𝐾 ) ) / ( exp ‘ ( θ ‘ 𝑀 ) ) ) ) ) |
| 208 |
207
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt ( ( seq 1 ( · , 𝐹 ) ‘ 𝐾 ) / ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) ) ) ≤ ( 𝑝 pCnt ( ( exp ‘ ( θ ‘ 𝐾 ) ) / ( exp ‘ ( θ ‘ 𝑀 ) ) ) ) ) |
| 209 |
|
pc2dvds |
⊢ ( ( ( ( seq 1 ( · , 𝐹 ) ‘ 𝐾 ) / ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) ) ∈ ℤ ∧ ( ( exp ‘ ( θ ‘ 𝐾 ) ) / ( exp ‘ ( θ ‘ 𝑀 ) ) ) ∈ ℤ ) → ( ( ( seq 1 ( · , 𝐹 ) ‘ 𝐾 ) / ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) ) ∥ ( ( exp ‘ ( θ ‘ 𝐾 ) ) / ( exp ‘ ( θ ‘ 𝑀 ) ) ) ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt ( ( seq 1 ( · , 𝐹 ) ‘ 𝐾 ) / ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) ) ) ≤ ( 𝑝 pCnt ( ( exp ‘ ( θ ‘ 𝐾 ) ) / ( exp ‘ ( θ ‘ 𝑀 ) ) ) ) ) ) |
| 210 |
101 118 209
|
syl2anc |
⊢ ( 𝜑 → ( ( ( seq 1 ( · , 𝐹 ) ‘ 𝐾 ) / ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) ) ∥ ( ( exp ‘ ( θ ‘ 𝐾 ) ) / ( exp ‘ ( θ ‘ 𝑀 ) ) ) ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt ( ( seq 1 ( · , 𝐹 ) ‘ 𝐾 ) / ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) ) ) ≤ ( 𝑝 pCnt ( ( exp ‘ ( θ ‘ 𝐾 ) ) / ( exp ‘ ( θ ‘ 𝑀 ) ) ) ) ) ) |
| 211 |
208 210
|
mpbird |
⊢ ( 𝜑 → ( ( seq 1 ( · , 𝐹 ) ‘ 𝐾 ) / ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) ) ∥ ( ( exp ‘ ( θ ‘ 𝐾 ) ) / ( exp ‘ ( θ ‘ 𝑀 ) ) ) ) |
| 212 |
114
|
nnred |
⊢ ( 𝜑 → ( exp ‘ ( θ ‘ 𝐾 ) ) ∈ ℝ ) |
| 213 |
110
|
nnred |
⊢ ( 𝜑 → ( exp ‘ ( θ ‘ 𝑀 ) ) ∈ ℝ ) |
| 214 |
114
|
nngt0d |
⊢ ( 𝜑 → 0 < ( exp ‘ ( θ ‘ 𝐾 ) ) ) |
| 215 |
110
|
nngt0d |
⊢ ( 𝜑 → 0 < ( exp ‘ ( θ ‘ 𝑀 ) ) ) |
| 216 |
212 213 214 215
|
divgt0d |
⊢ ( 𝜑 → 0 < ( ( exp ‘ ( θ ‘ 𝐾 ) ) / ( exp ‘ ( θ ‘ 𝑀 ) ) ) ) |
| 217 |
|
elnnz |
⊢ ( ( ( exp ‘ ( θ ‘ 𝐾 ) ) / ( exp ‘ ( θ ‘ 𝑀 ) ) ) ∈ ℕ ↔ ( ( ( exp ‘ ( θ ‘ 𝐾 ) ) / ( exp ‘ ( θ ‘ 𝑀 ) ) ) ∈ ℤ ∧ 0 < ( ( exp ‘ ( θ ‘ 𝐾 ) ) / ( exp ‘ ( θ ‘ 𝑀 ) ) ) ) ) |
| 218 |
118 216 217
|
sylanbrc |
⊢ ( 𝜑 → ( ( exp ‘ ( θ ‘ 𝐾 ) ) / ( exp ‘ ( θ ‘ 𝑀 ) ) ) ∈ ℕ ) |
| 219 |
|
dvdsle |
⊢ ( ( ( ( seq 1 ( · , 𝐹 ) ‘ 𝐾 ) / ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) ) ∈ ℤ ∧ ( ( exp ‘ ( θ ‘ 𝐾 ) ) / ( exp ‘ ( θ ‘ 𝑀 ) ) ) ∈ ℕ ) → ( ( ( seq 1 ( · , 𝐹 ) ‘ 𝐾 ) / ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) ) ∥ ( ( exp ‘ ( θ ‘ 𝐾 ) ) / ( exp ‘ ( θ ‘ 𝑀 ) ) ) → ( ( seq 1 ( · , 𝐹 ) ‘ 𝐾 ) / ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) ) ≤ ( ( exp ‘ ( θ ‘ 𝐾 ) ) / ( exp ‘ ( θ ‘ 𝑀 ) ) ) ) ) |
