| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fzfid |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → ( 1 ... ( 2 · 𝑁 ) ) ∈ Fin ) |
| 2 |
|
2nn |
⊢ 2 ∈ ℕ |
| 3 |
|
nnmulcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 2 · 𝑁 ) ∈ ℕ ) |
| 4 |
2 3
|
mpan |
⊢ ( 𝑁 ∈ ℕ → ( 2 · 𝑁 ) ∈ ℕ ) |
| 5 |
4
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( 2 · 𝑁 ) ∈ ℕ ) |
| 6 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
| 7 |
6
|
ad2antlr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → 𝑃 ∈ ℕ ) |
| 8 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) → 𝑘 ∈ ℕ ) |
| 9 |
8
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → 𝑘 ∈ ℕ ) |
| 10 |
9
|
nnnn0d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → 𝑘 ∈ ℕ0 ) |
| 11 |
7 10
|
nnexpcld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( 𝑃 ↑ 𝑘 ) ∈ ℕ ) |
| 12 |
|
nnrp |
⊢ ( ( 2 · 𝑁 ) ∈ ℕ → ( 2 · 𝑁 ) ∈ ℝ+ ) |
| 13 |
|
nnrp |
⊢ ( ( 𝑃 ↑ 𝑘 ) ∈ ℕ → ( 𝑃 ↑ 𝑘 ) ∈ ℝ+ ) |
| 14 |
|
rpdivcl |
⊢ ( ( ( 2 · 𝑁 ) ∈ ℝ+ ∧ ( 𝑃 ↑ 𝑘 ) ∈ ℝ+ ) → ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) ∈ ℝ+ ) |
| 15 |
12 13 14
|
syl2an |
⊢ ( ( ( 2 · 𝑁 ) ∈ ℕ ∧ ( 𝑃 ↑ 𝑘 ) ∈ ℕ ) → ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) ∈ ℝ+ ) |
| 16 |
5 11 15
|
syl2anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) ∈ ℝ+ ) |
| 17 |
16
|
rpred |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) ∈ ℝ ) |
| 18 |
17
|
flcld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( ⌊ ‘ ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) ) ∈ ℤ ) |
| 19 |
|
2z |
⊢ 2 ∈ ℤ |
| 20 |
|
simpll |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → 𝑁 ∈ ℕ ) |
| 21 |
|
nnrp |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ+ ) |
| 22 |
|
rpdivcl |
⊢ ( ( 𝑁 ∈ ℝ+ ∧ ( 𝑃 ↑ 𝑘 ) ∈ ℝ+ ) → ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ∈ ℝ+ ) |
| 23 |
21 13 22
|
syl2an |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ↑ 𝑘 ) ∈ ℕ ) → ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ∈ ℝ+ ) |
| 24 |
20 11 23
|
syl2anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ∈ ℝ+ ) |
| 25 |
24
|
rpred |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ∈ ℝ ) |
| 26 |
25
|
flcld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ∈ ℤ ) |
| 27 |
|
zmulcl |
⊢ ( ( 2 ∈ ℤ ∧ ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ∈ ℤ ) → ( 2 · ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ) ∈ ℤ ) |
| 28 |
19 26 27
|
sylancr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( 2 · ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ) ∈ ℤ ) |
| 29 |
18 28
|
zsubcld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( ( ⌊ ‘ ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) ) − ( 2 · ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ) ) ∈ ℤ ) |
| 30 |
29
|
zred |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( ( ⌊ ‘ ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) ) − ( 2 · ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ) ) ∈ ℝ ) |
| 31 |
|
1re |
⊢ 1 ∈ ℝ |
| 32 |
|
0re |
⊢ 0 ∈ ℝ |
| 33 |
31 32
|
ifcli |
⊢ if ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ) , 1 , 0 ) ∈ ℝ |
| 34 |
33
|
a1i |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → if ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ) , 1 , 0 ) ∈ ℝ ) |
| 35 |
28
|
zred |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( 2 · ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ) ∈ ℝ ) |
| 36 |
17 35
|
resubcld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) − ( 2 · ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ) ) ∈ ℝ ) |
| 37 |
|
2re |
⊢ 2 ∈ ℝ |
| 38 |
37
|
a1i |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → 2 ∈ ℝ ) |
| 39 |
18
|
zred |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( ⌊ ‘ ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) ) ∈ ℝ ) |
| 40 |
|
flle |
⊢ ( ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) ∈ ℝ → ( ⌊ ‘ ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) ) ≤ ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) ) |
| 41 |
17 40
|
syl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( ⌊ ‘ ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) ) ≤ ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) ) |
| 42 |
39 17 35 41
|
lesub1dd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( ( ⌊ ‘ ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) ) − ( 2 · ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ) ) ≤ ( ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) − ( 2 · ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ) ) ) |
