Step |
Hyp |
Ref |
Expression |
1 |
|
chtcl |
|- ( B e. RR -> ( theta ` B ) e. RR ) |
2 |
1
|
3ad2ant2 |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( theta ` B ) e. RR ) |
3 |
2
|
recnd |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( theta ` B ) e. CC ) |
4 |
|
chtcl |
|- ( A e. RR -> ( theta ` A ) e. RR ) |
5 |
4
|
3ad2ant1 |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( theta ` A ) e. RR ) |
6 |
5
|
recnd |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( theta ` A ) e. CC ) |
7 |
|
efsub |
|- ( ( ( theta ` B ) e. CC /\ ( theta ` A ) e. CC ) -> ( exp ` ( ( theta ` B ) - ( theta ` A ) ) ) = ( ( exp ` ( theta ` B ) ) / ( exp ` ( theta ` A ) ) ) ) |
8 |
3 6 7
|
syl2anc |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( exp ` ( ( theta ` B ) - ( theta ` A ) ) ) = ( ( exp ` ( theta ` B ) ) / ( exp ` ( theta ` A ) ) ) ) |
9 |
|
chtfl |
|- ( B e. RR -> ( theta ` ( |_ ` B ) ) = ( theta ` B ) ) |
10 |
9
|
3ad2ant2 |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( theta ` ( |_ ` B ) ) = ( theta ` B ) ) |
11 |
|
chtfl |
|- ( A e. RR -> ( theta ` ( |_ ` A ) ) = ( theta ` A ) ) |
12 |
11
|
3ad2ant1 |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( theta ` ( |_ ` A ) ) = ( theta ` A ) ) |
13 |
10 12
|
oveq12d |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( ( theta ` ( |_ ` B ) ) - ( theta ` ( |_ ` A ) ) ) = ( ( theta ` B ) - ( theta ` A ) ) ) |
14 |
|
flword2 |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( |_ ` B ) e. ( ZZ>= ` ( |_ ` A ) ) ) |
15 |
|
chtdif |
|- ( ( |_ ` B ) e. ( ZZ>= ` ( |_ ` A ) ) -> ( ( theta ` ( |_ ` B ) ) - ( theta ` ( |_ ` A ) ) ) = sum_ p e. ( ( ( ( |_ ` A ) + 1 ) ... ( |_ ` B ) ) i^i Prime ) ( log ` p ) ) |
16 |
14 15
|
syl |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( ( theta ` ( |_ ` B ) ) - ( theta ` ( |_ ` A ) ) ) = sum_ p e. ( ( ( ( |_ ` A ) + 1 ) ... ( |_ ` B ) ) i^i Prime ) ( log ` p ) ) |
17 |
13 16
|
eqtr3d |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( ( theta ` B ) - ( theta ` A ) ) = sum_ p e. ( ( ( ( |_ ` A ) + 1 ) ... ( |_ ` B ) ) i^i Prime ) ( log ` p ) ) |
18 |
|
ssrab2 |
|- { x e. RR | ( exp ` x ) e. NN } C_ RR |
19 |
|
ax-resscn |
|- RR C_ CC |
20 |
18 19
|
sstri |
|- { x e. RR | ( exp ` x ) e. NN } C_ CC |
21 |
20
|
a1i |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> { x e. RR | ( exp ` x ) e. NN } C_ CC ) |
22 |
|
fveq2 |
|- ( x = y -> ( exp ` x ) = ( exp ` y ) ) |
23 |
22
|
eleq1d |
|- ( x = y -> ( ( exp ` x ) e. NN <-> ( exp ` y ) e. NN ) ) |