| 220 |
101 218 219
|
syl2anc |
⊢ ( 𝜑 → ( ( ( seq 1 ( · , 𝐹 ) ‘ 𝐾 ) / ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) ) ∥ ( ( exp ‘ ( θ ‘ 𝐾 ) ) / ( exp ‘ ( θ ‘ 𝑀 ) ) ) → ( ( seq 1 ( · , 𝐹 ) ‘ 𝐾 ) / ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) ) ≤ ( ( exp ‘ ( θ ‘ 𝐾 ) ) / ( exp ‘ ( θ ‘ 𝑀 ) ) ) ) ) |
| 221 |
211 220
|
mpd |
⊢ ( 𝜑 → ( ( seq 1 ( · , 𝐹 ) ‘ 𝐾 ) / ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) ) ≤ ( ( exp ‘ ( θ ‘ 𝐾 ) ) / ( exp ‘ ( θ ‘ 𝑀 ) ) ) ) |
| 222 |
|
nndivre |
⊢ ( ( ( exp ‘ ( θ ‘ 𝐾 ) ) ∈ ℝ ∧ 4 ∈ ℕ ) → ( ( exp ‘ ( θ ‘ 𝐾 ) ) / 4 ) ∈ ℝ ) |
| 223 |
212 6 222
|
sylancl |
⊢ ( 𝜑 → ( ( exp ‘ ( θ ‘ 𝐾 ) ) / 4 ) ∈ ℝ ) |
| 224 |
|
4re |
⊢ 4 ∈ ℝ |
| 225 |
224
|
a1i |
⊢ ( 𝜑 → 4 ∈ ℝ ) |
| 226 |
|
6re |
⊢ 6 ∈ ℝ |
| 227 |
226
|
a1i |
⊢ ( 𝜑 → 6 ∈ ℝ ) |
| 228 |
|
4lt6 |
⊢ 4 < 6 |
| 229 |
228
|
a1i |
⊢ ( 𝜑 → 4 < 6 ) |
| 230 |
|
cht3 |
⊢ ( θ ‘ 3 ) = ( log ‘ 6 ) |
| 231 |
230
|
fveq2i |
⊢ ( exp ‘ ( θ ‘ 3 ) ) = ( exp ‘ ( log ‘ 6 ) ) |
| 232 |
|
6pos |
⊢ 0 < 6 |
| 233 |
226 232
|
elrpii |
⊢ 6 ∈ ℝ+ |
| 234 |
|
reeflog |
⊢ ( 6 ∈ ℝ+ → ( exp ‘ ( log ‘ 6 ) ) = 6 ) |
| 235 |
233 234
|
ax-mp |
⊢ ( exp ‘ ( log ‘ 6 ) ) = 6 |
| 236 |
231 235
|
eqtri |
⊢ ( exp ‘ ( θ ‘ 3 ) ) = 6 |
| 237 |
|
3re |
⊢ 3 ∈ ℝ |
| 238 |
237
|
a1i |
⊢ ( 𝜑 → 3 ∈ ℝ ) |
| 239 |
|
eluzle |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 3 ) → 3 ≤ 𝑀 ) |
| 240 |
67 239
|
syl |
⊢ ( 𝜑 → 3 ≤ 𝑀 ) |
| 241 |
|
chtwordi |
⊢ ( ( 3 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 3 ≤ 𝑀 ) → ( θ ‘ 3 ) ≤ ( θ ‘ 𝑀 ) ) |
| 242 |
238 103 240 241
|
syl3anc |
⊢ ( 𝜑 → ( θ ‘ 3 ) ≤ ( θ ‘ 𝑀 ) ) |
| 243 |
|
chtcl |
⊢ ( 3 ∈ ℝ → ( θ ‘ 3 ) ∈ ℝ ) |
| 244 |
237 243
|
ax-mp |
⊢ ( θ ‘ 3 ) ∈ ℝ |
| 245 |
|
chtcl |
⊢ ( 𝑀 ∈ ℝ → ( θ ‘ 𝑀 ) ∈ ℝ ) |
| 246 |
103 245
|
syl |
⊢ ( 𝜑 → ( θ ‘ 𝑀 ) ∈ ℝ ) |
| 247 |
|
efle |
⊢ ( ( ( θ ‘ 3 ) ∈ ℝ ∧ ( θ ‘ 𝑀 ) ∈ ℝ ) → ( ( θ ‘ 3 ) ≤ ( θ ‘ 𝑀 ) ↔ ( exp ‘ ( θ ‘ 3 ) ) ≤ ( exp ‘ ( θ ‘ 𝑀 ) ) ) ) |
| 248 |
244 246 247
|
sylancr |
⊢ ( 𝜑 → ( ( θ ‘ 3 ) ≤ ( θ ‘ 𝑀 ) ↔ ( exp ‘ ( θ ‘ 3 ) ) ≤ ( exp ‘ ( θ ‘ 𝑀 ) ) ) ) |
| 249 |
242 248
|
mpbid |