| 43 |
|
resubcl |
⊢ ( ( ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) − 1 ) ∈ ℝ ) |
| 44 |
25 31 43
|
sylancl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) − 1 ) ∈ ℝ ) |
| 45 |
|
remulcl |
⊢ ( ( 2 ∈ ℝ ∧ ( ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) − 1 ) ∈ ℝ ) → ( 2 · ( ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) − 1 ) ) ∈ ℝ ) |
| 46 |
37 44 45
|
sylancr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( 2 · ( ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) − 1 ) ) ∈ ℝ ) |
| 47 |
|
flltp1 |
⊢ ( ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ∈ ℝ → ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) < ( ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) + 1 ) ) |
| 48 |
25 47
|
syl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) < ( ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) + 1 ) ) |
| 49 |
|
1red |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → 1 ∈ ℝ ) |
| 50 |
26
|
zred |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ∈ ℝ ) |
| 51 |
25 49 50
|
ltsubaddd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( ( ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) − 1 ) < ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ↔ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) < ( ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) + 1 ) ) ) |
| 52 |
48 51
|
mpbird |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) − 1 ) < ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ) |
| 53 |
|
2pos |
⊢ 0 < 2 |
| 54 |
37 53
|
pm3.2i |
⊢ ( 2 ∈ ℝ ∧ 0 < 2 ) |
| 55 |
|
ltmul2 |
⊢ ( ( ( ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) − 1 ) ∈ ℝ ∧ ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) − 1 ) < ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ↔ ( 2 · ( ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) − 1 ) ) < ( 2 · ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ) ) ) |
| 56 |
54 55
|
mp3an3 |
⊢ ( ( ( ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) − 1 ) ∈ ℝ ∧ ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ∈ ℝ ) → ( ( ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) − 1 ) < ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ↔ ( 2 · ( ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) − 1 ) ) < ( 2 · ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ) ) ) |
| 57 |
44 50 56
|
syl2anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( ( ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) − 1 ) < ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ↔ ( 2 · ( ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) − 1 ) ) < ( 2 · ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ) ) ) |
| 58 |
52 57
|
mpbid |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( 2 · ( ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) − 1 ) ) < ( 2 · ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ) ) |
| 59 |
46 35 17 58
|
ltsub2dd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) − ( 2 · ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ) ) < ( ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) − ( 2 · ( ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) − 1 ) ) ) ) |
| 60 |
|
2cnd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → 2 ∈ ℂ ) |
| 61 |
|
nncn |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) |
| 62 |
61
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → 𝑁 ∈ ℂ ) |
| 63 |
11
|
nncnd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( 𝑃 ↑ 𝑘 ) ∈ ℂ ) |
| 64 |
11
|
nnne0d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( 𝑃 ↑ 𝑘 ) ≠ 0 ) |
| 65 |
60 62 63 64
|
divassd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) = ( 2 · ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ) |
| 66 |
25
|
recnd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ∈ ℂ ) |
| 67 |
60 66
|
muls1d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( 2 · ( ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) − 1 ) ) = ( ( 2 · ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) − 2 ) ) |
| 68 |
65 67
|
oveq12d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) − ( 2 · ( ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) − 1 ) ) ) = ( ( 2 · ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) − ( ( 2 · ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) − 2 ) ) ) |
