| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chtcl |
⊢ ( 𝐵 ∈ ℝ → ( θ ‘ 𝐵 ) ∈ ℝ ) |
| 2 |
1
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( θ ‘ 𝐵 ) ∈ ℝ ) |
| 3 |
2
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( θ ‘ 𝐵 ) ∈ ℂ ) |
| 4 |
|
chtcl |
⊢ ( 𝐴 ∈ ℝ → ( θ ‘ 𝐴 ) ∈ ℝ ) |
| 5 |
4
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( θ ‘ 𝐴 ) ∈ ℝ ) |
| 6 |
5
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( θ ‘ 𝐴 ) ∈ ℂ ) |
| 7 |
|
efsub |
⊢ ( ( ( θ ‘ 𝐵 ) ∈ ℂ ∧ ( θ ‘ 𝐴 ) ∈ ℂ ) → ( exp ‘ ( ( θ ‘ 𝐵 ) − ( θ ‘ 𝐴 ) ) ) = ( ( exp ‘ ( θ ‘ 𝐵 ) ) / ( exp ‘ ( θ ‘ 𝐴 ) ) ) ) |
| 8 |
3 6 7
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( exp ‘ ( ( θ ‘ 𝐵 ) − ( θ ‘ 𝐴 ) ) ) = ( ( exp ‘ ( θ ‘ 𝐵 ) ) / ( exp ‘ ( θ ‘ 𝐴 ) ) ) ) |
| 9 |
|
chtfl |
⊢ ( 𝐵 ∈ ℝ → ( θ ‘ ( ⌊ ‘ 𝐵 ) ) = ( θ ‘ 𝐵 ) ) |
| 10 |
9
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( θ ‘ ( ⌊ ‘ 𝐵 ) ) = ( θ ‘ 𝐵 ) ) |
| 11 |
|
chtfl |
⊢ ( 𝐴 ∈ ℝ → ( θ ‘ ( ⌊ ‘ 𝐴 ) ) = ( θ ‘ 𝐴 ) ) |
| 12 |
11
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( θ ‘ ( ⌊ ‘ 𝐴 ) ) = ( θ ‘ 𝐴 ) ) |
| 13 |
10 12
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ( θ ‘ ( ⌊ ‘ 𝐵 ) ) − ( θ ‘ ( ⌊ ‘ 𝐴 ) ) ) = ( ( θ ‘ 𝐵 ) − ( θ ‘ 𝐴 ) ) ) |
| 14 |
|
flword2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ⌊ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝐴 ) ) ) |
| 15 |
|
chtdif |
⊢ ( ( ⌊ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝐴 ) ) → ( ( θ ‘ ( ⌊ ‘ 𝐵 ) ) − ( θ ‘ ( ⌊ ‘ 𝐴 ) ) ) = Σ 𝑝 ∈ ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
| 16 |
14 15
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ( θ ‘ ( ⌊ ‘ 𝐵 ) ) − ( θ ‘ ( ⌊ ‘ 𝐴 ) ) ) = Σ 𝑝 ∈ ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
| 17 |
13 16
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ( θ ‘ 𝐵 ) − ( θ ‘ 𝐴 ) ) = Σ 𝑝 ∈ ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
| 18 |
|
ssrab2 |
⊢ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ⊆ ℝ |
| 19 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 20 |
18 19
|
sstri |
⊢ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ⊆ ℂ |
| 21 |
20
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ⊆ ℂ ) |
| 22 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( exp ‘ 𝑥 ) = ( exp ‘ 𝑦 ) ) |
| 23 |
22
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( exp ‘ 𝑥 ) ∈ ℕ ↔ ( exp ‘ 𝑦 ) ∈ ℕ ) ) |
| 24 |
23
|
elrab |
⊢ ( 𝑦 ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ↔ ( 𝑦 ∈ ℝ ∧ ( exp ‘ 𝑦 ) ∈ ℕ ) ) |
