| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3re |
|- 3 e. RR |
| 2 |
1
|
a1i |
|- ( ( N e. RR /\ 0 <_ N ) -> 3 e. RR ) |
| 3 |
|
simpl |
|- ( ( N e. RR /\ 0 <_ N ) -> N e. RR ) |
| 4 |
|
ppicl |
|- ( N e. RR -> ( ppi ` N ) e. NN0 ) |
| 5 |
4
|
nn0red |
|- ( N e. RR -> ( ppi ` N ) e. RR ) |
| 6 |
5
|
adantr |
|- ( ( N e. RR /\ 3 <_ N ) -> ( ppi ` N ) e. RR ) |
| 7 |
|
2re |
|- 2 e. RR |
| 8 |
|
resubcl |
|- ( ( ( ppi ` N ) e. RR /\ 2 e. RR ) -> ( ( ppi ` N ) - 2 ) e. RR ) |
| 9 |
6 7 8
|
sylancl |
|- ( ( N e. RR /\ 3 <_ N ) -> ( ( ppi ` N ) - 2 ) e. RR ) |
| 10 |
|
fzfi |
|- ( 4 ... ( |_ ` N ) ) e. Fin |
| 11 |
|
ssrab2 |
|- { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) e. { 1 , 5 } } C_ ( 4 ... ( |_ ` N ) ) |
| 12 |
|
ssfi |
|- ( ( ( 4 ... ( |_ ` N ) ) e. Fin /\ { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) e. { 1 , 5 } } C_ ( 4 ... ( |_ ` N ) ) ) -> { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) e. { 1 , 5 } } e. Fin ) |
| 13 |
10 11 12
|
mp2an |
|- { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) e. { 1 , 5 } } e. Fin |
| 14 |
|
hashcl |
|- ( { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) e. { 1 , 5 } } e. Fin -> ( # ` { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) e. { 1 , 5 } } ) e. NN0 ) |
| 15 |
13 14
|
ax-mp |
|- ( # ` { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) e. { 1 , 5 } } ) e. NN0 |
| 16 |
15
|
nn0rei |
|- ( # ` { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) e. { 1 , 5 } } ) e. RR |
| 17 |
16
|
a1i |
|- ( ( N e. RR /\ 3 <_ N ) -> ( # ` { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) e. { 1 , 5 } } ) e. RR ) |
| 18 |
|
3nn |
|- 3 e. NN |
| 19 |
|
nndivre |
|- ( ( N e. RR /\ 3 e. NN ) -> ( N / 3 ) e. RR ) |
| 20 |
18 19
|
mpan2 |
|- ( N e. RR -> ( N / 3 ) e. RR ) |
| 21 |
20
|
adantr |
|- ( ( N e. RR /\ 3 <_ N ) -> ( N / 3 ) e. RR ) |
| 22 |
|
ppifl |
|- ( N e. RR -> ( ppi ` ( |_ ` N ) ) = ( ppi ` N ) ) |
| 23 |
22
|
adantr |
|- ( ( N e. RR /\ 3 <_ N ) -> ( ppi ` ( |_ ` N ) ) = ( ppi ` N ) ) |
| 24 |
|
ppi3 |
|- ( ppi ` 3 ) = 2 |
| 25 |
24
|
a1i |
|- ( ( N e. RR /\ 3 <_ N ) -> ( ppi ` 3 ) = 2 ) |
| 26 |
23 25
|
oveq12d |
|- ( ( N e. RR /\ 3 <_ N ) -> ( ( ppi ` ( |_ ` N ) ) - ( ppi ` 3 ) ) = ( ( ppi ` N ) - 2 ) ) |
| 27 |
|
3z |
|- 3 e. ZZ |
| 28 |
27
|
a1i |
|- ( ( N e. RR /\ 3 <_ N ) -> 3 e. ZZ ) |
| 29 |
|
flcl |
|- ( N e. RR -> ( |_ ` N ) e. ZZ ) |
| 30 |
29
|
adantr |
|- ( ( N e. RR /\ 3 <_ N ) -> ( |_ ` N ) e. ZZ ) |
| 31 |
|
flge |
|- ( ( N e. RR /\ 3 e. ZZ ) -> ( 3 <_ N <-> 3 <_ ( |_ ` N ) ) ) |
| 32 |
27 31
|
mpan2 |
|- ( N e. RR -> ( 3 <_ N <-> 3 <_ ( |_ ` N ) ) ) |
| 33 |
32
|
biimpa |
|- ( ( N e. RR /\ 3 <_ N ) -> 3 <_ ( |_ ` N ) ) |
| 34 |
|
eluz2 |
|- ( ( |_ ` N ) e. ( ZZ>= ` 3 ) <-> ( 3 e. ZZ /\ ( |_ ` N ) e. ZZ /\ 3 <_ ( |_ ` N ) ) ) |