| 69 |
|
remulcl |
⊢ ( ( 2 ∈ ℝ ∧ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ∈ ℝ ) → ( 2 · ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ∈ ℝ ) |
| 70 |
37 25 69
|
sylancr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( 2 · ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ∈ ℝ ) |
| 71 |
70
|
recnd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( 2 · ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ∈ ℂ ) |
| 72 |
|
2cn |
⊢ 2 ∈ ℂ |
| 73 |
|
nncan |
⊢ ( ( ( 2 · ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ∈ ℂ ∧ 2 ∈ ℂ ) → ( ( 2 · ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) − ( ( 2 · ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) − 2 ) ) = 2 ) |
| 74 |
71 72 73
|
sylancl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( ( 2 · ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) − ( ( 2 · ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) − 2 ) ) = 2 ) |
| 75 |
68 74
|
eqtrd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) − ( 2 · ( ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) − 1 ) ) ) = 2 ) |
| 76 |
59 75
|
breqtrd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) − ( 2 · ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ) ) < 2 ) |
| 77 |
30 36 38 42 76
|
lelttrd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( ( ⌊ ‘ ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) ) − ( 2 · ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ) ) < 2 ) |
| 78 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
| 79 |
77 78
|
breqtrdi |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( ( ⌊ ‘ ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) ) − ( 2 · ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ) ) < ( 1 + 1 ) ) |
| 80 |
|
1z |
⊢ 1 ∈ ℤ |
| 81 |
|
zleltp1 |
⊢ ( ( ( ( ⌊ ‘ ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) ) − ( 2 · ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ) ) ∈ ℤ ∧ 1 ∈ ℤ ) → ( ( ( ⌊ ‘ ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) ) − ( 2 · ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ) ) ≤ 1 ↔ ( ( ⌊ ‘ ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) ) − ( 2 · ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ) ) < ( 1 + 1 ) ) ) |
| 82 |
29 80 81
|
sylancl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( ( ( ⌊ ‘ ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) ) − ( 2 · ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ) ) ≤ 1 ↔ ( ( ⌊ ‘ ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) ) − ( 2 · ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ) ) < ( 1 + 1 ) ) ) |
| 83 |
79 82
|
mpbird |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( ( ⌊ ‘ ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) ) − ( 2 · ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ) ) ≤ 1 ) |
| 84 |
|
iftrue |
⊢ ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ) → if ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ) , 1 , 0 ) = 1 ) |
| 85 |
84
|
breq2d |
⊢ ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ) → ( ( ( ⌊ ‘ ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) ) − ( 2 · ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ) ) ≤ if ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ) , 1 , 0 ) ↔ ( ( ⌊ ‘ ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) ) − ( 2 · ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ) ) ≤ 1 ) ) |
| 86 |
83 85
|
syl5ibrcom |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ) → ( ( ⌊ ‘ ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) ) − ( 2 · ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ) ) ≤ if ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ) , 1 , 0 ) ) ) |
| 87 |
9
|
nnge1d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → 1 ≤ 𝑘 ) |
| 88 |
87
|
biantrurd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( 𝑘 ≤ ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ↔ ( 1 ≤ 𝑘 ∧ 𝑘 ≤ ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ) ) ) |
| 89 |
6
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → 𝑃 ∈ ℕ ) |
| 90 |
89
|
nnred |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → 𝑃 ∈ ℝ ) |
| 91 |
|
prmuz2 |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) |
| 92 |
91
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) |
| 93 |
|
eluz2gt1 |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 1 < 𝑃 ) |
| 94 |
