| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bpos.1 |
|- ( ph -> N e. ( ZZ>= ` 5 ) ) |
| 2 |
|
bpos.2 |
|- ( ph -> -. E. p e. Prime ( N < p /\ p <_ ( 2 x. N ) ) ) |
| 3 |
|
bpos.3 |
|- F = ( n e. NN |-> if ( n e. Prime , ( n ^ ( n pCnt ( ( 2 x. N ) _C N ) ) ) , 1 ) ) |
| 4 |
|
bpos.4 |
|- K = ( |_ ` ( ( 2 x. N ) / 3 ) ) |
| 5 |
|
bpos.5 |
|- M = ( |_ ` ( sqrt ` ( 2 x. N ) ) ) |
| 6 |
|
id |
|- ( n e. Prime -> n e. Prime ) |
| 7 |
|
5nn |
|- 5 e. NN |
| 8 |
|
eluznn |
|- ( ( 5 e. NN /\ N e. ( ZZ>= ` 5 ) ) -> N e. NN ) |
| 9 |
7 1 8
|
sylancr |
|- ( ph -> N e. NN ) |
| 10 |
9
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
| 11 |
|
fzctr |
|- ( N e. NN0 -> N e. ( 0 ... ( 2 x. N ) ) ) |
| 12 |
|
bccl2 |
|- ( N e. ( 0 ... ( 2 x. N ) ) -> ( ( 2 x. N ) _C N ) e. NN ) |
| 13 |
10 11 12
|
3syl |
|- ( ph -> ( ( 2 x. N ) _C N ) e. NN ) |
| 14 |
|
pccl |
|- ( ( n e. Prime /\ ( ( 2 x. N ) _C N ) e. NN ) -> ( n pCnt ( ( 2 x. N ) _C N ) ) e. NN0 ) |
| 15 |
6 13 14
|
syl2anr |
|- ( ( ph /\ n e. Prime ) -> ( n pCnt ( ( 2 x. N ) _C N ) ) e. NN0 ) |
| 16 |
15
|
ralrimiva |
|- ( ph -> A. n e. Prime ( n pCnt ( ( 2 x. N ) _C N ) ) e. NN0 ) |
| 17 |
3 16
|
pcmptcl |
|- ( ph -> ( F : NN --> NN /\ seq 1 ( x. , F ) : NN --> NN ) ) |
| 18 |
17
|
simprd |
|- ( ph -> seq 1 ( x. , F ) : NN --> NN ) |
| 19 |
|
3nn |
|- 3 e. NN |
| 20 |
|
2z |
|- 2 e. ZZ |
| 21 |
9
|
nnzd |
|- ( ph -> N e. ZZ ) |
| 22 |
|
zmulcl |
|- ( ( 2 e. ZZ /\ N e. ZZ ) -> ( 2 x. N ) e. ZZ ) |
| 23 |
20 21 22
|
sylancr |
|- ( ph -> ( 2 x. N ) e. ZZ ) |
| 24 |
23
|
zred |
|- ( ph -> ( 2 x. N ) e. RR ) |
| 25 |
|
2nn |
|- 2 e. NN |
| 26 |
|
nnmulcl |
|- ( ( 2 e. NN /\ N e. NN ) -> ( 2 x. N ) e. NN ) |
| 27 |
25 9 26
|
sylancr |
|- ( ph -> ( 2 x. N ) e. NN ) |
| 28 |
27
|
nnrpd |
|- ( ph -> ( 2 x. N ) e. RR+ ) |
| 29 |
28
|
rpge0d |
|- ( ph -> 0 <_ ( 2 x. N ) ) |
| 30 |
24 29
|
resqrtcld |
|- ( ph -> ( sqrt ` ( 2 x. N ) ) e. RR ) |
| 31 |
30
|
flcld |
|- ( ph -> ( |_ ` ( sqrt ` ( 2 x. N ) ) ) e. ZZ ) |
| 32 |
|
sqrt9 |
|- ( sqrt ` 9 ) = 3 |
| 33 |
|
9re |
|- 9 e. RR |
| 34 |
33
|
a1i |
|- ( ph -> 9 e. RR ) |
| 35 |
|
10re |
|- ; 1 0 e. RR |
| 36 |
35
|
a1i |
|- ( ph -> ; 1 0 e. RR ) |
| 37 |
|
lep1 |
|- ( 9 e. RR -> 9 <_ ( 9 + 1 ) ) |
| 38 |
33 37
|
ax-mp |
|- 9 <_ ( 9 + 1 ) |
| 39 |
|
9p1e10 |
|- ( 9 + 1 ) = ; 1 0 |
| 40 |
38 39
|
breqtri |
|- 9 <_ ; 1 0 |
| 41 |
40
|
a1i |
|- ( ph -> 9 <_ ; 1 0 ) |
| 42 |
|
5cn |
|- 5 e. CC |
| 43 |
|
2cn |
|- 2 e. CC |
| 44 |
|
5t2e10 |
|- ( 5 x. 2 ) = ; 1 0 |
| 45 |
42 43 44
|
mulcomli |
|- ( 2 x. 5 ) = ; 1 0 |
| 46 |
|
eluzle |
|- ( N e. ( ZZ>= ` 5 ) -> 5 <_ N ) |
| 47 |
1 46
|
syl |
|- ( ph -> 5 <_ N ) |
| 48 |
9
|
nnred |
|- ( ph -> N e. RR ) |
| 49 |
|
5re |
|- 5 e. RR |
| 50 |
|
2re |
|- 2 e. RR |
| 51 |
|
2pos |
|- 0 < 2 |
| 52 |
50 51
|
pm3.2i |
|- ( 2 e. RR /\ 0 < 2 ) |
| 53 |
|
lemul2 |
|- ( ( 5 e. RR /\ N e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( 5 <_ N <-> ( 2 x. 5 ) <_ ( 2 x. N ) ) ) |
| 54 |
49 52 53
|
mp3an13 |
|- ( N e. RR -> ( 5 <_ N <-> ( 2 x. 5 ) <_ ( 2 x. N ) ) ) |
| 55 |
48 54
|
syl |
|- ( ph -> ( 5 <_ N <-> ( 2 x. 5 ) <_ ( 2 x. N ) ) ) |
| 56 |
47 55
|
mpbid |
|- ( ph -> ( 2 x. 5 ) <_ ( 2 x. N ) ) |
| 57 |
45 56
|
eqbrtrrid |
|- ( ph -> ; 1 0 <_ ( 2 x. N ) ) |