⊢ ( 𝜑 → ( exp ‘ ( θ ‘ 3 ) ) ≤ ( exp ‘ ( θ ‘ 𝑀 ) ) ) |
| 250 |
236 249
|
eqbrtrrid |
⊢ ( 𝜑 → 6 ≤ ( exp ‘ ( θ ‘ 𝑀 ) ) ) |
| 251 |
225 227 213 229 250
|
ltletrd |
⊢ ( 𝜑 → 4 < ( exp ‘ ( θ ‘ 𝑀 ) ) ) |
| 252 |
|
4pos |
⊢ 0 < 4 |
| 253 |
252
|
a1i |
⊢ ( 𝜑 → 0 < 4 ) |
| 254 |
|
ltdiv2 |
⊢ ( ( ( 4 ∈ ℝ ∧ 0 < 4 ) ∧ ( ( exp ‘ ( θ ‘ 𝑀 ) ) ∈ ℝ ∧ 0 < ( exp ‘ ( θ ‘ 𝑀 ) ) ) ∧ ( ( exp ‘ ( θ ‘ 𝐾 ) ) ∈ ℝ ∧ 0 < ( exp ‘ ( θ ‘ 𝐾 ) ) ) ) → ( 4 < ( exp ‘ ( θ ‘ 𝑀 ) ) ↔ ( ( exp ‘ ( θ ‘ 𝐾 ) ) / ( exp ‘ ( θ ‘ 𝑀 ) ) ) < ( ( exp ‘ ( θ ‘ 𝐾 ) ) / 4 ) ) ) |
| 255 |
225 253 213 215 212 214 254
|
syl222anc |
⊢ ( 𝜑 → ( 4 < ( exp ‘ ( θ ‘ 𝑀 ) ) ↔ ( ( exp ‘ ( θ ‘ 𝐾 ) ) / ( exp ‘ ( θ ‘ 𝑀 ) ) ) < ( ( exp ‘ ( θ ‘ 𝐾 ) ) / 4 ) ) ) |
| 256 |
251 255
|
mpbid |
⊢ ( 𝜑 → ( ( exp ‘ ( θ ‘ 𝐾 ) ) / ( exp ‘ ( θ ‘ 𝑀 ) ) ) < ( ( exp ‘ ( θ ‘ 𝐾 ) ) / 4 ) ) |
| 257 |
30
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
| 258 |
|
2lt3 |
⊢ 2 < 3 |
| 259 |
258
|
a1i |
⊢ ( 𝜑 → 2 < 3 ) |
| 260 |
238 103 104 240 106
|
letrd |
⊢ ( 𝜑 → 3 ≤ 𝐾 ) |
| 261 |
257 238 104 259 260
|
ltletrd |
⊢ ( 𝜑 → 2 < 𝐾 ) |
| 262 |
|
chtub |
⊢ ( ( 𝐾 ∈ ℝ ∧ 2 < 𝐾 ) → ( θ ‘ 𝐾 ) < ( ( log ‘ 2 ) · ( ( 2 · 𝐾 ) − 3 ) ) ) |
| 263 |
104 261 262
|
syl2anc |
⊢ ( 𝜑 → ( θ ‘ 𝐾 ) < ( ( log ‘ 2 ) · ( ( 2 · 𝐾 ) − 3 ) ) ) |
| 264 |
|
chtcl |
⊢ ( 𝐾 ∈ ℝ → ( θ ‘ 𝐾 ) ∈ ℝ ) |
| 265 |
104 264
|
syl |
⊢ ( 𝜑 → ( θ ‘ 𝐾 ) ∈ ℝ ) |
| 266 |
|
relogcl |
⊢ ( 2 ∈ ℝ+ → ( log ‘ 2 ) ∈ ℝ ) |
| 267 |
35 266
|
ax-mp |
⊢ ( log ‘ 2 ) ∈ ℝ |
| 268 |
|
3z |
⊢ 3 ∈ ℤ |
| 269 |
|
zsubcl |
⊢ ( ( ( 2 · 𝐾 ) ∈ ℤ ∧ 3 ∈ ℤ ) → ( ( 2 · 𝐾 ) − 3 ) ∈ ℤ ) |
| 270 |
78 268 269
|
sylancl |
⊢ ( 𝜑 → ( ( 2 · 𝐾 ) − 3 ) ∈ ℤ ) |
| 271 |
270
|
zred |
⊢ ( 𝜑 → ( ( 2 · 𝐾 ) − 3 ) ∈ ℝ ) |
| 272 |
|
remulcl |
⊢ ( ( ( log ‘ 2 ) ∈ ℝ ∧ ( ( 2 · 𝐾 ) − 3 ) ∈ ℝ ) → ( ( log ‘ 2 ) · ( ( 2 · 𝐾 ) − 3 ) ) ∈ ℝ ) |
| 273 |
267 271 272
|
sylancr |
⊢ ( 𝜑 → ( ( log ‘ 2 ) · ( ( 2 · 𝐾 ) − 3 ) ) ∈ ℝ ) |
| 274 |
|
eflt |
⊢ ( ( ( θ ‘ 𝐾 ) ∈ ℝ ∧ ( ( log ‘ 2 ) · ( ( 2 · 𝐾 ) − 3 ) ) ∈ ℝ ) → ( ( θ ‘ 𝐾 ) < ( ( log ‘ 2 ) · ( ( 2 · 𝐾 ) − 3 ) ) ↔ ( exp ‘ ( θ ‘ 𝐾 ) ) < ( exp ‘ ( ( log ‘ 2 ) · ( ( 2 · 𝐾 ) − 3 ) ) ) ) ) |
| 275 |
265 273 274
|
syl2anc |
⊢ ( 𝜑 → ( ( θ ‘ 𝐾 ) < ( ( log ‘ 2 ) · ( ( 2 · 𝐾 ) − 3 ) ) ↔ ( exp ‘ ( θ ‘ 𝐾 ) ) < ( exp ‘ ( ( log ‘ 2 ) · ( ( 2 · 𝐾 ) − 3 ) ) ) ) ) |
