| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bpos.1 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 5 ) ) |
| 2 |
|
bpos.2 |
⊢ ( 𝜑 → ¬ ∃ 𝑝 ∈ ℙ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ ( 2 · 𝑁 ) ) ) |
| 3 |
|
bpos.3 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ ( 𝑛 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) ) , 1 ) ) |
| 4 |
|
bpos.4 |
⊢ 𝐾 = ( ⌊ ‘ ( ( 2 · 𝑁 ) / 3 ) ) |
| 5 |
|
bpos.5 |
⊢ 𝑀 = ( ⌊ ‘ ( √ ‘ ( 2 · 𝑁 ) ) ) |
| 6 |
|
2nn |
⊢ 2 ∈ ℕ |
| 7 |
|
5nn |
⊢ 5 ∈ ℕ |
| 8 |
|
eluznn |
⊢ ( ( 5 ∈ ℕ ∧ 𝑁 ∈ ( ℤ≥ ‘ 5 ) ) → 𝑁 ∈ ℕ ) |
| 9 |
7 1 8
|
sylancr |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 10 |
|
nnmulcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 2 · 𝑁 ) ∈ ℕ ) |
| 11 |
6 9 10
|
sylancr |
⊢ ( 𝜑 → ( 2 · 𝑁 ) ∈ ℕ ) |
| 12 |
11
|
nnred |
⊢ ( 𝜑 → ( 2 · 𝑁 ) ∈ ℝ ) |
| 13 |
11
|
nnrpd |
⊢ ( 𝜑 → ( 2 · 𝑁 ) ∈ ℝ+ ) |
| 14 |
13
|
rpge0d |
⊢ ( 𝜑 → 0 ≤ ( 2 · 𝑁 ) ) |
| 15 |
12 14
|
resqrtcld |
⊢ ( 𝜑 → ( √ ‘ ( 2 · 𝑁 ) ) ∈ ℝ ) |
| 16 |
15
|
flcld |
⊢ ( 𝜑 → ( ⌊ ‘ ( √ ‘ ( 2 · 𝑁 ) ) ) ∈ ℤ ) |
| 17 |
|
sqrt9 |
⊢ ( √ ‘ 9 ) = 3 |
| 18 |
|
9re |
⊢ 9 ∈ ℝ |
| 19 |
18
|
a1i |
⊢ ( 𝜑 → 9 ∈ ℝ ) |
| 20 |
|
10re |
⊢ ; 1 0 ∈ ℝ |
| 21 |
20
|
a1i |
⊢ ( 𝜑 → ; 1 0 ∈ ℝ ) |
| 22 |
|
lep1 |
⊢ ( 9 ∈ ℝ → 9 ≤ ( 9 + 1 ) ) |
| 23 |
18 22
|
ax-mp |
⊢ 9 ≤ ( 9 + 1 ) |
| 24 |
|
9p1e10 |
⊢ ( 9 + 1 ) = ; 1 0 |
| 25 |
23 24
|
breqtri |
⊢ 9 ≤ ; 1 0 |
| 26 |
25
|
a1i |
⊢ ( 𝜑 → 9 ≤ ; 1 0 ) |
| 27 |
|
5cn |
⊢ 5 ∈ ℂ |
| 28 |
|
2cn |
⊢ 2 ∈ ℂ |
| 29 |
|
5t2e10 |
⊢ ( 5 · 2 ) = ; 1 0 |
| 30 |
27 28 29
|
mulcomli |
⊢ ( 2 · 5 ) = ; 1 0 |
| 31 |
|
eluzle |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 5 ) → 5 ≤ 𝑁 ) |
| 32 |
1 31
|
syl |
⊢ ( 𝜑 → 5 ≤ 𝑁 ) |
| 33 |
9
|
nnred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 34 |
|
5re |
⊢ 5 ∈ ℝ |
| 35 |
|
2re |
⊢ 2 ∈ ℝ |
| 36 |
|
2pos |
⊢ 0 < 2 |
| 37 |
35 36
|
pm3.2i |
⊢ ( 2 ∈ ℝ ∧ 0 < 2 ) |
| 38 |
|
lemul2 |