| 58 |
34 36 24 41 57
|
letrd |
|- ( ph -> 9 <_ ( 2 x. N ) ) |
| 59 |
|
0re |
|- 0 e. RR |
| 60 |
|
9pos |
|- 0 < 9 |
| 61 |
59 33 60
|
ltleii |
|- 0 <_ 9 |
| 62 |
33 61
|
pm3.2i |
|- ( 9 e. RR /\ 0 <_ 9 ) |
| 63 |
24 29
|
jca |
|- ( ph -> ( ( 2 x. N ) e. RR /\ 0 <_ ( 2 x. N ) ) ) |
| 64 |
|
sqrtle |
|- ( ( ( 9 e. RR /\ 0 <_ 9 ) /\ ( ( 2 x. N ) e. RR /\ 0 <_ ( 2 x. N ) ) ) -> ( 9 <_ ( 2 x. N ) <-> ( sqrt ` 9 ) <_ ( sqrt ` ( 2 x. N ) ) ) ) |
| 65 |
62 63 64
|
sylancr |
|- ( ph -> ( 9 <_ ( 2 x. N ) <-> ( sqrt ` 9 ) <_ ( sqrt ` ( 2 x. N ) ) ) ) |
| 66 |
58 65
|
mpbid |
|- ( ph -> ( sqrt ` 9 ) <_ ( sqrt ` ( 2 x. N ) ) ) |
| 67 |
32 66
|
eqbrtrrid |
|- ( ph -> 3 <_ ( sqrt ` ( 2 x. N ) ) ) |
| 68 |
|
3z |
|- 3 e. ZZ |
| 69 |
|
flge |
|- ( ( ( sqrt ` ( 2 x. N ) ) e. RR /\ 3 e. ZZ ) -> ( 3 <_ ( sqrt ` ( 2 x. N ) ) <-> 3 <_ ( |_ ` ( sqrt ` ( 2 x. N ) ) ) ) ) |
| 70 |
30 68 69
|
sylancl |
|- ( ph -> ( 3 <_ ( sqrt ` ( 2 x. N ) ) <-> 3 <_ ( |_ ` ( sqrt ` ( 2 x. N ) ) ) ) ) |
| 71 |
67 70
|
mpbid |
|- ( ph -> 3 <_ ( |_ ` ( sqrt ` ( 2 x. N ) ) ) ) |
| 72 |
68
|
eluz1i |
|- ( ( |_ ` ( sqrt ` ( 2 x. N ) ) ) e. ( ZZ>= ` 3 ) <-> ( ( |_ ` ( sqrt ` ( 2 x. N ) ) ) e. ZZ /\ 3 <_ ( |_ ` ( sqrt ` ( 2 x. N ) ) ) ) ) |
| 73 |
31 71 72
|
sylanbrc |
|- ( ph -> ( |_ ` ( sqrt ` ( 2 x. N ) ) ) e. ( ZZ>= ` 3 ) ) |
| 74 |
5 73
|
eqeltrid |
|- ( ph -> M e. ( ZZ>= ` 3 ) ) |
| 75 |
|
eluznn |
|- ( ( 3 e. NN /\ M e. ( ZZ>= ` 3 ) ) -> M e. NN ) |
| 76 |
19 74 75
|
sylancr |
|- ( ph -> M e. NN ) |
| 77 |
18 76
|
ffvelcdmd |
|- ( ph -> ( seq 1 ( x. , F ) ` M ) e. NN ) |
| 78 |
77
|
nnred |
|- ( ph -> ( seq 1 ( x. , F ) ` M ) e. RR ) |
| 79 |
76
|
nnred |
|- ( ph -> M e. RR ) |
| 80 |
|
ppicl |
|- ( M e. RR -> ( ppi ` M ) e. NN0 ) |
| 81 |
79 80
|
syl |
|- ( ph -> ( ppi ` M ) e. NN0 ) |
| 82 |
27 81
|
nnexpcld |
|- ( ph -> ( ( 2 x. N ) ^ ( ppi ` M ) ) e. NN ) |
| 83 |
82
|
nnred |
|- ( ph -> ( ( 2 x. N ) ^ ( ppi ` M ) ) e. RR ) |
| 84 |
|
nndivre |
|- ( ( ( sqrt ` ( 2 x. N ) ) e. RR /\ 3 e. NN ) -> ( ( sqrt ` ( 2 x. N ) ) / 3 ) e. RR ) |
| 85 |
30 19 84
|
sylancl |
|- ( ph -> ( ( sqrt ` ( 2 x. N ) ) / 3 ) e. RR ) |
| 86 |
|
readdcl |
|- ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) e. RR /\ 2 e. RR ) -> ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) e. RR ) |
| 87 |
85 50 86
|
sylancl |
|- ( ph -> ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) e. RR ) |
| 88 |
24 29 87
|
recxpcld |
|- ( ph -> ( ( 2 x. N ) ^c ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) ) e. RR ) |
| 89 |
|
fveq2 |
|- ( x = 1 -> ( seq 1 ( x. , F ) ` x ) = ( seq 1 ( x. , F ) ` 1 ) ) |
| 90 |
|
fveq2 |
|- ( x = 1 -> ( ppi ` x ) = ( ppi ` 1 ) ) |
| 91 |
|
ppi1 |
|- ( ppi ` 1 ) = 0 |
| 92 |
90 91
|
eqtrdi |
|- ( x = 1 -> ( ppi ` x ) = 0 ) |
| 93 |
92
|
oveq2d |
|- ( x = 1 -> ( ( 2 x. N ) ^ ( ppi ` x ) ) = ( ( 2 x. N ) ^ 0 ) ) |
| 94 |
89 93
|
breq12d |
|- ( x = 1 -> ( ( seq 1 ( x. , F ) ` x ) <_ ( ( 2 x. N ) ^ ( ppi ` x ) ) <-> ( seq 1 ( x. , F ) ` 1 ) <_ ( ( 2 x. N ) ^ 0 ) ) ) |
| 95 |
94
|
imbi2d |
|- ( x = 1 -> ( ( ph -> ( seq 1 ( x. , F ) ` x ) <_ ( ( 2 x. N ) ^ ( ppi ` x ) ) ) <-> ( ph -> ( seq 1 ( x. , F ) ` 1 ) <_ ( ( 2 x. N ) ^ 0 ) ) ) ) |
| 96 |
|
fveq2 |
|- ( x = k -> ( seq 1 ( x. , F ) ` x ) = ( seq 1 ( x. , F ) ` k ) ) |