| 35 |
28 30 33 34
|
syl3anbrc |
|- ( ( N e. RR /\ 3 <_ N ) -> ( |_ ` N ) e. ( ZZ>= ` 3 ) ) |
| 36 |
|
ppidif |
|- ( ( |_ ` N ) e. ( ZZ>= ` 3 ) -> ( ( ppi ` ( |_ ` N ) ) - ( ppi ` 3 ) ) = ( # ` ( ( ( 3 + 1 ) ... ( |_ ` N ) ) i^i Prime ) ) ) |
| 37 |
35 36
|
syl |
|- ( ( N e. RR /\ 3 <_ N ) -> ( ( ppi ` ( |_ ` N ) ) - ( ppi ` 3 ) ) = ( # ` ( ( ( 3 + 1 ) ... ( |_ ` N ) ) i^i Prime ) ) ) |
| 38 |
|
df-4 |
|- 4 = ( 3 + 1 ) |
| 39 |
38
|
oveq1i |
|- ( 4 ... ( |_ ` N ) ) = ( ( 3 + 1 ) ... ( |_ ` N ) ) |
| 40 |
39
|
ineq1i |
|- ( ( 4 ... ( |_ ` N ) ) i^i Prime ) = ( ( ( 3 + 1 ) ... ( |_ ` N ) ) i^i Prime ) |
| 41 |
40
|
fveq2i |
|- ( # ` ( ( 4 ... ( |_ ` N ) ) i^i Prime ) ) = ( # ` ( ( ( 3 + 1 ) ... ( |_ ` N ) ) i^i Prime ) ) |
| 42 |
37 41
|
eqtr4di |
|- ( ( N e. RR /\ 3 <_ N ) -> ( ( ppi ` ( |_ ` N ) ) - ( ppi ` 3 ) ) = ( # ` ( ( 4 ... ( |_ ` N ) ) i^i Prime ) ) ) |
| 43 |
26 42
|
eqtr3d |
|- ( ( N e. RR /\ 3 <_ N ) -> ( ( ppi ` N ) - 2 ) = ( # ` ( ( 4 ... ( |_ ` N ) ) i^i Prime ) ) ) |
| 44 |
|
dfin5 |
|- ( ( 4 ... ( |_ ` N ) ) i^i Prime ) = { k e. ( 4 ... ( |_ ` N ) ) | k e. Prime } |
| 45 |
|
elfzle1 |
|- ( k e. ( 4 ... ( |_ ` N ) ) -> 4 <_ k ) |
| 46 |
|
ppiublem2 |
|- ( ( k e. Prime /\ 4 <_ k ) -> ( k mod 6 ) e. { 1 , 5 } ) |
| 47 |
46
|
expcom |
|- ( 4 <_ k -> ( k e. Prime -> ( k mod 6 ) e. { 1 , 5 } ) ) |
| 48 |
45 47
|
syl |
|- ( k e. ( 4 ... ( |_ ` N ) ) -> ( k e. Prime -> ( k mod 6 ) e. { 1 , 5 } ) ) |
| 49 |
48
|
ss2rabi |
|- { k e. ( 4 ... ( |_ ` N ) ) | k e. Prime } C_ { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) e. { 1 , 5 } } |
| 50 |
44 49
|
eqsstri |
|- ( ( 4 ... ( |_ ` N ) ) i^i Prime ) C_ { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) e. { 1 , 5 } } |
| 51 |
|
ssdomg |
|- ( { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) e. { 1 , 5 } } e. Fin -> ( ( ( 4 ... ( |_ ` N ) ) i^i Prime ) C_ { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) e. { 1 , 5 } } -> ( ( 4 ... ( |_ ` N ) ) i^i Prime ) ~<_ { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) e. { 1 , 5 } } ) ) |
| 52 |
13 50 51
|
mp2 |
|- ( ( 4 ... ( |_ ` N ) ) i^i Prime ) ~<_ { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) e. { 1 , 5 } } |
| 53 |
|
inss1 |
|- ( ( 4 ... ( |_ ` N ) ) i^i Prime ) C_ ( 4 ... ( |_ ` N ) ) |
| 54 |
|
ssfi |
|- ( ( ( 4 ... ( |_ ` N ) ) e. Fin /\ ( ( 4 ... ( |_ ` N ) ) i^i Prime ) C_ ( 4 ... ( |_ ` N ) ) ) -> ( ( 4 ... ( |_ ` N ) ) i^i Prime ) e. Fin ) |
| 55 |
10 53 54
|
mp2an |
|- ( ( 4 ... ( |_ ` N ) ) i^i Prime ) e. Fin |
| 56 |
|
hashdom |
|- ( ( ( ( 4 ... ( |_ ` N ) ) i^i Prime ) e. Fin /\ { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) e. { 1 , 5 } } e. Fin ) -> ( ( # ` ( ( 4 ... ( |_ ` N ) ) i^i Prime ) ) <_ ( # ` { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) e. { 1 , 5 } } ) <-> ( ( 4 ... ( |_ ` N ) ) i^i Prime ) ~<_ { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) e. { 1 , 5 } } ) ) |