92 93
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → 1 < 𝑃 ) |
| 95 |
90 94
|
jca |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → ( 𝑃 ∈ ℝ ∧ 1 < 𝑃 ) ) |
| 96 |
95
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( 𝑃 ∈ ℝ ∧ 1 < 𝑃 ) ) |
| 97 |
|
elfzelz |
⊢ ( 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) → 𝑘 ∈ ℤ ) |
| 98 |
97
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → 𝑘 ∈ ℤ ) |
| 99 |
4
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → ( 2 · 𝑁 ) ∈ ℕ ) |
| 100 |
99
|
nnrpd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → ( 2 · 𝑁 ) ∈ ℝ+ ) |
| 101 |
100
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( 2 · 𝑁 ) ∈ ℝ+ ) |
| 102 |
|
efexple |
⊢ ( ( ( 𝑃 ∈ ℝ ∧ 1 < 𝑃 ) ∧ 𝑘 ∈ ℤ ∧ ( 2 · 𝑁 ) ∈ ℝ+ ) → ( ( 𝑃 ↑ 𝑘 ) ≤ ( 2 · 𝑁 ) ↔ 𝑘 ≤ ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ) ) |
| 103 |
96 98 101 102
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( ( 𝑃 ↑ 𝑘 ) ≤ ( 2 · 𝑁 ) ↔ 𝑘 ≤ ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ) ) |
| 104 |
9
|
nnzd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → 𝑘 ∈ ℤ ) |
| 105 |
80
|
a1i |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → 1 ∈ ℤ ) |
| 106 |
99
|
nnred |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → ( 2 · 𝑁 ) ∈ ℝ ) |
| 107 |
|
1red |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → 1 ∈ ℝ ) |
| 108 |
37
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → 2 ∈ ℝ ) |
| 109 |
|
1lt2 |
⊢ 1 < 2 |
| 110 |
109
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → 1 < 2 ) |
| 111 |
|
2t1e2 |
⊢ ( 2 · 1 ) = 2 |
| 112 |
|
nnre |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) |
| 113 |
112
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → 𝑁 ∈ ℝ ) |
| 114 |
|
0le2 |
⊢ 0 ≤ 2 |
| 115 |
37 114
|
pm3.2i |
⊢ ( 2 ∈ ℝ ∧ 0 ≤ 2 ) |
| 116 |
115
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → ( 2 ∈ ℝ ∧ 0 ≤ 2 ) ) |
| 117 |
|
nnge1 |
⊢ ( 𝑁 ∈ ℕ → 1 ≤ 𝑁 ) |
| 118 |
117
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → 1 ≤ 𝑁 ) |
| 119 |
|
lemul2a |
⊢ ( ( ( 1 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 ≤ 2 ) ) ∧ 1 ≤ 𝑁 ) → ( 2 · 1 ) ≤ ( 2 · 𝑁 ) ) |
| 120 |
107 113 116 118 119
|
syl31anc |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → ( 2 · 1 ) ≤ ( 2 · 𝑁 ) ) |
| 121 |
111 120
|
eqbrtrrid |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → 2 ≤ ( 2 · 𝑁 ) ) |
| 122 |
107 108 106 110 121
|
ltletrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → 1 < ( 2 · 𝑁 ) ) |
| 123 |
106 122
|
rplogcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → ( log ‘ ( 2 · 𝑁 ) ) ∈ ℝ+ ) |
| 124 |
90 94
|
rplogcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → ( log ‘ 𝑃 ) ∈ ℝ+ ) |
| 125 |
123 124
|
rpdivcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ∈ ℝ+ ) |
| 126 |
125
|
rpred |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ∈ ℝ ) |
| 127 |
126
|
flcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ∈ ℤ ) |
| 128 |
127
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ∈ ℤ ) |
| 129 |
|
elfz |
⊢ ( ( 𝑘 ∈ ℤ ∧ 1 ∈ ℤ ∧ ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ∈ ℤ ) → ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ) ↔ ( 1 ≤ 𝑘 ∧ 𝑘 ≤ ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ) ) ) |
| 130 |
104 105 128 129
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ) ↔ ( 1 ≤ 𝑘 ∧ 𝑘 ≤ ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ) ) ) |
| 131 |
88 103 130
|
3bitr4rd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ) ↔ ( 𝑃 ↑ 𝑘 ) ≤ ( 2 · 𝑁 ) ) ) |
| 132 |
131
|
notbid |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( ¬ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ) ↔ ¬ ( 𝑃 ↑ 𝑘 ) ≤ ( 2 · 𝑁 ) ) ) |
| 133 |
106
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( 2 · 𝑁 ) ∈ ℝ ) |
| 134 |
11
|
nnred |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( 𝑃 ↑ 𝑘 ) ∈ ℝ ) |
| 135 |
133 134
|
ltnled |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( ( 2 · 𝑁 ) < ( 𝑃 ↑ 𝑘 ) ↔ ¬ ( 𝑃 ↑ 𝑘 ) ≤ ( 2 · 𝑁 ) ) ) |
| 136 |
132 135
|
bitr4d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( ¬ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ) ↔ ( 2 · 𝑁 ) < ( 𝑃 ↑ 𝑘 ) ) ) |
| 137 |
16
|
rpge0d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → 0 ≤ ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) ) |
| 138 |
137
|
adantrr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ ( 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ∧ ( 2 · 𝑁 ) < ( 𝑃 ↑ 𝑘 ) ) ) → 0 ≤ ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) ) |