| 97 |
|
fveq2 |
|- ( x = k -> ( ppi ` x ) = ( ppi ` k ) ) |
| 98 |
97
|
oveq2d |
|- ( x = k -> ( ( 2 x. N ) ^ ( ppi ` x ) ) = ( ( 2 x. N ) ^ ( ppi ` k ) ) ) |
| 99 |
96 98
|
breq12d |
|- ( x = k -> ( ( seq 1 ( x. , F ) ` x ) <_ ( ( 2 x. N ) ^ ( ppi ` x ) ) <-> ( seq 1 ( x. , F ) ` k ) <_ ( ( 2 x. N ) ^ ( ppi ` k ) ) ) ) |
| 100 |
99
|
imbi2d |
|- ( x = k -> ( ( ph -> ( seq 1 ( x. , F ) ` x ) <_ ( ( 2 x. N ) ^ ( ppi ` x ) ) ) <-> ( ph -> ( seq 1 ( x. , F ) ` k ) <_ ( ( 2 x. N ) ^ ( ppi ` k ) ) ) ) ) |
| 101 |
|
fveq2 |
|- ( x = ( k + 1 ) -> ( seq 1 ( x. , F ) ` x ) = ( seq 1 ( x. , F ) ` ( k + 1 ) ) ) |
| 102 |
|
fveq2 |
|- ( x = ( k + 1 ) -> ( ppi ` x ) = ( ppi ` ( k + 1 ) ) ) |
| 103 |
102
|
oveq2d |
|- ( x = ( k + 1 ) -> ( ( 2 x. N ) ^ ( ppi ` x ) ) = ( ( 2 x. N ) ^ ( ppi ` ( k + 1 ) ) ) ) |
| 104 |
101 103
|
breq12d |
|- ( x = ( k + 1 ) -> ( ( seq 1 ( x. , F ) ` x ) <_ ( ( 2 x. N ) ^ ( ppi ` x ) ) <-> ( seq 1 ( x. , F ) ` ( k + 1 ) ) <_ ( ( 2 x. N ) ^ ( ppi ` ( k + 1 ) ) ) ) ) |
| 105 |
104
|
imbi2d |
|- ( x = ( k + 1 ) -> ( ( ph -> ( seq 1 ( x. , F ) ` x ) <_ ( ( 2 x. N ) ^ ( ppi ` x ) ) ) <-> ( ph -> ( seq 1 ( x. , F ) ` ( k + 1 ) ) <_ ( ( 2 x. N ) ^ ( ppi ` ( k + 1 ) ) ) ) ) ) |
| 106 |
|
fveq2 |
|- ( x = M -> ( seq 1 ( x. , F ) ` x ) = ( seq 1 ( x. , F ) ` M ) ) |
| 107 |
|
fveq2 |
|- ( x = M -> ( ppi ` x ) = ( ppi ` M ) ) |
| 108 |
107
|
oveq2d |
|- ( x = M -> ( ( 2 x. N ) ^ ( ppi ` x ) ) = ( ( 2 x. N ) ^ ( ppi ` M ) ) ) |
| 109 |
106 108
|
breq12d |
|- ( x = M -> ( ( seq 1 ( x. , F ) ` x ) <_ ( ( 2 x. N ) ^ ( ppi ` x ) ) <-> ( seq 1 ( x. , F ) ` M ) <_ ( ( 2 x. N ) ^ ( ppi ` M ) ) ) ) |
| 110 |
109
|
imbi2d |
|- ( x = M -> ( ( ph -> ( seq 1 ( x. , F ) ` x ) <_ ( ( 2 x. N ) ^ ( ppi ` x ) ) ) <-> ( ph -> ( seq 1 ( x. , F ) ` M ) <_ ( ( 2 x. N ) ^ ( ppi ` M ) ) ) ) ) |
| 111 |
|
1z |
|- 1 e. ZZ |
| 112 |
|
seq1 |
|- ( 1 e. ZZ -> ( seq 1 ( x. , F ) ` 1 ) = ( F ` 1 ) ) |
| 113 |
111 112
|
ax-mp |
|- ( seq 1 ( x. , F ) ` 1 ) = ( F ` 1 ) |
| 114 |
|
1nn |
|- 1 e. NN |
| 115 |
|
1nprm |
|- -. 1 e. Prime |
| 116 |
|
eleq1 |
|- ( n = 1 -> ( n e. Prime <-> 1 e. Prime ) ) |
| 117 |
115 116
|
mtbiri |
|- ( n = 1 -> -. n e. Prime ) |
| 118 |
117
|
iffalsed |
|- ( n = 1 -> if ( n e. Prime , ( n ^ ( n pCnt ( ( 2 x. N ) _C N ) ) ) , 1 ) = 1 ) |
| 119 |
|
1ex |
|- 1 e. _V |
| 120 |
118 3 119
|
fvmpt |
|- ( 1 e. NN -> ( F ` 1 ) = 1 ) |
| 121 |
114 120
|
ax-mp |
|- ( F ` 1 ) = 1 |
| 122 |
113 121
|
eqtri |
|- ( seq 1 ( x. , F ) ` 1 ) = 1 |
| 123 |
|
1le1 |
|- 1 <_ 1 |
| 124 |
122 123
|
eqbrtri |
|- ( seq 1 ( x. , F ) ` 1 ) <_ 1 |
| 125 |
23
|
zcnd |
|- ( ph -> ( 2 x. N ) e. CC ) |
| 126 |
125
|
exp0d |
|- ( ph -> ( ( 2 x. N ) ^ 0 ) = 1 ) |
| 127 |
124 126
|
breqtrrid |
|- ( ph -> ( seq 1 ( x. , F ) ` 1 ) <_ ( ( 2 x. N ) ^ 0 ) ) |
| 128 |
18
|
ffvelcdmda |
|- ( ( ph /\ k e. NN ) -> ( seq 1 ( x. , F ) ` k ) e. NN ) |
| 129 |
128
|
nnred |
|- ( ( ph /\ k e. NN ) -> ( seq 1 ( x. , F ) ` k ) e. RR ) |
| 130 |
129
|
adantr |
|- ( ( ( ph /\ k e. NN ) /\ ( k + 1 ) e. Prime ) -> ( seq 1 ( x. , F ) ` k ) e. RR ) |
| 131 |
27
|
ad2antrr |
|- ( ( ( ph /\ k e. NN ) /\ ( k + 1 ) e. Prime ) -> ( 2 x. N ) e. NN ) |
| 132 |
|
nnre |
|- ( k e. NN -> k e. RR ) |
| 133 |
132
|
ad2antlr |