24 |
23
|
elrab |
|- ( y e. { x e. RR | ( exp ` x ) e. NN } <-> ( y e. RR /\ ( exp ` y ) e. NN ) ) |
25 |
|
fveq2 |
|- ( x = z -> ( exp ` x ) = ( exp ` z ) ) |
26 |
25
|
eleq1d |
|- ( x = z -> ( ( exp ` x ) e. NN <-> ( exp ` z ) e. NN ) ) |
27 |
26
|
elrab |
|- ( z e. { x e. RR | ( exp ` x ) e. NN } <-> ( z e. RR /\ ( exp ` z ) e. NN ) ) |
28 |
|
fveq2 |
|- ( x = ( y + z ) -> ( exp ` x ) = ( exp ` ( y + z ) ) ) |
29 |
28
|
eleq1d |
|- ( x = ( y + z ) -> ( ( exp ` x ) e. NN <-> ( exp ` ( y + z ) ) e. NN ) ) |
30 |
|
simpll |
|- ( ( ( y e. RR /\ ( exp ` y ) e. NN ) /\ ( z e. RR /\ ( exp ` z ) e. NN ) ) -> y e. RR ) |
31 |
|
simprl |
|- ( ( ( y e. RR /\ ( exp ` y ) e. NN ) /\ ( z e. RR /\ ( exp ` z ) e. NN ) ) -> z e. RR ) |
32 |
30 31
|
readdcld |
|- ( ( ( y e. RR /\ ( exp ` y ) e. NN ) /\ ( z e. RR /\ ( exp ` z ) e. NN ) ) -> ( y + z ) e. RR ) |
33 |
30
|
recnd |
|- ( ( ( y e. RR /\ ( exp ` y ) e. NN ) /\ ( z e. RR /\ ( exp ` z ) e. NN ) ) -> y e. CC ) |
34 |
31
|
recnd |
|- ( ( ( y e. RR /\ ( exp ` y ) e. NN ) /\ ( z e. RR /\ ( exp ` z ) e. NN ) ) -> z e. CC ) |
35 |
|
efadd |
|- ( ( y e. CC /\ z e. CC ) -> ( exp ` ( y + z ) ) = ( ( exp ` y ) x. ( exp ` z ) ) ) |
36 |
33 34 35
|
syl2anc |
|- ( ( ( y e. RR /\ ( exp ` y ) e. NN ) /\ ( z e. RR /\ ( exp ` z ) e. NN ) ) -> ( exp ` ( y + z ) ) = ( ( exp ` y ) x. ( exp ` z ) ) ) |
37 |
|
nnmulcl |
|- ( ( ( exp ` y ) e. NN /\ ( exp ` z ) e. NN ) -> ( ( exp ` y ) x. ( exp ` z ) ) e. NN ) |
38 |
37
|
ad2ant2l |
|- ( ( ( y e. RR /\ ( exp ` y ) e. NN ) /\ ( z e. RR /\ ( exp ` z ) e. NN ) ) -> ( ( exp ` y ) x. ( exp ` z ) ) e. NN ) |
39 |
36 38
|
eqeltrd |
|- ( ( ( y e. RR /\ ( exp ` y ) e. NN ) /\ ( z e. RR /\ ( exp ` z ) e. NN ) ) -> ( exp ` ( y + z ) ) e. NN ) |
40 |
29 32 39
|
elrabd |
|- ( ( ( y e. RR /\ ( exp ` y ) e. NN ) /\ ( z e. RR /\ ( exp ` z ) e. NN ) ) -> ( y + z ) e. { x e. RR | ( exp ` x ) e. NN } ) |
41 |
24 27 40
|
syl2anb |
|- ( ( y e. { x e. RR | ( exp ` x ) e. NN } /\ z e. { x e. RR | ( exp ` x ) e. NN } ) -> ( y + z ) e. { x e. RR | ( exp ` x ) e. NN } ) |
42 |
41
|
adantl |
|- ( ( ( A e. RR /\ B e. RR /\ A <_ B ) /\ ( y e. { x e. RR | ( exp ` x ) e. NN } /\ z e. { x e. RR | ( exp ` x ) e. NN } ) ) -> ( y + z ) e. { x e. RR | ( exp ` x ) e. NN } ) |
43 |
|
fzfid |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( ( ( |_ ` A ) + 1 ) ... ( |_ ` B ) ) e. Fin ) |
44 |
|
inss1 |
|- ( ( ( ( |_ ` A ) + 1 ) ... ( |_ ` B ) ) i^i Prime ) C_ ( ( ( |_ ` A ) + 1 ) ... ( |_ ` B ) ) |
