| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bpos.1 |
|- ( ph -> N e. ( ZZ>= ` 5 ) ) |
| 2 |
|
bpos.2 |
|- ( ph -> -. E. p e. Prime ( N < p /\ p <_ ( 2 x. N ) ) ) |
| 3 |
|
bpos.3 |
|- F = ( n e. NN |-> if ( n e. Prime , ( n ^ ( n pCnt ( ( 2 x. N ) _C N ) ) ) , 1 ) ) |
| 4 |
|
bpos.4 |
|- K = ( |_ ` ( ( 2 x. N ) / 3 ) ) |
| 5 |
|
bpos.5 |
|- M = ( |_ ` ( sqrt ` ( 2 x. N ) ) ) |
| 6 |
|
2nn |
|- 2 e. NN |
| 7 |
|
5nn |
|- 5 e. NN |
| 8 |
|
eluznn |
|- ( ( 5 e. NN /\ N e. ( ZZ>= ` 5 ) ) -> N e. NN ) |
| 9 |
7 1 8
|
sylancr |
|- ( ph -> N e. NN ) |
| 10 |
|
nnmulcl |
|- ( ( 2 e. NN /\ N e. NN ) -> ( 2 x. N ) e. NN ) |
| 11 |
6 9 10
|
sylancr |
|- ( ph -> ( 2 x. N ) e. NN ) |
| 12 |
11
|
nnred |
|- ( ph -> ( 2 x. N ) e. RR ) |
| 13 |
11
|
nnrpd |
|- ( ph -> ( 2 x. N ) e. RR+ ) |
| 14 |
13
|
rpge0d |
|- ( ph -> 0 <_ ( 2 x. N ) ) |
| 15 |
12 14
|
resqrtcld |
|- ( ph -> ( sqrt ` ( 2 x. N ) ) e. RR ) |
| 16 |
15
|
flcld |
|- ( ph -> ( |_ ` ( sqrt ` ( 2 x. N ) ) ) e. ZZ ) |
| 17 |
|
sqrt9 |
|- ( sqrt ` 9 ) = 3 |
| 18 |
|
9re |
|- 9 e. RR |
| 19 |
18
|
a1i |
|- ( ph -> 9 e. RR ) |
| 20 |
|
10re |
|- ; 1 0 e. RR |
| 21 |
20
|
a1i |
|- ( ph -> ; 1 0 e. RR ) |
| 22 |
|
lep1 |
|- ( 9 e. RR -> 9 <_ ( 9 + 1 ) ) |
| 23 |
18 22
|
ax-mp |
|- 9 <_ ( 9 + 1 ) |
| 24 |
|
9p1e10 |
|- ( 9 + 1 ) = ; 1 0 |
| 25 |
23 24
|
breqtri |
|- 9 <_ ; 1 0 |
| 26 |
25
|
a1i |
|- ( ph -> 9 <_ ; 1 0 ) |
| 27 |
|
5cn |
|- 5 e. CC |
| 28 |
|
2cn |
|- 2 e. CC |
| 29 |
|
5t2e10 |
|- ( 5 x. 2 ) = ; 1 0 |
| 30 |
27 28 29
|
mulcomli |
|- ( 2 x. 5 ) = ; 1 0 |
| 31 |
|
eluzle |
|- ( N e. ( ZZ>= ` 5 ) -> 5 <_ N ) |
| 32 |
1 31
|
syl |
|- ( ph -> 5 <_ N ) |
| 33 |
9
|
nnred |
|- ( ph -> N e. RR ) |
| 34 |
|
5re |
|- 5 e. RR |
| 35 |
|
2re |
|- 2 e. RR |
| 36 |
|
2pos |
|- 0 < 2 |
| 37 |
35 36
|
pm3.2i |
|- ( 2 e. RR /\ 0 < 2 ) |
| 38 |
|
lemul2 |
|- ( ( 5 e. RR /\ N e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( 5 <_ N <-> ( 2 x. 5 ) <_ ( 2 x. N ) ) ) |
| 39 |
34 37 38
|
mp3an13 |
|- ( N e. RR -> ( 5 <_ N <-> ( 2 x. 5 ) <_ ( 2 x. N ) ) ) |