|- ( ( ( ph /\ k e. NN ) /\ ( k + 1 ) e. Prime ) -> k e. RR ) |
| 134 |
|
ppicl |
|- ( k e. RR -> ( ppi ` k ) e. NN0 ) |
| 135 |
133 134
|
syl |
|- ( ( ( ph /\ k e. NN ) /\ ( k + 1 ) e. Prime ) -> ( ppi ` k ) e. NN0 ) |
| 136 |
131 135
|
nnexpcld |
|- ( ( ( ph /\ k e. NN ) /\ ( k + 1 ) e. Prime ) -> ( ( 2 x. N ) ^ ( ppi ` k ) ) e. NN ) |
| 137 |
136
|
nnred |
|- ( ( ( ph /\ k e. NN ) /\ ( k + 1 ) e. Prime ) -> ( ( 2 x. N ) ^ ( ppi ` k ) ) e. RR ) |
| 138 |
|
nnre |
|- ( ( 2 x. N ) e. NN -> ( 2 x. N ) e. RR ) |
| 139 |
|
nngt0 |
|- ( ( 2 x. N ) e. NN -> 0 < ( 2 x. N ) ) |
| 140 |
138 139
|
jca |
|- ( ( 2 x. N ) e. NN -> ( ( 2 x. N ) e. RR /\ 0 < ( 2 x. N ) ) ) |
| 141 |
27 140
|
syl |
|- ( ph -> ( ( 2 x. N ) e. RR /\ 0 < ( 2 x. N ) ) ) |
| 142 |
141
|
ad2antrr |
|- ( ( ( ph /\ k e. NN ) /\ ( k + 1 ) e. Prime ) -> ( ( 2 x. N ) e. RR /\ 0 < ( 2 x. N ) ) ) |
| 143 |
|
lemul1 |
|- ( ( ( seq 1 ( x. , F ) ` k ) e. RR /\ ( ( 2 x. N ) ^ ( ppi ` k ) ) e. RR /\ ( ( 2 x. N ) e. RR /\ 0 < ( 2 x. N ) ) ) -> ( ( seq 1 ( x. , F ) ` k ) <_ ( ( 2 x. N ) ^ ( ppi ` k ) ) <-> ( ( seq 1 ( x. , F ) ` k ) x. ( 2 x. N ) ) <_ ( ( ( 2 x. N ) ^ ( ppi ` k ) ) x. ( 2 x. N ) ) ) ) |
| 144 |
130 137 142 143
|
syl3anc |
|- ( ( ( ph /\ k e. NN ) /\ ( k + 1 ) e. Prime ) -> ( ( seq 1 ( x. , F ) ` k ) <_ ( ( 2 x. N ) ^ ( ppi ` k ) ) <-> ( ( seq 1 ( x. , F ) ` k ) x. ( 2 x. N ) ) <_ ( ( ( 2 x. N ) ^ ( ppi ` k ) ) x. ( 2 x. N ) ) ) ) |
| 145 |
|
nnz |
|- ( k e. NN -> k e. ZZ ) |
| 146 |
145
|
adantl |
|- ( ( ph /\ k e. NN ) -> k e. ZZ ) |
| 147 |
|
ppiprm |
|- ( ( k e. ZZ /\ ( k + 1 ) e. Prime ) -> ( ppi ` ( k + 1 ) ) = ( ( ppi ` k ) + 1 ) ) |
| 148 |
146 147
|
sylan |
|- ( ( ( ph /\ k e. NN ) /\ ( k + 1 ) e. Prime ) -> ( ppi ` ( k + 1 ) ) = ( ( ppi ` k ) + 1 ) ) |
| 149 |
148
|
oveq2d |
|- ( ( ( ph /\ k e. NN ) /\ ( k + 1 ) e. Prime ) -> ( ( 2 x. N ) ^ ( ppi ` ( k + 1 ) ) ) = ( ( 2 x. N ) ^ ( ( ppi ` k ) + 1 ) ) ) |
| 150 |
125
|
ad2antrr |
|- ( ( ( ph /\ k e. NN ) /\ ( k + 1 ) e. Prime ) -> ( 2 x. N ) e. CC ) |
| 151 |
150 135
|
expp1d |
|- ( ( ( ph /\ k e. NN ) /\ ( k + 1 ) e. Prime ) -> ( ( 2 x. N ) ^ ( ( ppi ` k ) + 1 ) ) = ( ( ( 2 x. N ) ^ ( ppi ` k ) ) x. ( 2 x. N ) ) ) |
| 152 |
149 151
|
eqtrd |
|- ( ( ( ph /\ k e. NN ) /\ ( k + 1 ) e. Prime ) -> ( ( 2 x. N ) ^ ( ppi ` ( k + 1 ) ) ) = ( ( ( 2 x. N ) ^ ( ppi ` k ) ) x. ( 2 x. N ) ) ) |
| 153 |
152
|
breq2d |
|- ( ( ( ph /\ k e. NN ) /\ ( k + 1 ) e. Prime ) -> ( ( ( seq 1 ( x. , F ) ` k ) x. ( 2 x. N ) ) <_ ( ( 2 x. N ) ^ ( ppi ` ( k + 1 ) ) ) <-> ( ( seq 1 ( x. , F ) ` k ) x. ( 2 x. N ) ) <_ ( ( ( 2 x. N ) ^ ( ppi ` k ) ) x. ( 2 x. N ) ) ) ) |
| 154 |
144 153
|
bitr4d |
|- ( ( ( ph /\ k e. NN ) /\ ( k + 1 ) e. Prime ) -> ( ( seq 1 ( x. , F ) ` k ) <_ ( ( 2 x. N ) ^ ( ppi ` k ) ) <-> ( ( seq 1 ( x. , F ) ` k ) x. ( 2 x. N ) ) <_ ( ( 2 x. N ) ^ ( ppi ` ( k + 1 ) ) ) ) ) |
| 155 |
|
simpr |
|- ( ( ph /\ k e. NN ) -> k e. NN ) |
| 156 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 157 |
155 156
|
eleqtrdi |
|- ( ( ph /\ k e. NN ) -> k e. ( ZZ>= ` 1 ) ) |
| 158 |
|
seqp1 |
|- ( k e. ( ZZ>= ` 1 ) -> ( seq 1 ( x. , F ) ` ( k + 1 ) ) = ( ( seq 1 ( x. , F ) ` k ) x. ( F ` ( k + 1 ) ) ) ) |
| 159 |
157 158
|
syl |
|- ( ( ph /\ k e. NN ) -> ( seq 1 ( x. , F ) ` ( k + 1 ) ) = ( ( seq 1 ( x. , F ) ` k ) x. ( F ` ( k + 1 ) ) ) ) |