| 276 |
263 275
|
mpbid |
⊢ ( 𝜑 → ( exp ‘ ( θ ‘ 𝐾 ) ) < ( exp ‘ ( ( log ‘ 2 ) · ( ( 2 · 𝐾 ) − 3 ) ) ) ) |
| 277 |
|
reexplog |
⊢ ( ( 2 ∈ ℝ+ ∧ ( ( 2 · 𝐾 ) − 3 ) ∈ ℤ ) → ( 2 ↑ ( ( 2 · 𝐾 ) − 3 ) ) = ( exp ‘ ( ( ( 2 · 𝐾 ) − 3 ) · ( log ‘ 2 ) ) ) ) |
| 278 |
35 270 277
|
sylancr |
⊢ ( 𝜑 → ( 2 ↑ ( ( 2 · 𝐾 ) − 3 ) ) = ( exp ‘ ( ( ( 2 · 𝐾 ) − 3 ) · ( log ‘ 2 ) ) ) ) |
| 279 |
270
|
zcnd |
⊢ ( 𝜑 → ( ( 2 · 𝐾 ) − 3 ) ∈ ℂ ) |
| 280 |
267
|
recni |
⊢ ( log ‘ 2 ) ∈ ℂ |
| 281 |
|
mulcom |
⊢ ( ( ( ( 2 · 𝐾 ) − 3 ) ∈ ℂ ∧ ( log ‘ 2 ) ∈ ℂ ) → ( ( ( 2 · 𝐾 ) − 3 ) · ( log ‘ 2 ) ) = ( ( log ‘ 2 ) · ( ( 2 · 𝐾 ) − 3 ) ) ) |
| 282 |
279 280 281
|
sylancl |
⊢ ( 𝜑 → ( ( ( 2 · 𝐾 ) − 3 ) · ( log ‘ 2 ) ) = ( ( log ‘ 2 ) · ( ( 2 · 𝐾 ) − 3 ) ) ) |
| 283 |
282
|
fveq2d |
⊢ ( 𝜑 → ( exp ‘ ( ( ( 2 · 𝐾 ) − 3 ) · ( log ‘ 2 ) ) ) = ( exp ‘ ( ( log ‘ 2 ) · ( ( 2 · 𝐾 ) − 3 ) ) ) ) |
| 284 |
278 283
|
eqtrd |
⊢ ( 𝜑 → ( 2 ↑ ( ( 2 · 𝐾 ) − 3 ) ) = ( exp ‘ ( ( log ‘ 2 ) · ( ( 2 · 𝐾 ) − 3 ) ) ) ) |
| 285 |
276 284
|
breqtrrd |
⊢ ( 𝜑 → ( exp ‘ ( θ ‘ 𝐾 ) ) < ( 2 ↑ ( ( 2 · 𝐾 ) − 3 ) ) ) |
| 286 |
|
3p2e5 |
⊢ ( 3 + 2 ) = 5 |
| 287 |
286
|
oveq1i |
⊢ ( ( 3 + 2 ) − 2 ) = ( 5 − 2 ) |
| 288 |
|
3cn |
⊢ 3 ∈ ℂ |
| 289 |
|
2cn |
⊢ 2 ∈ ℂ |
| 290 |
288 289
|
pncan3oi |
⊢ ( ( 3 + 2 ) − 2 ) = 3 |
| 291 |
287 290
|
eqtr3i |
⊢ ( 5 − 2 ) = 3 |
| 292 |
291
|
oveq2i |
⊢ ( ( 2 · 𝐾 ) − ( 5 − 2 ) ) = ( ( 2 · 𝐾 ) − 3 ) |
| 293 |
78
|
zcnd |
⊢ ( 𝜑 → ( 2 · 𝐾 ) ∈ ℂ ) |
| 294 |
|
5cn |
⊢ 5 ∈ ℂ |
| 295 |
|
subsub |
⊢ ( ( ( 2 · 𝐾 ) ∈ ℂ ∧ 5 ∈ ℂ ∧ 2 ∈ ℂ ) → ( ( 2 · 𝐾 ) − ( 5 − 2 ) ) = ( ( ( 2 · 𝐾 ) − 5 ) + 2 ) ) |
| 296 |
294 289 295
|
mp3an23 |
⊢ ( ( 2 · 𝐾 ) ∈ ℂ → ( ( 2 · 𝐾 ) − ( 5 − 2 ) ) = ( ( ( 2 · 𝐾 ) − 5 ) + 2 ) ) |
| 297 |
293 296
|
syl |
⊢ ( 𝜑 → ( ( 2 · 𝐾 ) − ( 5 − 2 ) ) = ( ( ( 2 · 𝐾 ) − 5 ) + 2 ) ) |
| 298 |
292 297
|
eqtr3id |
⊢ ( 𝜑 → ( ( 2 · 𝐾 ) − 3 ) = ( ( ( 2 · 𝐾 ) − 5 ) + 2 ) ) |
| 299 |
298
|
oveq2d |
⊢ ( 𝜑 → ( 2 ↑𝑐 ( ( 2 · 𝐾 ) − 3 ) ) = ( 2 ↑𝑐 ( ( ( 2 · 𝐾 ) − 5 ) + 2 ) ) ) |
| 300 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 301 |
|
cxpexpz |
⊢ ( ( 2 ∈ ℂ ∧ 2 ≠ 0 ∧ ( ( 2 · 𝐾 ) − 3 ) ∈ ℤ ) → ( 2 ↑𝑐 ( ( 2 · 𝐾 ) − 3 ) ) = ( 2 ↑ ( ( 2 · 𝐾 ) − 3 ) ) ) |
| 302 |
289 300 270 301
|
mp3an12i |