45 |
|
ssfi |
|- ( ( ( ( ( |_ ` A ) + 1 ) ... ( |_ ` B ) ) e. Fin /\ ( ( ( ( |_ ` A ) + 1 ) ... ( |_ ` B ) ) i^i Prime ) C_ ( ( ( |_ ` A ) + 1 ) ... ( |_ ` B ) ) ) -> ( ( ( ( |_ ` A ) + 1 ) ... ( |_ ` B ) ) i^i Prime ) e. Fin ) |
46 |
43 44 45
|
sylancl |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( ( ( ( |_ ` A ) + 1 ) ... ( |_ ` B ) ) i^i Prime ) e. Fin ) |
47 |
|
fveq2 |
|- ( x = ( log ` p ) -> ( exp ` x ) = ( exp ` ( log ` p ) ) ) |
48 |
47
|
eleq1d |
|- ( x = ( log ` p ) -> ( ( exp ` x ) e. NN <-> ( exp ` ( log ` p ) ) e. NN ) ) |
49 |
|
simpr |
|- ( ( ( A e. RR /\ B e. RR /\ A <_ B ) /\ p e. ( ( ( ( |_ ` A ) + 1 ) ... ( |_ ` B ) ) i^i Prime ) ) -> p e. ( ( ( ( |_ ` A ) + 1 ) ... ( |_ ` B ) ) i^i Prime ) ) |
50 |
49
|
elin2d |
|- ( ( ( A e. RR /\ B e. RR /\ A <_ B ) /\ p e. ( ( ( ( |_ ` A ) + 1 ) ... ( |_ ` B ) ) i^i Prime ) ) -> p e. Prime ) |
51 |
|
prmnn |
|- ( p e. Prime -> p e. NN ) |
52 |
50 51
|
syl |
|- ( ( ( A e. RR /\ B e. RR /\ A <_ B ) /\ p e. ( ( ( ( |_ ` A ) + 1 ) ... ( |_ ` B ) ) i^i Prime ) ) -> p e. NN ) |
53 |
52
|
nnrpd |
|- ( ( ( A e. RR /\ B e. RR /\ A <_ B ) /\ p e. ( ( ( ( |_ ` A ) + 1 ) ... ( |_ ` B ) ) i^i Prime ) ) -> p e. RR+ ) |
54 |
53
|
relogcld |
|- ( ( ( A e. RR /\ B e. RR /\ A <_ B ) /\ p e. ( ( ( ( |_ ` A ) + 1 ) ... ( |_ ` B ) ) i^i Prime ) ) -> ( log ` p ) e. RR ) |
55 |
53
|
reeflogd |
|- ( ( ( A e. RR /\ B e. RR /\ A <_ B ) /\ p e. ( ( ( ( |_ ` A ) + 1 ) ... ( |_ ` B ) ) i^i Prime ) ) -> ( exp ` ( log ` p ) ) = p ) |
56 |
55 52
|
eqeltrd |
|- ( ( ( A e. RR /\ B e. RR /\ A <_ B ) /\ p e. ( ( ( ( |_ ` A ) + 1 ) ... ( |_ ` B ) ) i^i Prime ) ) -> ( exp ` ( log ` p ) ) e. NN ) |
57 |
48 54 56
|
elrabd |
|- ( ( ( A e. RR /\ B e. RR /\ A <_ B ) /\ p e. ( ( ( ( |_ ` A ) + 1 ) ... ( |_ ` B ) ) i^i Prime ) ) -> ( log ` p ) e. { x e. RR | ( exp ` x ) e. NN } ) |
58 |
|
0re |
|- 0 e. RR |
59 |
|
1nn |
|- 1 e. NN |
60 |
|
fveq2 |
|- ( x = 0 -> ( exp ` x ) = ( exp ` 0 ) ) |
61 |
|
ef0 |
|- ( exp ` 0 ) = 1 |
62 |
60 61
|
eqtrdi |
|- ( x = 0 -> ( exp ` x ) = 1 ) |
63 |
62
|
eleq1d |
|- ( x = 0 -> ( ( exp ` x ) e. NN <-> 1 e. NN ) ) |
64 |
63
|
elrab |
|- ( 0 e. { x e. RR | ( exp ` x ) e. NN } <-> ( 0 e. RR /\ 1 e. NN ) ) |
65 |
58 59 64
|
mpbir2an |
|- 0 e. { x e. RR | ( exp ` x ) e. NN } |
66 |
65
|
a1i |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> 0 e. { x e. RR | ( exp ` x ) e. NN } ) |
67 |
21 42 46 57 66
|