| 160 |
159
|
adantr |
|- ( ( ( ph /\ k e. NN ) /\ ( k + 1 ) e. Prime ) -> ( seq 1 ( x. , F ) ` ( k + 1 ) ) = ( ( seq 1 ( x. , F ) ` k ) x. ( F ` ( k + 1 ) ) ) ) |
| 161 |
|
peano2nn |
|- ( k e. NN -> ( k + 1 ) e. NN ) |
| 162 |
161
|
adantl |
|- ( ( ph /\ k e. NN ) -> ( k + 1 ) e. NN ) |
| 163 |
|
eleq1 |
|- ( n = ( k + 1 ) -> ( n e. Prime <-> ( k + 1 ) e. Prime ) ) |
| 164 |
|
id |
|- ( n = ( k + 1 ) -> n = ( k + 1 ) ) |
| 165 |
|
oveq1 |
|- ( n = ( k + 1 ) -> ( n pCnt ( ( 2 x. N ) _C N ) ) = ( ( k + 1 ) pCnt ( ( 2 x. N ) _C N ) ) ) |
| 166 |
164 165
|
oveq12d |
|- ( n = ( k + 1 ) -> ( n ^ ( n pCnt ( ( 2 x. N ) _C N ) ) ) = ( ( k + 1 ) ^ ( ( k + 1 ) pCnt ( ( 2 x. N ) _C N ) ) ) ) |
| 167 |
163 166
|
ifbieq1d |
|- ( n = ( k + 1 ) -> if ( n e. Prime , ( n ^ ( n pCnt ( ( 2 x. N ) _C N ) ) ) , 1 ) = if ( ( k + 1 ) e. Prime , ( ( k + 1 ) ^ ( ( k + 1 ) pCnt ( ( 2 x. N ) _C N ) ) ) , 1 ) ) |
| 168 |
|
ovex |
|- ( ( k + 1 ) ^ ( ( k + 1 ) pCnt ( ( 2 x. N ) _C N ) ) ) e. _V |
| 169 |
168 119
|
ifex |
|- if ( ( k + 1 ) e. Prime , ( ( k + 1 ) ^ ( ( k + 1 ) pCnt ( ( 2 x. N ) _C N ) ) ) , 1 ) e. _V |
| 170 |
167 3 169
|
fvmpt |
|- ( ( k + 1 ) e. NN -> ( F ` ( k + 1 ) ) = if ( ( k + 1 ) e. Prime , ( ( k + 1 ) ^ ( ( k + 1 ) pCnt ( ( 2 x. N ) _C N ) ) ) , 1 ) ) |
| 171 |
162 170
|
syl |
|- ( ( ph /\ k e. NN ) -> ( F ` ( k + 1 ) ) = if ( ( k + 1 ) e. Prime , ( ( k + 1 ) ^ ( ( k + 1 ) pCnt ( ( 2 x. N ) _C N ) ) ) , 1 ) ) |
| 172 |
|
iftrue |
|- ( ( k + 1 ) e. Prime -> if ( ( k + 1 ) e. Prime , ( ( k + 1 ) ^ ( ( k + 1 ) pCnt ( ( 2 x. N ) _C N ) ) ) , 1 ) = ( ( k + 1 ) ^ ( ( k + 1 ) pCnt ( ( 2 x. N ) _C N ) ) ) ) |
| 173 |
171 172
|
sylan9eq |
|- ( ( ( ph /\ k e. NN ) /\ ( k + 1 ) e. Prime ) -> ( F ` ( k + 1 ) ) = ( ( k + 1 ) ^ ( ( k + 1 ) pCnt ( ( 2 x. N ) _C N ) ) ) ) |
| 174 |
9
|
adantr |
|- ( ( ph /\ k e. NN ) -> N e. NN ) |
| 175 |
|
bposlem1 |
|- ( ( N e. NN /\ ( k + 1 ) e. Prime ) -> ( ( k + 1 ) ^ ( ( k + 1 ) pCnt ( ( 2 x. N ) _C N ) ) ) <_ ( 2 x. N ) ) |
| 176 |
174 175
|
sylan |
|- ( ( ( ph /\ k e. NN ) /\ ( k + 1 ) e. Prime ) -> ( ( k + 1 ) ^ ( ( k + 1 ) pCnt ( ( 2 x. N ) _C N ) ) ) <_ ( 2 x. N ) ) |
| 177 |
173 176
|
eqbrtrd |
|- ( ( ( ph /\ k e. NN ) /\ ( k + 1 ) e. Prime ) -> ( F ` ( k + 1 ) ) <_ ( 2 x. N ) ) |
| 178 |
17
|
simpld |
|- ( ph -> F : NN --> NN ) |
| 179 |
|
ffvelcdm |
|- ( ( F : NN --> NN /\ ( k + 1 ) e. NN ) -> ( F ` ( k + 1 ) ) e. NN ) |
| 180 |
178 161 179
|
syl2an |
|- ( ( ph /\ k e. NN ) -> ( F ` ( k + 1 ) ) e. NN ) |
| 181 |
180
|
nnred |
|- ( ( ph /\ k e. NN ) -> ( F ` ( k + 1 ) ) e. RR ) |
| 182 |
181
|
adantr |
|- ( ( ( ph /\ k e. NN ) /\ ( k + 1 ) e. Prime ) -> ( F ` ( k + 1 ) ) e. RR ) |
| 183 |
24
|
ad2antrr |
|- ( ( ( ph /\ k e. NN ) /\ ( k + 1 ) e. Prime ) -> ( 2 x. N ) e. RR ) |
| 184 |
|
nnre |
|- ( ( seq 1 ( x. , F ) ` k ) e. NN -> ( seq 1 ( x. , F ) ` k ) e. RR ) |
| 185 |
|
nngt0 |
|- ( ( seq 1 ( x. , F ) ` k ) e. NN -> 0 < ( seq 1 ( x. , F ) ` k ) ) |
| 186 |
184 185
|
jca |
|- ( ( seq 1 ( x. , F ) ` k ) e. NN -> ( ( seq 1 ( x. , F ) ` k ) e. RR /\ 0 < ( seq 1 ( x. , F ) ` k ) ) ) |
| 187 |
128 186
|
syl |
|- ( ( ph /\ k e. NN ) -> ( ( seq 1 ( x. , F ) ` k ) e. RR /\ 0 < ( seq 1 ( x. , F ) ` k ) ) ) |
| 188 |
187
|
adantr |