⊢ ( 𝜑 → ( 2 ↑𝑐 ( ( 2 · 𝐾 ) − 3 ) ) = ( 2 ↑ ( ( 2 · 𝐾 ) − 3 ) ) ) |
| 303 |
81
|
zcnd |
⊢ ( 𝜑 → ( ( 2 · 𝐾 ) − 5 ) ∈ ℂ ) |
| 304 |
|
2cnne0 |
⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) |
| 305 |
|
cxpadd |
⊢ ( ( ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ∧ ( ( 2 · 𝐾 ) − 5 ) ∈ ℂ ∧ 2 ∈ ℂ ) → ( 2 ↑𝑐 ( ( ( 2 · 𝐾 ) − 5 ) + 2 ) ) = ( ( 2 ↑𝑐 ( ( 2 · 𝐾 ) − 5 ) ) · ( 2 ↑𝑐 2 ) ) ) |
| 306 |
304 289 305
|
mp3an13 |
⊢ ( ( ( 2 · 𝐾 ) − 5 ) ∈ ℂ → ( 2 ↑𝑐 ( ( ( 2 · 𝐾 ) − 5 ) + 2 ) ) = ( ( 2 ↑𝑐 ( ( 2 · 𝐾 ) − 5 ) ) · ( 2 ↑𝑐 2 ) ) ) |
| 307 |
303 306
|
syl |
⊢ ( 𝜑 → ( 2 ↑𝑐 ( ( ( 2 · 𝐾 ) − 5 ) + 2 ) ) = ( ( 2 ↑𝑐 ( ( 2 · 𝐾 ) − 5 ) ) · ( 2 ↑𝑐 2 ) ) ) |
| 308 |
299 302 307
|
3eqtr3d |
⊢ ( 𝜑 → ( 2 ↑ ( ( 2 · 𝐾 ) − 3 ) ) = ( ( 2 ↑𝑐 ( ( 2 · 𝐾 ) − 5 ) ) · ( 2 ↑𝑐 2 ) ) ) |
| 309 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 310 |
|
cxpexp |
⊢ ( ( 2 ∈ ℂ ∧ 2 ∈ ℕ0 ) → ( 2 ↑𝑐 2 ) = ( 2 ↑ 2 ) ) |
| 311 |
289 309 310
|
mp2an |
⊢ ( 2 ↑𝑐 2 ) = ( 2 ↑ 2 ) |
| 312 |
|
sq2 |
⊢ ( 2 ↑ 2 ) = 4 |
| 313 |
311 312
|
eqtri |
⊢ ( 2 ↑𝑐 2 ) = 4 |
| 314 |
313
|
oveq2i |
⊢ ( ( 2 ↑𝑐 ( ( 2 · 𝐾 ) − 5 ) ) · ( 2 ↑𝑐 2 ) ) = ( ( 2 ↑𝑐 ( ( 2 · 𝐾 ) − 5 ) ) · 4 ) |
| 315 |
308 314
|
eqtrdi |
⊢ ( 𝜑 → ( 2 ↑ ( ( 2 · 𝐾 ) − 3 ) ) = ( ( 2 ↑𝑐 ( ( 2 · 𝐾 ) − 5 ) ) · 4 ) ) |
| 316 |
285 315
|
breqtrd |
⊢ ( 𝜑 → ( exp ‘ ( θ ‘ 𝐾 ) ) < ( ( 2 ↑𝑐 ( ( 2 · 𝐾 ) − 5 ) ) · 4 ) ) |
| 317 |
224 252
|
pm3.2i |
⊢ ( 4 ∈ ℝ ∧ 0 < 4 ) |
| 318 |
317
|
a1i |
⊢ ( 𝜑 → ( 4 ∈ ℝ ∧ 0 < 4 ) ) |
| 319 |
|
ltdivmul2 |
⊢ ( ( ( exp ‘ ( θ ‘ 𝐾 ) ) ∈ ℝ ∧ ( 2 ↑𝑐 ( ( 2 · 𝐾 ) − 5 ) ) ∈ ℝ ∧ ( 4 ∈ ℝ ∧ 0 < 4 ) ) → ( ( ( exp ‘ ( θ ‘ 𝐾 ) ) / 4 ) < ( 2 ↑𝑐 ( ( 2 · 𝐾 ) − 5 ) ) ↔ ( exp ‘ ( θ ‘ 𝐾 ) ) < ( ( 2 ↑𝑐 ( ( 2 · 𝐾 ) − 5 ) ) · 4 ) ) ) |
| 320 |
212 85 318 319
|
syl3anc |
⊢ ( 𝜑 → ( ( ( exp ‘ ( θ ‘ 𝐾 ) ) / 4 ) < ( 2 ↑𝑐 ( ( 2 · 𝐾 ) − 5 ) ) ↔ ( exp ‘ ( θ ‘ 𝐾 ) ) < ( ( 2 ↑𝑐 ( ( 2 · 𝐾 ) − 5 ) ) · 4 ) ) ) |
| 321 |
316 320
|
mpbird |
⊢ ( 𝜑 → ( ( exp ‘ ( θ ‘ 𝐾 ) ) / 4 ) < ( 2 ↑𝑐 ( ( 2 · 𝐾 ) − 5 ) ) ) |
| 322 |
119 223 85 256 321
|
lttrd |
⊢ ( 𝜑 → ( ( exp ‘ ( θ ‘ 𝐾 ) ) / ( exp ‘ ( θ ‘ 𝑀 ) ) ) < ( 2 ↑𝑐 ( ( 2 · 𝐾 ) − 5 ) ) ) |
| 323 |
102 119 85 221 322
|
lelttrd |
⊢ ( 𝜑 → ( ( seq 1 ( · , 𝐹 ) ‘ 𝐾 ) / ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) ) < ( 2 ↑𝑐 ( ( 2 · 𝐾 ) − 5 ) ) ) |
