| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chtcl |
|
| 2 |
1
|
3ad2ant2 |
|
| 3 |
2
|
recnd |
|
| 4 |
|
chtcl |
|
| 5 |
4
|
3ad2ant1 |
|
| 6 |
5
|
recnd |
|
| 7 |
|
efsub |
|
| 8 |
3 6 7
|
syl2anc |
|
| 9 |
|
chtfl |
|
| 10 |
9
|
3ad2ant2 |
|
| 11 |
|
chtfl |
|
| 12 |
11
|
3ad2ant1 |
|
| 13 |
10 12
|
oveq12d |
|
| 14 |
|
flword2 |
|
| 15 |
|
chtdif |
|
| 16 |
14 15
|
syl |
|
| 17 |
13 16
|
eqtr3d |
|
| 18 |
|
ssrab2 |
|
| 19 |
|
ax-resscn |
|
| 20 |
18 19
|
sstri |
|
| 21 |
20
|
a1i |
|
| 22 |
|
fveq2 |
|
| 23 |
22
|
eleq1d |
|
| 24 |
23
|
elrab |
|
| 25 |
|
fveq2 |
|
| 26 |
25
|
eleq1d |
|
| 27 |
26
|
elrab |
|
| 28 |
|
fveq2 |
|
| 29 |
28
|
eleq1d |
|
| 30 |
|
simpll |
|
| 31 |
|
simprl |
|
| 32 |
30 31
|
readdcld |
|
| 33 |
30
|
recnd |
|
| 34 |
31
|
recnd |
|
| 35 |
|
efadd |
|
| 36 |
33 34 35
|
syl2anc |
|
| 37 |
|
nnmulcl |
|
| 38 |
37
|
ad2ant2l |
|
| 39 |
36 38
|
eqeltrd |
|
| 40 |
29 32 39
|
elrabd |
|
| 41 |
24 27 40
|
syl2anb |
|
| 42 |
41
|
adantl |
|
| 43 |
|
fzfid |
|
| 44 |
|
inss1 |
|
| 45 |
|
ssfi |
|
| 46 |
43 44 45
|
sylancl |
|
| 47 |
|
fveq2 |
|
| 48 |
47
|
eleq1d |
|
| 49 |
|
simpr |
|
| 50 |
49
|
elin2d |
|
| 51 |
|
prmnn |
|
| 52 |
50 51
|
syl |
|
| 53 |
52
|
nnrpd |
|
| 54 |
53
|
relogcld |
|
| 55 |
53
|
reeflogd |
|
| 56 |
55 52
|
eqeltrd |
|
| 57 |
48 54 56
|
elrabd |
|
| 58 |
|
0re |
|
| 59 |
|
1nn |
|
| 60 |
|
fveq2 |
|
| 61 |
|
ef0 |
|
| 62 |
60 61
|
eqtrdi |
|
| 63 |
62
|
eleq1d |
|
| 64 |
63
|
elrab |
|
| 65 |
58 59 64
|
mpbir2an |
|
| 66 |
65
|
a1i |
|
| 67 |
21 42 46 57 66
|
fsumcllem |
|
| 68 |
17 67
|
eqeltrd |
|
| 69 |
|
fveq2 |
|
| 70 |
69
|
eleq1d |
|
| 71 |
70
|
elrab |
|
| 72 |
71
|
simprbi |
|
| 73 |
68 72
|
syl |
|
| 74 |
8 73
|
eqeltrrd |
|
| 75 |
74
|
nnzd |
|
| 76 |
|
efchtcl |
|
| 77 |
76
|
3ad2ant1 |
|
| 78 |
77
|
nnzd |
|
| 79 |
77
|
nnne0d |
|
| 80 |
|
efchtcl |
|
| 81 |
80
|
3ad2ant2 |
|
| 82 |
81
|
nnzd |
|
| 83 |
|
dvdsval2 |
|
| 84 |
78 79 82 83
|
syl3anc |
|
| 85 |
75 84
|
mpbird |
|