⊢ ( ( 5 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( 5 ≤ 𝑁 ↔ ( 2 · 5 ) ≤ ( 2 · 𝑁 ) ) ) |
| 39 |
34 37 38
|
mp3an13 |
⊢ ( 𝑁 ∈ ℝ → ( 5 ≤ 𝑁 ↔ ( 2 · 5 ) ≤ ( 2 · 𝑁 ) ) ) |
| 40 |
33 39
|
syl |
⊢ ( 𝜑 → ( 5 ≤ 𝑁 ↔ ( 2 · 5 ) ≤ ( 2 · 𝑁 ) ) ) |
| 41 |
32 40
|
mpbid |
⊢ ( 𝜑 → ( 2 · 5 ) ≤ ( 2 · 𝑁 ) ) |
| 42 |
30 41
|
eqbrtrrid |
⊢ ( 𝜑 → ; 1 0 ≤ ( 2 · 𝑁 ) ) |
| 43 |
19 21 12 26 42
|
letrd |
⊢ ( 𝜑 → 9 ≤ ( 2 · 𝑁 ) ) |
| 44 |
|
0re |
⊢ 0 ∈ ℝ |
| 45 |
|
9pos |
⊢ 0 < 9 |
| 46 |
44 18 45
|
ltleii |
⊢ 0 ≤ 9 |
| 47 |
18 46
|
pm3.2i |
⊢ ( 9 ∈ ℝ ∧ 0 ≤ 9 ) |
| 48 |
13
|
rprege0d |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) ∈ ℝ ∧ 0 ≤ ( 2 · 𝑁 ) ) ) |
| 49 |
|
sqrtle |
⊢ ( ( ( 9 ∈ ℝ ∧ 0 ≤ 9 ) ∧ ( ( 2 · 𝑁 ) ∈ ℝ ∧ 0 ≤ ( 2 · 𝑁 ) ) ) → ( 9 ≤ ( 2 · 𝑁 ) ↔ ( √ ‘ 9 ) ≤ ( √ ‘ ( 2 · 𝑁 ) ) ) ) |
| 50 |
47 48 49
|
sylancr |
⊢ ( 𝜑 → ( 9 ≤ ( 2 · 𝑁 ) ↔ ( √ ‘ 9 ) ≤ ( √ ‘ ( 2 · 𝑁 ) ) ) ) |
| 51 |
43 50
|
mpbid |
⊢ ( 𝜑 → ( √ ‘ 9 ) ≤ ( √ ‘ ( 2 · 𝑁 ) ) ) |
| 52 |
17 51
|
eqbrtrrid |
⊢ ( 𝜑 → 3 ≤ ( √ ‘ ( 2 · 𝑁 ) ) ) |
| 53 |
|
3z |
⊢ 3 ∈ ℤ |
| 54 |
|
flge |
⊢ ( ( ( √ ‘ ( 2 · 𝑁 ) ) ∈ ℝ ∧ 3 ∈ ℤ ) → ( 3 ≤ ( √ ‘ ( 2 · 𝑁 ) ) ↔ 3 ≤ ( ⌊ ‘ ( √ ‘ ( 2 · 𝑁 ) ) ) ) ) |
| 55 |
15 53 54
|
sylancl |
⊢ ( 𝜑 → ( 3 ≤ ( √ ‘ ( 2 · 𝑁 ) ) ↔ 3 ≤ ( ⌊ ‘ ( √ ‘ ( 2 · 𝑁 ) ) ) ) ) |
| 56 |
52 55
|
mpbid |
⊢ ( 𝜑 → 3 ≤ ( ⌊ ‘ ( √ ‘ ( 2 · 𝑁 ) ) ) ) |
| 57 |
53
|
eluz1i |
⊢ ( ( ⌊ ‘ ( √ ‘ ( 2 · 𝑁 ) ) ) ∈ ( ℤ≥ ‘ 3 ) ↔ ( ( ⌊ ‘ ( √ ‘ ( 2 · 𝑁 ) ) ) ∈ ℤ ∧ 3 ≤ ( ⌊ ‘ ( √ ‘ ( 2 · 𝑁 ) ) ) ) ) |
| 58 |
16 56 57
|
sylanbrc |
⊢ ( 𝜑 → ( ⌊ ‘ ( √ ‘ ( 2 · 𝑁 ) ) ) ∈ ( ℤ≥ ‘ 3 ) ) |
| 59 |
|
3nn |
⊢ 3 ∈ ℕ |
| 60 |
|
nndivre |
⊢ ( ( ( 2 · 𝑁 ) ∈ ℝ ∧ 3 ∈ ℕ ) → ( ( 2 · 𝑁 ) / 3 ) ∈ ℝ ) |
| 61 |
12 59 60
|
sylancl |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) / 3 ) ∈ ℝ ) |
| 62 |
|
3re |
⊢ 3 ∈ ℝ |
| 63 |
62
|
a1i |
⊢ ( 𝜑 → 3 ∈ ℝ ) |
| 64 |
13
|
sqrtgt0d |
⊢ ( 𝜑 → 0 < ( √ ‘ ( 2 · 𝑁 ) ) ) |
| 65 |
|
lemul2 |
⊢ ( ( 3 ∈ ℝ ∧ ( √ ‘ ( 2 · 𝑁 ) ) ∈ ℝ ∧ ( ( √ ‘ ( 2 · 𝑁 ) ) ∈ ℝ ∧ 0 < ( √ ‘ ( 2 · 𝑁 ) ) ) ) → ( 3 ≤ ( √ ‘ ( 2 · 𝑁 ) ) ↔ ( ( √ ‘ ( 2 · 𝑁 ) ) · 3 ) ≤ ( ( √ ‘ ( 2 · 𝑁 ) ) · ( √ ‘ ( 2 · 𝑁 ) ) ) ) ) |