|- ( ( ( ph /\ k e. NN ) /\ ( k + 1 ) e. Prime ) -> ( ( seq 1 ( x. , F ) ` k ) e. RR /\ 0 < ( seq 1 ( x. , F ) ` k ) ) ) |
| 189 |
|
lemul2 |
|- ( ( ( F ` ( k + 1 ) ) e. RR /\ ( 2 x. N ) e. RR /\ ( ( seq 1 ( x. , F ) ` k ) e. RR /\ 0 < ( seq 1 ( x. , F ) ` k ) ) ) -> ( ( F ` ( k + 1 ) ) <_ ( 2 x. N ) <-> ( ( seq 1 ( x. , F ) ` k ) x. ( F ` ( k + 1 ) ) ) <_ ( ( seq 1 ( x. , F ) ` k ) x. ( 2 x. N ) ) ) ) |
| 190 |
182 183 188 189
|
syl3anc |
|- ( ( ( ph /\ k e. NN ) /\ ( k + 1 ) e. Prime ) -> ( ( F ` ( k + 1 ) ) <_ ( 2 x. N ) <-> ( ( seq 1 ( x. , F ) ` k ) x. ( F ` ( k + 1 ) ) ) <_ ( ( seq 1 ( x. , F ) ` k ) x. ( 2 x. N ) ) ) ) |
| 191 |
177 190
|
mpbid |
|- ( ( ( ph /\ k e. NN ) /\ ( k + 1 ) e. Prime ) -> ( ( seq 1 ( x. , F ) ` k ) x. ( F ` ( k + 1 ) ) ) <_ ( ( seq 1 ( x. , F ) ` k ) x. ( 2 x. N ) ) ) |
| 192 |
160 191
|
eqbrtrd |
|- ( ( ( ph /\ k e. NN ) /\ ( k + 1 ) e. Prime ) -> ( seq 1 ( x. , F ) ` ( k + 1 ) ) <_ ( ( seq 1 ( x. , F ) ` k ) x. ( 2 x. N ) ) ) |
| 193 |
|
ffvelcdm |
|- ( ( seq 1 ( x. , F ) : NN --> NN /\ ( k + 1 ) e. NN ) -> ( seq 1 ( x. , F ) ` ( k + 1 ) ) e. NN ) |
| 194 |
18 161 193
|
syl2an |
|- ( ( ph /\ k e. NN ) -> ( seq 1 ( x. , F ) ` ( k + 1 ) ) e. NN ) |
| 195 |
194
|
nnred |
|- ( ( ph /\ k e. NN ) -> ( seq 1 ( x. , F ) ` ( k + 1 ) ) e. RR ) |
| 196 |
27
|
adantr |
|- ( ( ph /\ k e. NN ) -> ( 2 x. N ) e. NN ) |
| 197 |
128 196
|
nnmulcld |
|- ( ( ph /\ k e. NN ) -> ( ( seq 1 ( x. , F ) ` k ) x. ( 2 x. N ) ) e. NN ) |
| 198 |
197
|
nnred |
|- ( ( ph /\ k e. NN ) -> ( ( seq 1 ( x. , F ) ` k ) x. ( 2 x. N ) ) e. RR ) |
| 199 |
162
|
nnred |
|- ( ( ph /\ k e. NN ) -> ( k + 1 ) e. RR ) |
| 200 |
|
ppicl |
|- ( ( k + 1 ) e. RR -> ( ppi ` ( k + 1 ) ) e. NN0 ) |
| 201 |
199 200
|
syl |
|- ( ( ph /\ k e. NN ) -> ( ppi ` ( k + 1 ) ) e. NN0 ) |
| 202 |
196 201
|
nnexpcld |
|- ( ( ph /\ k e. NN ) -> ( ( 2 x. N ) ^ ( ppi ` ( k + 1 ) ) ) e. NN ) |
| 203 |
202
|
nnred |
|- ( ( ph /\ k e. NN ) -> ( ( 2 x. N ) ^ ( ppi ` ( k + 1 ) ) ) e. RR ) |
| 204 |
|
letr |
|- ( ( ( seq 1 ( x. , F ) ` ( k + 1 ) ) e. RR /\ ( ( seq 1 ( x. , F ) ` k ) x. ( 2 x. N ) ) e. RR /\ ( ( 2 x. N ) ^ ( ppi ` ( k + 1 ) ) ) e. RR ) -> ( ( ( seq 1 ( x. , F ) ` ( k + 1 ) ) <_ ( ( seq 1 ( x. , F ) ` k ) x. ( 2 x. N ) ) /\ ( ( seq 1 ( x. , F ) ` k ) x. ( 2 x. N ) ) <_ ( ( 2 x. N ) ^ ( ppi ` ( k + 1 ) ) ) ) -> ( seq 1 ( x. , F ) ` ( k + 1 ) ) <_ ( ( 2 x. N ) ^ ( ppi ` ( k + 1 ) ) ) ) ) |
| 205 |
195 198 203 204
|
syl3anc |
|- ( ( ph /\ k e. NN ) -> ( ( ( seq 1 ( x. , F ) ` ( k + 1 ) ) <_ ( ( seq 1 ( x. , F ) ` k ) x. ( 2 x. N ) ) /\ ( ( seq 1 ( x. , F ) ` k ) x. ( 2 x. N ) ) <_ ( ( 2 x. N ) ^ ( ppi ` ( k + 1 ) ) ) ) -> ( seq 1 ( x. , F ) ` ( k + 1 ) ) <_ ( ( 2 x. N ) ^ ( ppi ` ( k + 1 ) ) ) ) ) |
| 206 |
205
|
adantr |
|- ( ( ( ph /\ k e. NN ) /\ ( k + 1 ) e. Prime ) -> ( ( ( seq 1 ( x. , F ) ` ( k + 1 ) ) <_ ( ( seq 1 ( x. , F ) ` k ) x. ( 2 x. N ) ) /\ ( ( seq 1 ( x. , F ) ` k ) x. ( 2 x. N ) ) <_ ( ( 2 x. N ) ^ ( ppi ` ( k + 1 ) ) ) ) -> ( seq 1 ( x. , F ) ` ( k + 1 ) ) <_ ( ( 2 x. N ) ^ ( ppi ` ( k + 1 ) ) ) ) ) |
| 207 |
192 206
|
mpand |
|- ( ( ( ph /\ k e. NN ) /\ ( k + 1 ) e. Prime ) -> ( ( ( seq 1 ( x. , F ) ` k ) x. ( 2 x. N ) ) <_ ( ( 2 x. N ) ^ ( ppi ` ( k + 1 ) ) ) -> ( seq 1 ( x. , F ) ` ( k + 1 ) ) <_ ( ( 2 x. N ) ^ ( ppi ` ( k + 1 ) ) ) ) ) |