| 139 |
11
|
nngt0d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → 0 < ( 𝑃 ↑ 𝑘 ) ) |
| 140 |
|
ltdivmul |
⊢ ( ( ( 2 · 𝑁 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ( 𝑃 ↑ 𝑘 ) ∈ ℝ ∧ 0 < ( 𝑃 ↑ 𝑘 ) ) ) → ( ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) < 1 ↔ ( 2 · 𝑁 ) < ( ( 𝑃 ↑ 𝑘 ) · 1 ) ) ) |
| 141 |
133 49 134 139 140
|
syl112anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) < 1 ↔ ( 2 · 𝑁 ) < ( ( 𝑃 ↑ 𝑘 ) · 1 ) ) ) |
| 142 |
63
|
mulridd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( ( 𝑃 ↑ 𝑘 ) · 1 ) = ( 𝑃 ↑ 𝑘 ) ) |
| 143 |
142
|
breq2d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( ( 2 · 𝑁 ) < ( ( 𝑃 ↑ 𝑘 ) · 1 ) ↔ ( 2 · 𝑁 ) < ( 𝑃 ↑ 𝑘 ) ) ) |
| 144 |
141 143
|
bitrd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) < 1 ↔ ( 2 · 𝑁 ) < ( 𝑃 ↑ 𝑘 ) ) ) |
| 145 |
144
|
biimprd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( ( 2 · 𝑁 ) < ( 𝑃 ↑ 𝑘 ) → ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) < 1 ) ) |
| 146 |
145
|
impr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ ( 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ∧ ( 2 · 𝑁 ) < ( 𝑃 ↑ 𝑘 ) ) ) → ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) < 1 ) |
| 147 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
| 148 |
146 147
|
breqtrrdi |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ ( 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ∧ ( 2 · 𝑁 ) < ( 𝑃 ↑ 𝑘 ) ) ) → ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) < ( 0 + 1 ) ) |
| 149 |
17
|
adantrr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ ( 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ∧ ( 2 · 𝑁 ) < ( 𝑃 ↑ 𝑘 ) ) ) → ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) ∈ ℝ ) |
| 150 |
|
0z |
⊢ 0 ∈ ℤ |
| 151 |
|
flbi |
⊢ ( ( ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) ∈ ℝ ∧ 0 ∈ ℤ ) → ( ( ⌊ ‘ ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) ) = 0 ↔ ( 0 ≤ ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) ∧ ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) < ( 0 + 1 ) ) ) ) |
| 152 |
149 150 151
|
sylancl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ ( 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ∧ ( 2 · 𝑁 ) < ( 𝑃 ↑ 𝑘 ) ) ) → ( ( ⌊ ‘ ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) ) = 0 ↔ ( 0 ≤ ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) ∧ ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) < ( 0 + 1 ) ) ) ) |
| 153 |
138 148 152
|
mpbir2and |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ ( 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ∧ ( 2 · 𝑁 ) < ( 𝑃 ↑ 𝑘 ) ) ) → ( ⌊ ‘ ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) ) = 0 ) |
| 154 |
24
|
rpge0d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → 0 ≤ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) |
| 155 |
154
|
adantrr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ ( 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ∧ ( 2 · 𝑁 ) < ( 𝑃 ↑ 𝑘 ) ) ) → 0 ≤ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) |
| 156 |
112 21
|
ltaddrp2d |
⊢ ( 𝑁 ∈ ℕ → 𝑁 < ( 𝑁 + 𝑁 ) ) |
| 157 |
61
|
2timesd |
⊢ ( 𝑁 ∈ ℕ → ( 2 · 𝑁 ) = ( 𝑁 + 𝑁 ) ) |
| 158 |
156 157
|
breqtrrd |
⊢ ( 𝑁 ∈ ℕ → 𝑁 < ( 2 · 𝑁 ) ) |
| 159 |
158
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → 𝑁 < ( 2 · 𝑁 ) ) |
| 160 |
112
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → 𝑁 ∈ ℝ ) |
| 161 |
|
lttr |
⊢ ( ( 𝑁 ∈ ℝ ∧ ( 2 · 𝑁 ) ∈ ℝ ∧ ( 𝑃 ↑ 𝑘 ) ∈ ℝ ) → ( ( 𝑁 < ( 2 · 𝑁 ) ∧ ( 2 · 𝑁 ) < ( 𝑃 ↑ 𝑘 ) ) → 𝑁 < ( 𝑃 ↑ 𝑘 ) ) ) |
| 162 |
160 133 134 161
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( ( 𝑁 < ( 2 · 𝑁 ) ∧ ( 2 · 𝑁 ) < ( 𝑃 ↑ 𝑘 ) ) → 𝑁 < ( 𝑃 ↑ 𝑘 ) ) ) |
| 163 |
159 162
|
mpand |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( ( 2 · 𝑁 ) < ( 𝑃 ↑ 𝑘 ) → 𝑁 < ( 𝑃 ↑ 𝑘 ) ) ) |
| 164 |
|
ltdivmul |
⊢ ( ( 𝑁 ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ( 𝑃 ↑ 𝑘 ) ∈ ℝ ∧ 0 < ( 𝑃 ↑ 𝑘 ) ) ) → ( ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) < 1 ↔ 𝑁 < ( ( 𝑃 ↑ 𝑘 ) · 1 ) ) ) |
| 165 |
160 49 134 139 164
|
syl112anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) < 1 ↔ 𝑁 < ( ( 𝑃 ↑ 𝑘 ) · 1 ) ) ) |
| 166 |
142
|
breq2d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( 𝑁 < ( ( 𝑃 ↑ 𝑘 ) · 1 ) ↔ 𝑁 < ( 𝑃 ↑ 𝑘 ) ) ) |
| 167 |
165 166
|
bitrd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) < 1 ↔ 𝑁 < ( 𝑃 ↑ 𝑘 ) ) ) |
| 168 |
163 167
|