| 40 |
33 39
|
syl |
|- ( ph -> ( 5 <_ N <-> ( 2 x. 5 ) <_ ( 2 x. N ) ) ) |
| 41 |
32 40
|
mpbid |
|- ( ph -> ( 2 x. 5 ) <_ ( 2 x. N ) ) |
| 42 |
30 41
|
eqbrtrrid |
|- ( ph -> ; 1 0 <_ ( 2 x. N ) ) |
| 43 |
19 21 12 26 42
|
letrd |
|- ( ph -> 9 <_ ( 2 x. N ) ) |
| 44 |
|
0re |
|- 0 e. RR |
| 45 |
|
9pos |
|- 0 < 9 |
| 46 |
44 18 45
|
ltleii |
|- 0 <_ 9 |
| 47 |
18 46
|
pm3.2i |
|- ( 9 e. RR /\ 0 <_ 9 ) |
| 48 |
13
|
rprege0d |
|- ( ph -> ( ( 2 x. N ) e. RR /\ 0 <_ ( 2 x. N ) ) ) |
| 49 |
|
sqrtle |
|- ( ( ( 9 e. RR /\ 0 <_ 9 ) /\ ( ( 2 x. N ) e. RR /\ 0 <_ ( 2 x. N ) ) ) -> ( 9 <_ ( 2 x. N ) <-> ( sqrt ` 9 ) <_ ( sqrt ` ( 2 x. N ) ) ) ) |
| 50 |
47 48 49
|
sylancr |
|- ( ph -> ( 9 <_ ( 2 x. N ) <-> ( sqrt ` 9 ) <_ ( sqrt ` ( 2 x. N ) ) ) ) |
| 51 |
43 50
|
mpbid |
|- ( ph -> ( sqrt ` 9 ) <_ ( sqrt ` ( 2 x. N ) ) ) |
| 52 |
17 51
|
eqbrtrrid |
|- ( ph -> 3 <_ ( sqrt ` ( 2 x. N ) ) ) |
| 53 |
|
3z |
|- 3 e. ZZ |
| 54 |
|
flge |
|- ( ( ( sqrt ` ( 2 x. N ) ) e. RR /\ 3 e. ZZ ) -> ( 3 <_ ( sqrt ` ( 2 x. N ) ) <-> 3 <_ ( |_ ` ( sqrt ` ( 2 x. N ) ) ) ) ) |
| 55 |
15 53 54
|
sylancl |
|- ( ph -> ( 3 <_ ( sqrt ` ( 2 x. N ) ) <-> 3 <_ ( |_ ` ( sqrt ` ( 2 x. N ) ) ) ) ) |
| 56 |
52 55
|
mpbid |
|- ( ph -> 3 <_ ( |_ ` ( sqrt ` ( 2 x. N ) ) ) ) |
| 57 |
53
|
eluz1i |
|- ( ( |_ ` ( sqrt ` ( 2 x. N ) ) ) e. ( ZZ>= ` 3 ) <-> ( ( |_ ` ( sqrt ` ( 2 x. N ) ) ) e. ZZ /\ 3 <_ ( |_ ` ( sqrt ` ( 2 x. N ) ) ) ) ) |
| 58 |
16 56 57
|
sylanbrc |
|- ( ph -> ( |_ ` ( sqrt ` ( 2 x. N ) ) ) e. ( ZZ>= ` 3 ) ) |
| 59 |
|
3nn |
|- 3 e. NN |
| 60 |
|
nndivre |
|- ( ( ( 2 x. N ) e. RR /\ 3 e. NN ) -> ( ( 2 x. N ) / 3 ) e. RR ) |
| 61 |
12 59 60
|
sylancl |
|- ( ph -> ( ( 2 x. N ) / 3 ) e. RR ) |
| 62 |
|
3re |
|- 3 e. RR |
| 63 |
62
|
a1i |
|- ( ph -> 3 e. RR ) |
| 64 |
13
|
sqrtgt0d |
|- ( ph -> 0 < ( sqrt ` ( 2 x. N ) ) ) |
| 65 |
|
lemul2 |
|- ( ( 3 e. RR /\ ( sqrt ` ( 2 x. N ) ) e. RR /\ ( ( sqrt ` ( 2 x. N ) ) e. RR /\ 0 < ( sqrt ` ( 2 x. N ) ) ) ) -> ( 3 <_ ( sqrt ` ( 2 x. N ) ) <-> ( ( sqrt ` ( 2 x. N ) ) x. 3 ) <_ ( ( sqrt ` ( 2 x. N ) ) x. ( sqrt ` ( 2 x. N ) ) ) ) ) |