fsumcllem |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> sum_ p e. ( ( ( ( |_ ` A ) + 1 ) ... ( |_ ` B ) ) i^i Prime ) ( log ` p ) e. { x e. RR | ( exp ` x ) e. NN } ) |
68 |
17 67
|
eqeltrd |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( ( theta ` B ) - ( theta ` A ) ) e. { x e. RR | ( exp ` x ) e. NN } ) |
69 |
|
fveq2 |
|- ( x = ( ( theta ` B ) - ( theta ` A ) ) -> ( exp ` x ) = ( exp ` ( ( theta ` B ) - ( theta ` A ) ) ) ) |
70 |
69
|
eleq1d |
|- ( x = ( ( theta ` B ) - ( theta ` A ) ) -> ( ( exp ` x ) e. NN <-> ( exp ` ( ( theta ` B ) - ( theta ` A ) ) ) e. NN ) ) |
71 |
70
|
elrab |
|- ( ( ( theta ` B ) - ( theta ` A ) ) e. { x e. RR | ( exp ` x ) e. NN } <-> ( ( ( theta ` B ) - ( theta ` A ) ) e. RR /\ ( exp ` ( ( theta ` B ) - ( theta ` A ) ) ) e. NN ) ) |
72 |
71
|
simprbi |
|- ( ( ( theta ` B ) - ( theta ` A ) ) e. { x e. RR | ( exp ` x ) e. NN } -> ( exp ` ( ( theta ` B ) - ( theta ` A ) ) ) e. NN ) |
73 |
68 72
|
syl |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( exp ` ( ( theta ` B ) - ( theta ` A ) ) ) e. NN ) |
74 |
8 73
|
eqeltrrd |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( ( exp ` ( theta ` B ) ) / ( exp ` ( theta ` A ) ) ) e. NN ) |
75 |
74
|
nnzd |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( ( exp ` ( theta ` B ) ) / ( exp ` ( theta ` A ) ) ) e. ZZ ) |
76 |
|
efchtcl |
|- ( A e. RR -> ( exp ` ( theta ` A ) ) e. NN ) |
77 |
76
|
3ad2ant1 |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( exp ` ( theta ` A ) ) e. NN ) |
78 |
77
|
nnzd |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( exp ` ( theta ` A ) ) e. ZZ ) |
79 |
77
|
nnne0d |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( exp ` ( theta ` A ) ) =/= 0 ) |
80 |
|
efchtcl |
|- ( B e. RR -> ( exp ` ( theta ` B ) ) e. NN ) |
81 |
80
|
3ad2ant2 |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( exp ` ( theta ` B ) ) e. NN ) |
82 |
81
|
nnzd |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( exp ` ( theta ` B ) ) e. ZZ ) |
83 |
|
dvdsval2 |
|- ( ( ( exp ` ( theta ` A ) ) e. ZZ /\ ( exp ` ( theta ` A ) ) =/= 0 /\ ( exp ` ( theta ` B ) ) e. ZZ ) -> ( ( exp ` ( theta ` A ) ) || ( exp ` ( theta ` B ) ) <-> ( ( exp ` ( theta ` B ) ) / ( exp ` ( theta ` A ) ) ) e. ZZ ) ) |
84 |
78 79 82 83
|
syl3anc |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( ( exp ` ( theta ` A ) ) || ( exp ` ( theta ` B ) ) <-> ( ( exp ` ( theta ` B ) ) / ( exp ` ( theta ` A ) ) ) e. ZZ ) ) |
85 |
75 84
|
mpbird |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( exp ` ( theta ` A ) ) || ( exp ` ( theta ` B ) ) ) |