sylibrd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( ( 2 · 𝑁 ) < ( 𝑃 ↑ 𝑘 ) → ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) < 1 ) ) |
| 169 |
168
|
impr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ ( 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ∧ ( 2 · 𝑁 ) < ( 𝑃 ↑ 𝑘 ) ) ) → ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) < 1 ) |
| 170 |
169 147
|
breqtrrdi |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ ( 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ∧ ( 2 · 𝑁 ) < ( 𝑃 ↑ 𝑘 ) ) ) → ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) < ( 0 + 1 ) ) |
| 171 |
25
|
adantrr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ ( 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ∧ ( 2 · 𝑁 ) < ( 𝑃 ↑ 𝑘 ) ) ) → ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ∈ ℝ ) |
| 172 |
|
flbi |
⊢ ( ( ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ∈ ℝ ∧ 0 ∈ ℤ ) → ( ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) = 0 ↔ ( 0 ≤ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ∧ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) < ( 0 + 1 ) ) ) ) |
| 173 |
171 150 172
|
sylancl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ ( 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ∧ ( 2 · 𝑁 ) < ( 𝑃 ↑ 𝑘 ) ) ) → ( ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) = 0 ↔ ( 0 ≤ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ∧ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) < ( 0 + 1 ) ) ) ) |
| 174 |
155 170 173
|
mpbir2and |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ ( 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ∧ ( 2 · 𝑁 ) < ( 𝑃 ↑ 𝑘 ) ) ) → ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) = 0 ) |
| 175 |
174
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ ( 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ∧ ( 2 · 𝑁 ) < ( 𝑃 ↑ 𝑘 ) ) ) → ( 2 · ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ) = ( 2 · 0 ) ) |
| 176 |
|
2t0e0 |
⊢ ( 2 · 0 ) = 0 |
| 177 |
175 176
|
eqtrdi |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ ( 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ∧ ( 2 · 𝑁 ) < ( 𝑃 ↑ 𝑘 ) ) ) → ( 2 · ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ) = 0 ) |
| 178 |
153 177
|
oveq12d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ ( 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ∧ ( 2 · 𝑁 ) < ( 𝑃 ↑ 𝑘 ) ) ) → ( ( ⌊ ‘ ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) ) − ( 2 · ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ) ) = ( 0 − 0 ) ) |
| 179 |
|
0m0e0 |
⊢ ( 0 − 0 ) = 0 |
| 180 |
178 179
|
eqtrdi |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ ( 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ∧ ( 2 · 𝑁 ) < ( 𝑃 ↑ 𝑘 ) ) ) → ( ( ⌊ ‘ ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) ) − ( 2 · ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ) ) = 0 ) |
| 181 |
|
0le0 |
⊢ 0 ≤ 0 |
| 182 |
180 181
|
eqbrtrdi |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ ( 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ∧ ( 2 · 𝑁 ) < ( 𝑃 ↑ 𝑘 ) ) ) → ( ( ⌊ ‘ ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) ) − ( 2 · ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ) ) ≤ 0 ) |
| 183 |
182
|
expr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( ( 2 · 𝑁 ) < ( 𝑃 ↑ 𝑘 ) → ( ( ⌊ ‘ ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) ) − ( 2 · ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ) ) ≤ 0 ) ) |
| 184 |
136 183
|
sylbid |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( ¬ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ) → ( ( ⌊ ‘ ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) ) − ( 2 · ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ) ) ≤ 0 ) ) |
| 185 |
|
iffalse |
⊢ ( ¬ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ) → if ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ) , 1 , 0 ) = 0 ) |
| 186 |
185
|
eqcomd |
⊢ ( ¬ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ) → 0 = if ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ) , 1 , 0 ) ) |
| 187 |
186
|
breq2d |
⊢ ( ¬ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ) → ( ( ( ⌊ ‘ ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) ) − ( 2 · ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ) ) ≤ 0 ↔ ( ( ⌊ ‘ ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) ) − ( 2 · ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ) ) ≤ if ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ) , 1 , 0 ) ) ) |