| 66 |
63 15 15 64 65
|
syl112anc |
⊢ ( 𝜑 → ( 3 ≤ ( √ ‘ ( 2 · 𝑁 ) ) ↔ ( ( √ ‘ ( 2 · 𝑁 ) ) · 3 ) ≤ ( ( √ ‘ ( 2 · 𝑁 ) ) · ( √ ‘ ( 2 · 𝑁 ) ) ) ) ) |
| 67 |
52 66
|
mpbid |
⊢ ( 𝜑 → ( ( √ ‘ ( 2 · 𝑁 ) ) · 3 ) ≤ ( ( √ ‘ ( 2 · 𝑁 ) ) · ( √ ‘ ( 2 · 𝑁 ) ) ) ) |
| 68 |
|
remsqsqrt |
⊢ ( ( ( 2 · 𝑁 ) ∈ ℝ ∧ 0 ≤ ( 2 · 𝑁 ) ) → ( ( √ ‘ ( 2 · 𝑁 ) ) · ( √ ‘ ( 2 · 𝑁 ) ) ) = ( 2 · 𝑁 ) ) |
| 69 |
12 14 68
|
syl2anc |
⊢ ( 𝜑 → ( ( √ ‘ ( 2 · 𝑁 ) ) · ( √ ‘ ( 2 · 𝑁 ) ) ) = ( 2 · 𝑁 ) ) |
| 70 |
67 69
|
breqtrd |
⊢ ( 𝜑 → ( ( √ ‘ ( 2 · 𝑁 ) ) · 3 ) ≤ ( 2 · 𝑁 ) ) |
| 71 |
|
3pos |
⊢ 0 < 3 |
| 72 |
62 71
|
pm3.2i |
⊢ ( 3 ∈ ℝ ∧ 0 < 3 ) |
| 73 |
72
|
a1i |
⊢ ( 𝜑 → ( 3 ∈ ℝ ∧ 0 < 3 ) ) |
| 74 |
|
lemuldiv |
⊢ ( ( ( √ ‘ ( 2 · 𝑁 ) ) ∈ ℝ ∧ ( 2 · 𝑁 ) ∈ ℝ ∧ ( 3 ∈ ℝ ∧ 0 < 3 ) ) → ( ( ( √ ‘ ( 2 · 𝑁 ) ) · 3 ) ≤ ( 2 · 𝑁 ) ↔ ( √ ‘ ( 2 · 𝑁 ) ) ≤ ( ( 2 · 𝑁 ) / 3 ) ) ) |
| 75 |
15 12 73 74
|
syl3anc |
⊢ ( 𝜑 → ( ( ( √ ‘ ( 2 · 𝑁 ) ) · 3 ) ≤ ( 2 · 𝑁 ) ↔ ( √ ‘ ( 2 · 𝑁 ) ) ≤ ( ( 2 · 𝑁 ) / 3 ) ) ) |
| 76 |
70 75
|
mpbid |
⊢ ( 𝜑 → ( √ ‘ ( 2 · 𝑁 ) ) ≤ ( ( 2 · 𝑁 ) / 3 ) ) |
| 77 |
|
flword2 |
⊢ ( ( ( √ ‘ ( 2 · 𝑁 ) ) ∈ ℝ ∧ ( ( 2 · 𝑁 ) / 3 ) ∈ ℝ ∧ ( √ ‘ ( 2 · 𝑁 ) ) ≤ ( ( 2 · 𝑁 ) / 3 ) ) → ( ⌊ ‘ ( ( 2 · 𝑁 ) / 3 ) ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( √ ‘ ( 2 · 𝑁 ) ) ) ) ) |
| 78 |
15 61 76 77
|
syl3anc |
⊢ ( 𝜑 → ( ⌊ ‘ ( ( 2 · 𝑁 ) / 3 ) ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( √ ‘ ( 2 · 𝑁 ) ) ) ) ) |
| 79 |
|
elfzuzb |
⊢ ( ( ⌊ ‘ ( √ ‘ ( 2 · 𝑁 ) ) ) ∈ ( 3 ... ( ⌊ ‘ ( ( 2 · 𝑁 ) / 3 ) ) ) ↔ ( ( ⌊ ‘ ( √ ‘ ( 2 · 𝑁 ) ) ) ∈ ( ℤ≥ ‘ 3 ) ∧ ( ⌊ ‘ ( ( 2 · 𝑁 ) / 3 ) ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( √ ‘ ( 2 · 𝑁 ) ) ) ) ) ) |
| 80 |
58 78 79
|
sylanbrc |
⊢ ( 𝜑 → ( ⌊ ‘ ( √ ‘ ( 2 · 𝑁 ) ) ) ∈ ( 3 ... ( ⌊ ‘ ( ( 2 · 𝑁 ) / 3 ) ) ) ) |
| 81 |
4
|
oveq2i |
⊢ ( 3 ... 𝐾 ) = ( 3 ... ( ⌊ ‘ ( ( 2 · 𝑁 ) / 3 ) ) ) |
| 82 |
80 5 81
|
3eltr4g |
⊢ ( 𝜑 → 𝑀 ∈ ( 3 ... 𝐾 ) ) |