| 324 |
97
|
nnred |
⊢ ( 𝜑 → ( seq 1 ( · , 𝐹 ) ‘ 𝐾 ) ∈ ℝ ) |
| 325 |
|
nnre |
⊢ ( ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) ∈ ℕ → ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) ∈ ℝ ) |
| 326 |
|
nngt0 |
⊢ ( ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) ∈ ℕ → 0 < ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) ) |
| 327 |
325 326
|
jca |
⊢ ( ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) ∈ ℕ → ( ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) ∈ ℝ ∧ 0 < ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) ) ) |
| 328 |
70 327
|
syl |
⊢ ( 𝜑 → ( ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) ∈ ℝ ∧ 0 < ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) ) ) |
| 329 |
|
ltdivmul |
⊢ ( ( ( seq 1 ( · , 𝐹 ) ‘ 𝐾 ) ∈ ℝ ∧ ( 2 ↑𝑐 ( ( 2 · 𝐾 ) − 5 ) ) ∈ ℝ ∧ ( ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) ∈ ℝ ∧ 0 < ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) ) ) → ( ( ( seq 1 ( · , 𝐹 ) ‘ 𝐾 ) / ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) ) < ( 2 ↑𝑐 ( ( 2 · 𝐾 ) − 5 ) ) ↔ ( seq 1 ( · , 𝐹 ) ‘ 𝐾 ) < ( ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) · ( 2 ↑𝑐 ( ( 2 · 𝐾 ) − 5 ) ) ) ) ) |
| 330 |
324 85 328 329
|
syl3anc |
⊢ ( 𝜑 → ( ( ( seq 1 ( · , 𝐹 ) ‘ 𝐾 ) / ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) ) < ( 2 ↑𝑐 ( ( 2 · 𝐾 ) − 5 ) ) ↔ ( seq 1 ( · , 𝐹 ) ‘ 𝐾 ) < ( ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) · ( 2 ↑𝑐 ( ( 2 · 𝐾 ) − 5 ) ) ) ) ) |
| 331 |
323 330
|
mpbid |
⊢ ( 𝜑 → ( seq 1 ( · , 𝐹 ) ‘ 𝐾 ) < ( ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) · ( 2 ↑𝑐 ( ( 2 · 𝐾 ) − 5 ) ) ) ) |
| 332 |
87 331
|
eqbrtrrd |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) C 𝑁 ) < ( ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) · ( 2 ↑𝑐 ( ( 2 · 𝐾 ) − 5 ) ) ) ) |
| 333 |
34 85
|
remulcld |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) ↑𝑐 ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) ) · ( 2 ↑𝑐 ( ( 2 · 𝐾 ) − 5 ) ) ) ∈ ℝ ) |
| 334 |
1 2 3 4 5
|
bposlem5 |
⊢ ( 𝜑 → ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) ≤ ( ( 2 · 𝑁 ) ↑𝑐 ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) ) ) |
| 335 |
71 34 84
|
lemul1d |