| 208 |
154 207
|
sylbid |
|- ( ( ( ph /\ k e. NN ) /\ ( k + 1 ) e. Prime ) -> ( ( seq 1 ( x. , F ) ` k ) <_ ( ( 2 x. N ) ^ ( ppi ` k ) ) -> ( seq 1 ( x. , F ) ` ( k + 1 ) ) <_ ( ( 2 x. N ) ^ ( ppi ` ( k + 1 ) ) ) ) ) |
| 209 |
159
|
adantr |
|- ( ( ( ph /\ k e. NN ) /\ -. ( k + 1 ) e. Prime ) -> ( seq 1 ( x. , F ) ` ( k + 1 ) ) = ( ( seq 1 ( x. , F ) ` k ) x. ( F ` ( k + 1 ) ) ) ) |
| 210 |
|
iffalse |
|- ( -. ( k + 1 ) e. Prime -> if ( ( k + 1 ) e. Prime , ( ( k + 1 ) ^ ( ( k + 1 ) pCnt ( ( 2 x. N ) _C N ) ) ) , 1 ) = 1 ) |
| 211 |
171 210
|
sylan9eq |
|- ( ( ( ph /\ k e. NN ) /\ -. ( k + 1 ) e. Prime ) -> ( F ` ( k + 1 ) ) = 1 ) |
| 212 |
211
|
oveq2d |
|- ( ( ( ph /\ k e. NN ) /\ -. ( k + 1 ) e. Prime ) -> ( ( seq 1 ( x. , F ) ` k ) x. ( F ` ( k + 1 ) ) ) = ( ( seq 1 ( x. , F ) ` k ) x. 1 ) ) |
| 213 |
128
|
adantr |
|- ( ( ( ph /\ k e. NN ) /\ -. ( k + 1 ) e. Prime ) -> ( seq 1 ( x. , F ) ` k ) e. NN ) |
| 214 |
213
|
nncnd |
|- ( ( ( ph /\ k e. NN ) /\ -. ( k + 1 ) e. Prime ) -> ( seq 1 ( x. , F ) ` k ) e. CC ) |
| 215 |
214
|
mulridd |
|- ( ( ( ph /\ k e. NN ) /\ -. ( k + 1 ) e. Prime ) -> ( ( seq 1 ( x. , F ) ` k ) x. 1 ) = ( seq 1 ( x. , F ) ` k ) ) |
| 216 |
209 212 215
|
3eqtrd |
|- ( ( ( ph /\ k e. NN ) /\ -. ( k + 1 ) e. Prime ) -> ( seq 1 ( x. , F ) ` ( k + 1 ) ) = ( seq 1 ( x. , F ) ` k ) ) |
| 217 |
|
ppinprm |
|- ( ( k e. ZZ /\ -. ( k + 1 ) e. Prime ) -> ( ppi ` ( k + 1 ) ) = ( ppi ` k ) ) |
| 218 |
146 217
|
sylan |
|- ( ( ( ph /\ k e. NN ) /\ -. ( k + 1 ) e. Prime ) -> ( ppi ` ( k + 1 ) ) = ( ppi ` k ) ) |
| 219 |
218
|
oveq2d |
|- ( ( ( ph /\ k e. NN ) /\ -. ( k + 1 ) e. Prime ) -> ( ( 2 x. N ) ^ ( ppi ` ( k + 1 ) ) ) = ( ( 2 x. N ) ^ ( ppi ` k ) ) ) |
| 220 |
216 219
|
breq12d |
|- ( ( ( ph /\ k e. NN ) /\ -. ( k + 1 ) e. Prime ) -> ( ( seq 1 ( x. , F ) ` ( k + 1 ) ) <_ ( ( 2 x. N ) ^ ( ppi ` ( k + 1 ) ) ) <-> ( seq 1 ( x. , F ) ` k ) <_ ( ( 2 x. N ) ^ ( ppi ` k ) ) ) ) |
| 221 |
220
|
biimprd |
|- ( ( ( ph /\ k e. NN ) /\ -. ( k + 1 ) e. Prime ) -> ( ( seq 1 ( x. , F ) ` k ) <_ ( ( 2 x. N ) ^ ( ppi ` k ) ) -> ( seq 1 ( x. , F ) ` ( k + 1 ) ) <_ ( ( 2 x. N ) ^ ( ppi ` ( k + 1 ) ) ) ) ) |
| 222 |
208 221
|
pm2.61dan |
|- ( ( ph /\ k e. NN ) -> ( ( seq 1 ( x. , F ) ` k ) <_ ( ( 2 x. N ) ^ ( ppi ` k ) ) -> ( seq 1 ( x. , F ) ` ( k + 1 ) ) <_ ( ( 2 x. N ) ^ ( ppi ` ( k + 1 ) ) ) ) ) |
| 223 |
222
|
expcom |
|- ( k e. NN -> ( ph -> ( ( seq 1 ( x. , F ) ` k ) <_ ( ( 2 x. N ) ^ ( ppi ` k ) ) -> ( seq 1 ( x. , F ) ` ( k + 1 ) ) <_ ( ( 2 x. N ) ^ ( ppi ` ( k + 1 ) ) ) ) ) ) |
| 224 |
223
|
a2d |
|- ( k e. NN -> ( ( ph -> ( seq 1 ( x. , F ) ` k ) <_ ( ( 2 x. N ) ^ ( ppi ` k ) ) ) -> ( ph -> ( seq 1 ( x. , F ) ` ( k + 1 ) ) <_ ( ( 2 x. N ) ^ ( ppi ` ( k + 1 ) ) ) ) ) ) |
| 225 |
95 100 105 110 127 224
|
nnind |
|- ( M e. NN -> ( ph -> ( seq 1 ( x. , F ) ` M ) <_ ( ( 2 x. N ) ^ ( ppi ` M ) ) ) ) |
| 226 |
76 225
|
mpcom |
|- ( ph -> ( seq 1 ( x. , F ) ` M ) <_ ( ( 2 x. N ) ^ ( ppi ` M ) ) ) |
| 227 |
|
cxpexp |
|- ( ( ( 2 x. N ) e. CC /\ ( ppi ` M ) e. NN0 ) -> ( ( 2 x. N ) ^c ( ppi ` M ) ) = ( ( 2 x. N ) ^ ( ppi ` M ) ) ) |
| 228 |
125 81 227
|
syl2anc |
|- ( ph -> ( ( 2 x. N ) ^c ( ppi ` M ) ) = ( ( 2 x. N ) ^ ( ppi ` M ) ) ) |