| 188 |
184 187
|
mpbidi |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( ¬ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ) → ( ( ⌊ ‘ ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) ) − ( 2 · ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ) ) ≤ if ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ) , 1 , 0 ) ) ) |
| 189 |
86 188
|
pm2.61d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ) → ( ( ⌊ ‘ ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) ) − ( 2 · ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ) ) ≤ if ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ) , 1 , 0 ) ) |
| 190 |
1 30 34 189
|
fsumle |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → Σ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ( ( ⌊ ‘ ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) ) − ( 2 · ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ) ) ≤ Σ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) if ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ) , 1 , 0 ) ) |
| 191 |
|
pcbcctr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → ( 𝑃 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) = Σ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) ( ( ⌊ ‘ ( ( 2 · 𝑁 ) / ( 𝑃 ↑ 𝑘 ) ) ) − ( 2 · ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ) ) ) |
| 192 |
127
|
zred |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ∈ ℝ ) |
| 193 |
|
flle |
⊢ ( ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ∈ ℝ → ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ≤ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) |
| 194 |
126 193
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ≤ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) |
| 195 |
99
|
nnnn0d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → ( 2 · 𝑁 ) ∈ ℕ0 ) |
| 196 |
89 195
|
nnexpcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → ( 𝑃 ↑ ( 2 · 𝑁 ) ) ∈ ℕ ) |
| 197 |
196
|
nnred |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → ( 𝑃 ↑ ( 2 · 𝑁 ) ) ∈ ℝ ) |
| 198 |
|
bernneq3 |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 2 · 𝑁 ) ∈ ℕ0 ) → ( 2 · 𝑁 ) < ( 𝑃 ↑ ( 2 · 𝑁 ) ) ) |
| 199 |
92 195 198
|
syl2anc |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → ( 2 · 𝑁 ) < ( 𝑃 ↑ ( 2 · 𝑁 ) ) ) |
| 200 |
106 197 199
|
ltled |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → ( 2 · 𝑁 ) ≤ ( 𝑃 ↑ ( 2 · 𝑁 ) ) ) |
| 201 |
100
|
reeflogd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → ( exp ‘ ( log ‘ ( 2 · 𝑁 ) ) ) = ( 2 · 𝑁 ) ) |
| 202 |
89
|
nnrpd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → 𝑃 ∈ ℝ+ ) |
| 203 |
99
|
nnzd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → ( 2 · 𝑁 ) ∈ ℤ ) |
| 204 |
|
reexplog |
⊢ ( ( 𝑃 ∈ ℝ+ ∧ ( 2 · 𝑁 ) ∈ ℤ ) → ( 𝑃 ↑ ( 2 · 𝑁 ) ) = ( exp ‘ ( ( 2 · 𝑁 ) · ( log ‘ 𝑃 ) ) ) ) |
| 205 |
202 203 204
|
syl2anc |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → ( 𝑃 ↑ ( 2 · 𝑁 ) ) = ( exp ‘ ( ( 2 · 𝑁 ) · ( log ‘ 𝑃 ) ) ) ) |
| 206 |
205
|
eqcomd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → ( exp ‘ ( ( 2 · 𝑁 ) · ( log ‘ 𝑃 ) ) ) = ( 𝑃 ↑ ( 2 · 𝑁 ) ) ) |
| 207 |
200 201 206
|
3brtr4d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → ( exp ‘ ( log ‘ ( 2 · 𝑁 ) ) ) ≤ ( exp ‘ ( ( 2 · 𝑁 ) · ( log ‘ 𝑃 ) ) ) ) |
| 208 |
100
|
relogcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → ( log ‘ ( 2 · 𝑁 ) ) ∈ ℝ ) |
| 209 |
124
|
rpred |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → ( log ‘ 𝑃 ) ∈ ℝ ) |
| 210 |
106 209
|
remulcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → ( ( 2 · 𝑁 ) · ( log ‘ 𝑃 ) ) ∈ ℝ ) |
| 211 |
|
efle |
⊢ ( ( ( log ‘ ( 2 · 𝑁 ) ) ∈ ℝ ∧ ( ( 2 · 𝑁 ) · ( log ‘ 𝑃 ) ) ∈ ℝ ) → ( ( log ‘ ( 2 · 𝑁 ) ) ≤ ( ( 2 · 𝑁 ) · ( log ‘ 𝑃 ) ) ↔ ( exp ‘ ( log ‘ ( 2 · 𝑁 ) ) ) ≤ ( exp ‘ ( ( 2 · 𝑁 ) · ( log ‘ 𝑃 ) ) ) ) ) |
| 212 |
208 210 211
|
syl2anc |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → ( ( log ‘ ( 2 · 𝑁 ) ) ≤ ( ( 2 · 𝑁 ) · ( log ‘ 𝑃 ) ) ↔ ( exp ‘ ( log ‘ ( 2 · 𝑁 ) ) ) ≤ ( exp ‘ ( ( 2 · 𝑁 ) · ( log ‘ 𝑃 ) ) ) ) ) |
| 213 |
207 212
|
mpbird |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → ( log ‘ ( 2 · 𝑁 ) ) ≤ ( ( 2 · 𝑁 ) · ( log ‘ 𝑃 ) ) ) |
| 214 |
208 106 124
|
ledivmul2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → ( ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ≤ ( 2 · 𝑁 ) ↔ ( log ‘ ( 2 · 𝑁 ) ) ≤ ( ( 2 · 𝑁 ) · ( log ‘ 𝑃 ) ) ) ) |
| 215 |