⊢ ( 𝜑 → ( ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) ≤ ( ( 2 · 𝑁 ) ↑𝑐 ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) ) ↔ ( ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) · ( 2 ↑𝑐 ( ( 2 · 𝐾 ) − 5 ) ) ) ≤ ( ( ( 2 · 𝑁 ) ↑𝑐 ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) ) · ( 2 ↑𝑐 ( ( 2 · 𝐾 ) − 5 ) ) ) ) ) |
| 336 |
334 335
|
mpbid |
⊢ ( 𝜑 → ( ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) · ( 2 ↑𝑐 ( ( 2 · 𝐾 ) − 5 ) ) ) ≤ ( ( ( 2 · 𝑁 ) ↑𝑐 ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) ) · ( 2 ↑𝑐 ( ( 2 · 𝐾 ) − 5 ) ) ) ) |
| 337 |
78
|
zred |
⊢ ( 𝜑 → ( 2 · 𝐾 ) ∈ ℝ ) |
| 338 |
41
|
a1i |
⊢ ( 𝜑 → 5 ∈ ℝ ) |
| 339 |
|
flle |
⊢ ( ( ( 2 · 𝑁 ) / 3 ) ∈ ℝ → ( ⌊ ‘ ( ( 2 · 𝑁 ) / 3 ) ) ≤ ( ( 2 · 𝑁 ) / 3 ) ) |
| 340 |
74 339
|
syl |
⊢ ( 𝜑 → ( ⌊ ‘ ( ( 2 · 𝑁 ) / 3 ) ) ≤ ( ( 2 · 𝑁 ) / 3 ) ) |
| 341 |
4 340
|
eqbrtrid |
⊢ ( 𝜑 → 𝐾 ≤ ( ( 2 · 𝑁 ) / 3 ) ) |
| 342 |
|
2pos |
⊢ 0 < 2 |
| 343 |
30 342
|
pm3.2i |
⊢ ( 2 ∈ ℝ ∧ 0 < 2 ) |
| 344 |
343
|
a1i |
⊢ ( 𝜑 → ( 2 ∈ ℝ ∧ 0 < 2 ) ) |
| 345 |
|
lemul2 |
⊢ ( ( 𝐾 ∈ ℝ ∧ ( ( 2 · 𝑁 ) / 3 ) ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( 𝐾 ≤ ( ( 2 · 𝑁 ) / 3 ) ↔ ( 2 · 𝐾 ) ≤ ( 2 · ( ( 2 · 𝑁 ) / 3 ) ) ) ) |
| 346 |
104 74 344 345
|
syl3anc |
⊢ ( 𝜑 → ( 𝐾 ≤ ( ( 2 · 𝑁 ) / 3 ) ↔ ( 2 · 𝐾 ) ≤ ( 2 · ( ( 2 · 𝑁 ) / 3 ) ) ) ) |
| 347 |
341 346
|
mpbid |
⊢ ( 𝜑 → ( 2 · 𝐾 ) ≤ ( 2 · ( ( 2 · 𝑁 ) / 3 ) ) ) |
| 348 |
22
|
nncnd |
⊢ ( 𝜑 → ( 2 · 𝑁 ) ∈ ℂ ) |
| 349 |
|
3ne0 |
⊢ 3 ≠ 0 |
| 350 |
288 349
|
pm3.2i |
⊢ ( 3 ∈ ℂ ∧ 3 ≠ 0 ) |
| 351 |
|
divass |
⊢ ( ( 2 ∈ ℂ ∧ ( 2 · 𝑁 ) ∈ ℂ ∧ ( 3 ∈ ℂ ∧ 3 ≠ 0 ) ) → ( ( 2 · ( 2 · 𝑁 ) ) / 3 ) = ( 2 · ( ( 2 · 𝑁 ) / 3 ) ) ) |
| 352 |
289 350 351
|
mp3an13 |
⊢ ( ( 2 · 𝑁 ) ∈ ℂ → ( ( 2 · ( 2 · 𝑁 ) ) / 3 ) = ( 2 · ( ( 2 · 𝑁 ) / 3 ) ) ) |
| 353 |
348 352
|
syl |
⊢ ( 𝜑 → ( ( 2 · ( 2 · 𝑁 ) ) / 3 ) = ( 2 · ( ( 2 · 𝑁 ) / 3 ) ) ) |
| 354 |
9
|
nncnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 355 |
|
mulass |
⊢ ( ( 2 ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( ( 2 · 2 ) · 𝑁 ) = ( 2 · ( 2 · 𝑁 ) ) ) |
| 356 |
289 289 354 355
|
mp3an12i |
⊢ ( 𝜑 → ( ( 2 · 2 ) · 𝑁 ) = ( 2 · ( 2 · 𝑁 ) ) ) |
| 357 |
|
2t2e4 |
⊢ ( 2 · 2 ) = 4 |
| 358 |
357
|
oveq1i |
⊢ ( ( 2 · 2 ) · 𝑁 ) = ( 4 · 𝑁 ) |
| 359 |
356 358
|
eqtr3di |