| 229 |
81
|
nn0red |
|- ( ph -> ( ppi ` M ) e. RR ) |
| 230 |
|
nndivre |
|- ( ( M e. RR /\ 3 e. NN ) -> ( M / 3 ) e. RR ) |
| 231 |
79 19 230
|
sylancl |
|- ( ph -> ( M / 3 ) e. RR ) |
| 232 |
|
readdcl |
|- ( ( ( M / 3 ) e. RR /\ 2 e. RR ) -> ( ( M / 3 ) + 2 ) e. RR ) |
| 233 |
231 50 232
|
sylancl |
|- ( ph -> ( ( M / 3 ) + 2 ) e. RR ) |
| 234 |
76
|
nnnn0d |
|- ( ph -> M e. NN0 ) |
| 235 |
234
|
nn0ge0d |
|- ( ph -> 0 <_ M ) |
| 236 |
|
ppiub |
|- ( ( M e. RR /\ 0 <_ M ) -> ( ppi ` M ) <_ ( ( M / 3 ) + 2 ) ) |
| 237 |
79 235 236
|
syl2anc |
|- ( ph -> ( ppi ` M ) <_ ( ( M / 3 ) + 2 ) ) |
| 238 |
50
|
a1i |
|- ( ph -> 2 e. RR ) |
| 239 |
|
flle |
|- ( ( sqrt ` ( 2 x. N ) ) e. RR -> ( |_ ` ( sqrt ` ( 2 x. N ) ) ) <_ ( sqrt ` ( 2 x. N ) ) ) |
| 240 |
30 239
|
syl |
|- ( ph -> ( |_ ` ( sqrt ` ( 2 x. N ) ) ) <_ ( sqrt ` ( 2 x. N ) ) ) |
| 241 |
5 240
|
eqbrtrid |
|- ( ph -> M <_ ( sqrt ` ( 2 x. N ) ) ) |
| 242 |
|
3re |
|- 3 e. RR |
| 243 |
|
3pos |
|- 0 < 3 |
| 244 |
242 243
|
pm3.2i |
|- ( 3 e. RR /\ 0 < 3 ) |
| 245 |
244
|
a1i |
|- ( ph -> ( 3 e. RR /\ 0 < 3 ) ) |
| 246 |
|
lediv1 |
|- ( ( M e. RR /\ ( sqrt ` ( 2 x. N ) ) e. RR /\ ( 3 e. RR /\ 0 < 3 ) ) -> ( M <_ ( sqrt ` ( 2 x. N ) ) <-> ( M / 3 ) <_ ( ( sqrt ` ( 2 x. N ) ) / 3 ) ) ) |
| 247 |
79 30 245 246
|
syl3anc |
|- ( ph -> ( M <_ ( sqrt ` ( 2 x. N ) ) <-> ( M / 3 ) <_ ( ( sqrt ` ( 2 x. N ) ) / 3 ) ) ) |
| 248 |
241 247
|
mpbid |
|- ( ph -> ( M / 3 ) <_ ( ( sqrt ` ( 2 x. N ) ) / 3 ) ) |
| 249 |
231 85 238 248
|
leadd1dd |
|- ( ph -> ( ( M / 3 ) + 2 ) <_ ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) ) |
| 250 |
229 233 87 237 249
|
letrd |
|- ( ph -> ( ppi ` M ) <_ ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) ) |
| 251 |
|
2t1e2 |
|- ( 2 x. 1 ) = 2 |
| 252 |
9
|
nnge1d |
|- ( ph -> 1 <_ N ) |
| 253 |
|
1re |
|- 1 e. RR |
| 254 |
|
lemul2 |
|- ( ( 1 e. RR /\ N e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( 1 <_ N <-> ( 2 x. 1 ) <_ ( 2 x. N ) ) ) |
| 255 |
253 52 254
|
mp3an13 |
|- ( N e. RR -> ( 1 <_ N <-> ( 2 x. 1 ) <_ ( 2 x. N ) ) ) |
| 256 |
48 255
|
syl |
|- ( ph -> ( 1 <_ N <-> ( 2 x. 1 ) <_ ( 2 x. N ) ) ) |
| 257 |
252 256
|
mpbid |
|- ( ph -> ( 2 x. 1 ) <_ ( 2 x. N ) ) |
| 258 |
251 257
|
eqbrtrrid |
|- ( ph -> 2 <_ ( 2 x. N ) ) |
| 259 |
20
|
eluz1i |
|- ( ( 2 x. N ) e. ( ZZ>= ` 2 ) <-> ( ( 2 x. N ) e. ZZ /\ 2 <_ ( 2 x. N ) ) ) |
| 260 |
23 258 259
|
sylanbrc |
|- ( ph -> ( 2 x. N ) e. ( ZZ>= ` 2 ) ) |
| 261 |
|
eluz2gt1 |
|- ( ( 2 x. N ) e. ( ZZ>= ` 2 ) -> 1 < ( 2 x. N ) ) |
| 262 |
260 261
|
syl |
|- ( ph -> 1 < ( 2 x. N ) ) |
| 263 |
24 262 229 87
|
cxpled |
|- ( ph -> ( ( ppi ` M ) <_ ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) <-> ( ( 2 x. N ) ^c ( ppi ` M ) ) <_ ( ( 2 x. N ) ^c ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) ) ) ) |
| 264 |
250 263
|
mpbid |
|- ( ph -> ( ( 2 x. N ) ^c ( ppi ` M ) ) <_ ( ( 2 x. N ) ^c ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) ) ) |
| 265 |
228 264
|
eqbrtrrd |
|- ( ph -> ( ( 2 x. N ) ^ ( ppi ` M ) ) <_ ( ( 2 x. N ) ^c ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) ) ) |
| 266 |
78 83 88 226 265
|
letrd |
|- ( ph -> ( seq 1 ( x. , F ) ` M ) <_ ( ( 2 x. N ) ^c ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) ) ) |