213 214
|
mpbird |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ≤ ( 2 · 𝑁 ) ) |
| 216 |
192 126 106 194 215
|
letrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ≤ ( 2 · 𝑁 ) ) |
| 217 |
|
eluz |
⊢ ( ( ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ∈ ℤ ∧ ( 2 · 𝑁 ) ∈ ℤ ) → ( ( 2 · 𝑁 ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ) ↔ ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ≤ ( 2 · 𝑁 ) ) ) |
| 218 |
127 203 217
|
syl2anc |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → ( ( 2 · 𝑁 ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ) ↔ ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ≤ ( 2 · 𝑁 ) ) ) |
| 219 |
216 218
|
mpbird |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → ( 2 · 𝑁 ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ) ) |
| 220 |
|
fzss2 |
⊢ ( ( 2 · 𝑁 ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ) → ( 1 ... ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ) ⊆ ( 1 ... ( 2 · 𝑁 ) ) ) |
| 221 |
219 220
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → ( 1 ... ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ) ⊆ ( 1 ... ( 2 · 𝑁 ) ) ) |
| 222 |
|
sumhash |
⊢ ( ( ( 1 ... ( 2 · 𝑁 ) ) ∈ Fin ∧ ( 1 ... ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ) ⊆ ( 1 ... ( 2 · 𝑁 ) ) ) → Σ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) if ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ) , 1 , 0 ) = ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ) ) ) |
| 223 |
1 221 222
|
syl2anc |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → Σ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) if ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ) , 1 , 0 ) = ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ) ) ) |
| 224 |
125
|
rprege0d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → ( ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ∈ ℝ ∧ 0 ≤ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ) |
| 225 |
|
flge0nn0 |
⊢ ( ( ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ∈ ℝ ∧ 0 ≤ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) → ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ∈ ℕ0 ) |
| 226 |
|
hashfz1 |
⊢ ( ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ∈ ℕ0 → ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ) ) = ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ) |
| 227 |
224 225 226
|
3syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ) ) = ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ) |
| 228 |
223 227
|
eqtr2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) = Σ 𝑘 ∈ ( 1 ... ( 2 · 𝑁 ) ) if ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ) , 1 , 0 ) ) |
| 229 |
190 191 228
|
3brtr4d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → ( 𝑃 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) ≤ ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ) |
| 230 |
|
simpr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → 𝑃 ∈ ℙ ) |
| 231 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
| 232 |
|
fzctr |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ( 0 ... ( 2 · 𝑁 ) ) ) |
| 233 |
|
bccl2 |
⊢ ( 𝑁 ∈ ( 0 ... ( 2 · 𝑁 ) ) → ( ( 2 · 𝑁 ) C 𝑁 ) ∈ ℕ ) |
| 234 |
231 232 233
|
3syl |
⊢ ( 𝑁 ∈ ℕ → ( ( 2 · 𝑁 ) C 𝑁 ) ∈ ℕ ) |
| 235 |
234
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → ( ( 2 · 𝑁 ) C 𝑁 ) ∈ ℕ ) |
| 236 |
230 235
|
pccld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → ( 𝑃 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) ∈ ℕ0 ) |
| 237 |
236
|
nn0zd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → ( 𝑃 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) ∈ ℤ ) |
| 238 |
|
efexple |
⊢ ( ( ( 𝑃 ∈ ℝ ∧ 1 < 𝑃 ) ∧ ( 𝑃 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) ∈ ℤ ∧ ( 2 · 𝑁 ) ∈ ℝ+ ) → ( ( 𝑃 ↑ ( 𝑃 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) ) ≤ ( 2 · 𝑁 ) ↔ ( 𝑃 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) ≤ ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ) ) |
| 239 |
90 94 237 100 238
|
syl211anc |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → ( ( 𝑃 ↑ ( 𝑃 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) ) ≤ ( 2 · 𝑁 ) ↔ ( 𝑃 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) ≤ ( ⌊ ‘ ( ( log ‘ ( 2 · 𝑁 ) ) / ( log ‘ 𝑃 ) ) ) ) ) |
| 240 |
229 239
|
mpbird |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → ( 𝑃 ↑ ( 𝑃 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) ) ≤ ( 2 · 𝑁 ) ) |