⊢ ( 𝜑 → ( 2 · ( 2 · 𝑁 ) ) = ( 4 · 𝑁 ) ) |
| 360 |
359
|
oveq1d |
⊢ ( 𝜑 → ( ( 2 · ( 2 · 𝑁 ) ) / 3 ) = ( ( 4 · 𝑁 ) / 3 ) ) |
| 361 |
353 360
|
eqtr3d |
⊢ ( 𝜑 → ( 2 · ( ( 2 · 𝑁 ) / 3 ) ) = ( ( 4 · 𝑁 ) / 3 ) ) |
| 362 |
347 361
|
breqtrd |
⊢ ( 𝜑 → ( 2 · 𝐾 ) ≤ ( ( 4 · 𝑁 ) / 3 ) ) |
| 363 |
337 40 338 362
|
lesub1dd |
⊢ ( 𝜑 → ( ( 2 · 𝐾 ) − 5 ) ≤ ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) ) |
| 364 |
|
1lt2 |
⊢ 1 < 2 |
| 365 |
364
|
a1i |
⊢ ( 𝜑 → 1 < 2 ) |
| 366 |
257 365 82 43
|
cxpled |
⊢ ( 𝜑 → ( ( ( 2 · 𝐾 ) − 5 ) ≤ ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) ↔ ( 2 ↑𝑐 ( ( 2 · 𝐾 ) − 5 ) ) ≤ ( 2 ↑𝑐 ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) ) ) ) |
| 367 |
363 366
|
mpbid |
⊢ ( 𝜑 → ( 2 ↑𝑐 ( ( 2 · 𝐾 ) − 5 ) ) ≤ ( 2 ↑𝑐 ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) ) ) |
| 368 |
85 46 33
|
lemul2d |
⊢ ( 𝜑 → ( ( 2 ↑𝑐 ( ( 2 · 𝐾 ) − 5 ) ) ≤ ( 2 ↑𝑐 ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) ) ↔ ( ( ( 2 · 𝑁 ) ↑𝑐 ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) ) · ( 2 ↑𝑐 ( ( 2 · 𝐾 ) − 5 ) ) ) ≤ ( ( ( 2 · 𝑁 ) ↑𝑐 ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) ) · ( 2 ↑𝑐 ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) ) ) ) ) |
| 369 |
367 368
|
mpbid |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) ↑𝑐 ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) ) · ( 2 ↑𝑐 ( ( 2 · 𝐾 ) − 5 ) ) ) ≤ ( ( ( 2 · 𝑁 ) ↑𝑐 ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) ) · ( 2 ↑𝑐 ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) ) ) ) |
| 370 |
86 333 47 336 369
|
letrd |
⊢ ( 𝜑 → ( ( seq 1 ( · , 𝐹 ) ‘ 𝑀 ) · ( 2 ↑𝑐 ( ( 2 · 𝐾 ) − 5 ) ) ) ≤ ( ( ( 2 · 𝑁 ) ↑𝑐 ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) ) · ( 2 ↑𝑐 ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) ) ) ) |
| 371 |
19 86 47 332 370
|
ltletrd |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) C 𝑁 ) < ( ( ( 2 · 𝑁 ) ↑𝑐 ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) ) · ( 2 ↑𝑐 ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) ) ) ) |
| 372 |
14 19 47 58 371
|
lttrd |
⊢ ( 𝜑 → ( ( 4 ↑ 𝑁 ) / 𝑁 ) < ( ( ( 2 · 𝑁 ) ↑𝑐 ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) ) · ( 2 ↑𝑐 ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) ) ) ) |