| 66 |
63 15 15 64 65
|
syl112anc |
|- ( ph -> ( 3 <_ ( sqrt ` ( 2 x. N ) ) <-> ( ( sqrt ` ( 2 x. N ) ) x. 3 ) <_ ( ( sqrt ` ( 2 x. N ) ) x. ( sqrt ` ( 2 x. N ) ) ) ) ) |
| 67 |
52 66
|
mpbid |
|- ( ph -> ( ( sqrt ` ( 2 x. N ) ) x. 3 ) <_ ( ( sqrt ` ( 2 x. N ) ) x. ( sqrt ` ( 2 x. N ) ) ) ) |
| 68 |
|
remsqsqrt |
|- ( ( ( 2 x. N ) e. RR /\ 0 <_ ( 2 x. N ) ) -> ( ( sqrt ` ( 2 x. N ) ) x. ( sqrt ` ( 2 x. N ) ) ) = ( 2 x. N ) ) |
| 69 |
12 14 68
|
syl2anc |
|- ( ph -> ( ( sqrt ` ( 2 x. N ) ) x. ( sqrt ` ( 2 x. N ) ) ) = ( 2 x. N ) ) |
| 70 |
67 69
|
breqtrd |
|- ( ph -> ( ( sqrt ` ( 2 x. N ) ) x. 3 ) <_ ( 2 x. N ) ) |
| 71 |
|
3pos |
|- 0 < 3 |
| 72 |
62 71
|
pm3.2i |
|- ( 3 e. RR /\ 0 < 3 ) |
| 73 |
72
|
a1i |
|- ( ph -> ( 3 e. RR /\ 0 < 3 ) ) |
| 74 |
|
lemuldiv |
|- ( ( ( sqrt ` ( 2 x. N ) ) e. RR /\ ( 2 x. N ) e. RR /\ ( 3 e. RR /\ 0 < 3 ) ) -> ( ( ( sqrt ` ( 2 x. N ) ) x. 3 ) <_ ( 2 x. N ) <-> ( sqrt ` ( 2 x. N ) ) <_ ( ( 2 x. N ) / 3 ) ) ) |
| 75 |
15 12 73 74
|
syl3anc |
|- ( ph -> ( ( ( sqrt ` ( 2 x. N ) ) x. 3 ) <_ ( 2 x. N ) <-> ( sqrt ` ( 2 x. N ) ) <_ ( ( 2 x. N ) / 3 ) ) ) |
| 76 |
70 75
|
mpbid |
|- ( ph -> ( sqrt ` ( 2 x. N ) ) <_ ( ( 2 x. N ) / 3 ) ) |
| 77 |
|
flword2 |
|- ( ( ( sqrt ` ( 2 x. N ) ) e. RR /\ ( ( 2 x. N ) / 3 ) e. RR /\ ( sqrt ` ( 2 x. N ) ) <_ ( ( 2 x. N ) / 3 ) ) -> ( |_ ` ( ( 2 x. N ) / 3 ) ) e. ( ZZ>= ` ( |_ ` ( sqrt ` ( 2 x. N ) ) ) ) ) |
| 78 |
15 61 76 77
|
syl3anc |
|- ( ph -> ( |_ ` ( ( 2 x. N ) / 3 ) ) e. ( ZZ>= ` ( |_ ` ( sqrt ` ( 2 x. N ) ) ) ) ) |
| 79 |
|
elfzuzb |
|- ( ( |_ ` ( sqrt ` ( 2 x. N ) ) ) e. ( 3 ... ( |_ ` ( ( 2 x. N ) / 3 ) ) ) <-> ( ( |_ ` ( sqrt ` ( 2 x. N ) ) ) e. ( ZZ>= ` 3 ) /\ ( |_ ` ( ( 2 x. N ) / 3 ) ) e. ( ZZ>= ` ( |_ ` ( sqrt ` ( 2 x. N ) ) ) ) ) ) |
| 80 |
58 78 79
|
sylanbrc |
|- ( ph -> ( |_ ` ( sqrt ` ( 2 x. N ) ) ) e. ( 3 ... ( |_ ` ( ( 2 x. N ) / 3 ) ) ) ) |
| 81 |
4
|
oveq2i |
|- ( 3 ... K ) = ( 3 ... ( |_ ` ( ( 2 x. N ) / 3 ) ) ) |
| 82 |
80 5 81
|
3eltr4g |
|- ( ph -> M e. ( 3 ... K ) ) |