| 25 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( exp ‘ 𝑥 ) = ( exp ‘ 𝑧 ) ) |
| 26 |
25
|
eleq1d |
⊢ ( 𝑥 = 𝑧 → ( ( exp ‘ 𝑥 ) ∈ ℕ ↔ ( exp ‘ 𝑧 ) ∈ ℕ ) ) |
| 27 |
26
|
elrab |
⊢ ( 𝑧 ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ↔ ( 𝑧 ∈ ℝ ∧ ( exp ‘ 𝑧 ) ∈ ℕ ) ) |
| 28 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑦 + 𝑧 ) → ( exp ‘ 𝑥 ) = ( exp ‘ ( 𝑦 + 𝑧 ) ) ) |
| 29 |
28
|
eleq1d |
⊢ ( 𝑥 = ( 𝑦 + 𝑧 ) → ( ( exp ‘ 𝑥 ) ∈ ℕ ↔ ( exp ‘ ( 𝑦 + 𝑧 ) ) ∈ ℕ ) ) |
| 30 |
|
simpll |
⊢ ( ( ( 𝑦 ∈ ℝ ∧ ( exp ‘ 𝑦 ) ∈ ℕ ) ∧ ( 𝑧 ∈ ℝ ∧ ( exp ‘ 𝑧 ) ∈ ℕ ) ) → 𝑦 ∈ ℝ ) |
| 31 |
|
simprl |
⊢ ( ( ( 𝑦 ∈ ℝ ∧ ( exp ‘ 𝑦 ) ∈ ℕ ) ∧ ( 𝑧 ∈ ℝ ∧ ( exp ‘ 𝑧 ) ∈ ℕ ) ) → 𝑧 ∈ ℝ ) |
| 32 |
30 31
|
readdcld |
⊢ ( ( ( 𝑦 ∈ ℝ ∧ ( exp ‘ 𝑦 ) ∈ ℕ ) ∧ ( 𝑧 ∈ ℝ ∧ ( exp ‘ 𝑧 ) ∈ ℕ ) ) → ( 𝑦 + 𝑧 ) ∈ ℝ ) |
| 33 |
30
|
recnd |
⊢ ( ( ( 𝑦 ∈ ℝ ∧ ( exp ‘ 𝑦 ) ∈ ℕ ) ∧ ( 𝑧 ∈ ℝ ∧ ( exp ‘ 𝑧 ) ∈ ℕ ) ) → 𝑦 ∈ ℂ ) |
| 34 |
31
|
recnd |
⊢ ( ( ( 𝑦 ∈ ℝ ∧ ( exp ‘ 𝑦 ) ∈ ℕ ) ∧ ( 𝑧 ∈ ℝ ∧ ( exp ‘ 𝑧 ) ∈ ℕ ) ) → 𝑧 ∈ ℂ ) |
| 35 |
|
efadd |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( exp ‘ ( 𝑦 + 𝑧 ) ) = ( ( exp ‘ 𝑦 ) · ( exp ‘ 𝑧 ) ) ) |
| 36 |
33 34 35
|
syl2anc |
⊢ ( ( ( 𝑦 ∈ ℝ ∧ ( exp ‘ 𝑦 ) ∈ ℕ ) ∧ ( 𝑧 ∈ ℝ ∧ ( exp ‘ 𝑧 ) ∈ ℕ ) ) → ( exp ‘ ( 𝑦 + 𝑧 ) ) = ( ( exp ‘ 𝑦 ) · ( exp ‘ 𝑧 ) ) ) |
| 37 |
|
nnmulcl |
⊢ ( ( ( exp ‘ 𝑦 ) ∈ ℕ ∧ ( exp ‘ 𝑧 ) ∈ ℕ ) → ( ( exp ‘ 𝑦 ) · ( exp ‘ 𝑧 ) ) ∈ ℕ ) |
| 38 |
37
|
ad2ant2l |
⊢ ( ( ( 𝑦 ∈ ℝ ∧ ( exp ‘ 𝑦 ) ∈ ℕ ) ∧ ( 𝑧 ∈ ℝ ∧ ( exp ‘ 𝑧 ) ∈ ℕ ) ) → ( ( exp ‘ 𝑦 ) · ( exp ‘ 𝑧 ) ) ∈ ℕ ) |
| 39 |
36 38
|
eqeltrd |
⊢ ( ( ( 𝑦 ∈ ℝ ∧ ( exp ‘ 𝑦 ) ∈ ℕ ) ∧ ( 𝑧 ∈ ℝ ∧ ( exp ‘ 𝑧 ) ∈ ℕ ) ) → ( exp ‘ ( 𝑦 + 𝑧 ) ) ∈ ℕ ) |
| 40 |
29 32 39
|
elrabd |
⊢ ( ( ( 𝑦 ∈ ℝ ∧ ( exp ‘ 𝑦 ) ∈ ℕ ) ∧ ( 𝑧 ∈ ℝ ∧ ( exp ‘ 𝑧 ) ∈ ℕ ) ) → ( 𝑦 + 𝑧 ) ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ) |
| 41 |
24 27 40
|
syl2anb |
⊢ ( ( 𝑦 ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ∧ 𝑧 ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ) → ( 𝑦 + 𝑧 ) ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ) |
| 42 |
41
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ ( 𝑦 ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ∧ 𝑧 ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ) ) → ( 𝑦 + 𝑧 ) ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ) |
| 43 |
|
fzfid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ∈ Fin ) |
| 44 |
|
inss1 |
⊢ ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ∩ ℙ ) ⊆ ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) |
| 45 |
|
ssfi |
⊢ ( ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ∈ Fin ∧ ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ∩ ℙ ) ⊆ ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ) → ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ∩ ℙ ) ∈ Fin ) |
| 46 |
43 44 45
|
sylancl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ∩ ℙ ) ∈ Fin ) |
| 47 |
|
fveq2 |
⊢ ( 𝑥 = ( log ‘ 𝑝 ) → ( exp ‘ 𝑥 ) = ( exp ‘ ( log ‘ 𝑝 ) ) ) |
| 48 |
47
|
eleq1d |
⊢ ( 𝑥 = ( log ‘ 𝑝 ) → ( ( exp ‘ 𝑥 ) ∈ ℕ ↔ ( exp ‘ ( log ‘ 𝑝 ) ) ∈ ℕ ) ) |
| 49 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑝 ∈ ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ∩ ℙ ) ) → 𝑝 ∈ ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ∩ ℙ ) ) |
| 50 |
49
|
elin2d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑝 ∈ ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ∩ ℙ ) ) → 𝑝 ∈ ℙ ) |
| 51 |
|
prmnn |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℕ ) |
| 52 |
50 51
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑝 ∈ ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ∩ ℙ ) ) → 𝑝 ∈ ℕ ) |
| 53 |
52
|
nnrpd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑝 ∈ ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ∩ ℙ ) ) → 𝑝 ∈ ℝ+ ) |
| 54 |
53
|
relogcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑝 ∈ ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ∩ ℙ ) ) → ( log ‘ 𝑝 ) ∈ ℝ ) |
| 55 |
53
|
reeflogd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑝 ∈ ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ∩ ℙ ) ) → ( exp ‘ ( log ‘ 𝑝 ) ) = 𝑝 ) |
| 56 |
55 52
|
eqeltrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑝 ∈ ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ∩ ℙ ) ) → ( exp ‘ ( log ‘ 𝑝 ) ) ∈ ℕ ) |
| 57 |
48 54 56
|
elrabd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑝 ∈ ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ∩ ℙ ) ) → ( log ‘ 𝑝 ) ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ) |
| 58 |
|
0re |
⊢ 0 ∈ ℝ |
| 59 |
|
1nn |
⊢ 1 ∈ ℕ |
| 60 |
|
fveq2 |
⊢ ( 𝑥 = 0 → ( exp ‘ 𝑥 ) = ( exp ‘ 0 ) ) |
| 61 |
|
ef0 |
⊢ ( exp ‘ 0 ) = 1 |
| 62 |
60 61
|
eqtrdi |
⊢ ( 𝑥 = 0 → ( exp ‘ 𝑥 ) = 1 ) |
| 63 |
62
|
eleq1d |
⊢ ( 𝑥 = 0 → ( ( exp ‘ 𝑥 ) ∈ ℕ ↔ 1 ∈ ℕ ) ) |
| 64 |
63
|
elrab |
⊢ ( 0 ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ↔ ( 0 ∈ ℝ ∧ 1 ∈ ℕ ) ) |
| 65 |
58 59 64
|
mpbir2an |
⊢ 0 ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } |
| 66 |
65
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → 0 ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ) |
| 67 |
21 42 46 57 66
|
fsumcllem |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → Σ 𝑝 ∈ ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ∩ ℙ ) ( log ‘ 𝑝 ) ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ) |
| 68 |
17 67
|
eqeltrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ( θ ‘ 𝐵 ) − ( θ ‘ 𝐴 ) ) ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ) |
| 69 |
|
fveq2 |
⊢ ( 𝑥 = ( ( θ ‘ 𝐵 ) − ( θ ‘ 𝐴 ) ) → ( exp ‘ 𝑥 ) = ( exp ‘ ( ( θ ‘ 𝐵 ) − ( θ ‘ 𝐴 ) ) ) ) |
| 70 |
69
|
eleq1d |
⊢ ( 𝑥 = ( ( θ ‘ 𝐵 ) − ( θ ‘ 𝐴 ) ) → ( ( exp ‘ 𝑥 ) ∈ ℕ ↔ ( exp ‘ ( ( θ ‘ 𝐵 ) − ( θ ‘ 𝐴 ) ) ) ∈ ℕ ) ) |
| 71 |
70
|
elrab |
⊢ ( ( ( θ ‘ 𝐵 ) − ( θ ‘ 𝐴 ) ) ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ↔ ( ( ( θ ‘ 𝐵 ) − ( θ ‘ 𝐴 ) ) ∈ ℝ ∧ ( exp ‘ ( ( θ ‘ 𝐵 ) − ( θ ‘ 𝐴 ) ) ) ∈ ℕ ) ) |
| 72 |
71
|
simprbi |
⊢ ( ( ( θ ‘ 𝐵 ) − ( θ ‘ 𝐴 ) ) ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } → ( exp ‘ ( ( θ ‘ 𝐵 ) − ( θ ‘ 𝐴 ) ) ) ∈ ℕ ) |
| 73 |
68 72
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( exp ‘ ( ( θ ‘ 𝐵 ) − ( θ ‘ 𝐴 ) ) ) ∈ ℕ ) |
| 74 |
8 73
|
eqeltrrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ( exp ‘ ( θ ‘ 𝐵 ) ) / ( exp ‘ ( θ ‘ 𝐴 ) ) ) ∈ ℕ ) |
| 75 |
74
|
nnzd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ( exp ‘ ( θ ‘ 𝐵 ) ) / ( exp ‘ ( θ ‘ 𝐴 ) ) ) ∈ ℤ ) |
| 76 |
|
efchtcl |
⊢ ( 𝐴 ∈ ℝ → ( exp ‘ ( θ ‘ 𝐴 ) ) ∈ ℕ ) |
| 77 |
76
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( exp ‘ ( θ ‘ 𝐴 ) ) ∈ ℕ ) |
| 78 |
77
|
nnzd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( exp ‘ ( θ ‘ 𝐴 ) ) ∈ ℤ ) |
| 79 |
77
|
nnne0d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( exp ‘ ( θ ‘ 𝐴 ) ) ≠ 0 ) |
| 80 |
|
efchtcl |
⊢ ( 𝐵 ∈ ℝ → ( exp ‘ ( θ ‘ 𝐵 ) ) ∈ ℕ ) |
| 81 |
80
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( exp ‘ ( θ ‘ 𝐵 ) ) ∈ ℕ ) |
| 82 |
81
|
nnzd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( exp ‘ ( θ ‘ 𝐵 ) ) ∈ ℤ ) |
| 83 |
|
dvdsval2 |
⊢ ( ( ( exp ‘ ( θ ‘ 𝐴 ) ) ∈ ℤ ∧ ( exp ‘ ( θ ‘ 𝐴 ) ) ≠ 0 ∧ ( exp ‘ ( θ ‘ 𝐵 ) ) ∈ ℤ ) → ( ( exp ‘ ( θ ‘ 𝐴 ) ) ∥ ( exp ‘ ( θ ‘ 𝐵 ) ) ↔ ( ( exp ‘ ( θ ‘ 𝐵 ) ) / ( exp ‘ ( θ ‘ 𝐴 ) ) ) ∈ ℤ ) ) |
| 84 |
78 79 82 83
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ( exp ‘ ( θ ‘ 𝐴 ) ) ∥ ( exp ‘ ( θ ‘ 𝐵 ) ) ↔ ( ( exp ‘ ( θ ‘ 𝐵 ) ) / ( exp ‘ ( θ ‘ 𝐴 ) ) ) ∈ ℤ ) ) |
| 85 |
75 84
|
mpbird |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( exp ‘ ( θ ‘ 𝐴 ) ) ∥ ( exp ‘ ( θ ‘ 𝐵 ) ) ) |