| 57 |
55 13 56
|
mp2an |
|- ( ( # ` ( ( 4 ... ( |_ ` N ) ) i^i Prime ) ) <_ ( # ` { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) e. { 1 , 5 } } ) <-> ( ( 4 ... ( |_ ` N ) ) i^i Prime ) ~<_ { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) e. { 1 , 5 } } ) |
| 58 |
52 57
|
mpbir |
|- ( # ` ( ( 4 ... ( |_ ` N ) ) i^i Prime ) ) <_ ( # ` { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) e. { 1 , 5 } } ) |
| 59 |
43 58
|
eqbrtrdi |
|- ( ( N e. RR /\ 3 <_ N ) -> ( ( ppi ` N ) - 2 ) <_ ( # ` { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) e. { 1 , 5 } } ) ) |
| 60 |
|
reflcl |
|- ( N e. RR -> ( |_ ` N ) e. RR ) |
| 61 |
60
|
adantr |
|- ( ( N e. RR /\ 3 <_ N ) -> ( |_ ` N ) e. RR ) |
| 62 |
|
peano2rem |
|- ( ( |_ ` N ) e. RR -> ( ( |_ ` N ) - 1 ) e. RR ) |
| 63 |
61 62
|
syl |
|- ( ( N e. RR /\ 3 <_ N ) -> ( ( |_ ` N ) - 1 ) e. RR ) |
| 64 |
|
6nn |
|- 6 e. NN |
| 65 |
|
nndivre |
|- ( ( ( ( |_ ` N ) - 1 ) e. RR /\ 6 e. NN ) -> ( ( ( |_ ` N ) - 1 ) / 6 ) e. RR ) |
| 66 |
63 64 65
|
sylancl |
|- ( ( N e. RR /\ 3 <_ N ) -> ( ( ( |_ ` N ) - 1 ) / 6 ) e. RR ) |
| 67 |
|
reflcl |
|- ( ( ( ( |_ ` N ) - 1 ) / 6 ) e. RR -> ( |_ ` ( ( ( |_ ` N ) - 1 ) / 6 ) ) e. RR ) |
| 68 |
66 67
|
syl |
|- ( ( N e. RR /\ 3 <_ N ) -> ( |_ ` ( ( ( |_ ` N ) - 1 ) / 6 ) ) e. RR ) |
| 69 |
|
5re |
|- 5 e. RR |
| 70 |
|
resubcl |
|- ( ( ( |_ ` N ) e. RR /\ 5 e. RR ) -> ( ( |_ ` N ) - 5 ) e. RR ) |
| 71 |
61 69 70
|
sylancl |
|- ( ( N e. RR /\ 3 <_ N ) -> ( ( |_ ` N ) - 5 ) e. RR ) |
| 72 |
|
nndivre |
|- ( ( ( ( |_ ` N ) - 5 ) e. RR /\ 6 e. NN ) -> ( ( ( |_ ` N ) - 5 ) / 6 ) e. RR ) |
| 73 |
71 64 72
|
sylancl |
|- ( ( N e. RR /\ 3 <_ N ) -> ( ( ( |_ ` N ) - 5 ) / 6 ) e. RR ) |
| 74 |
|
reflcl |
|- ( ( ( ( |_ ` N ) - 5 ) / 6 ) e. RR -> ( |_ ` ( ( ( |_ ` N ) - 5 ) / 6 ) ) e. RR ) |
| 75 |
73 74
|
syl |
|- ( ( N e. RR /\ 3 <_ N ) -> ( |_ ` ( ( ( |_ ` N ) - 5 ) / 6 ) ) e. RR ) |
| 76 |
|
peano2re |
|- ( ( |_ ` ( ( ( |_ ` N ) - 5 ) / 6 ) ) e. RR -> ( ( |_ ` ( ( ( |_ ` N ) - 5 ) / 6 ) ) + 1 ) e. RR ) |
| 77 |
75 76
|
syl |
|- ( ( N e. RR /\ 3 <_ N ) -> ( ( |_ ` ( ( ( |_ ` N ) - 5 ) / 6 ) ) + 1 ) e. RR ) |
| 78 |
|
peano2rem |
|- ( N e. RR -> ( N - 1 ) e. RR ) |
| 79 |
78
|
adantr |
|- ( ( N e. RR /\ 3 <_ N ) -> ( N - 1 ) e. RR ) |
| 80 |
|
nndivre |
|- ( ( ( N - 1 ) e. RR /\ 6 e. NN ) -> ( ( N - 1 ) / 6 ) e. RR ) |
| 81 |
79 64 80
|
sylancl |
|- ( ( N e. RR /\ 3 <_ N ) -> ( ( N - 1 ) / 6 ) e. RR ) |
| 82 |
|
simpl |
|- ( ( N e. RR /\ 3 <_ N ) -> N e. RR ) |
| 83 |
|
resubcl |
|- ( ( N e. RR /\ 5 e. RR ) -> ( N - 5 ) e. RR ) |
| 84 |
82 69 83
|
sylancl |
|- ( ( N e. RR /\ 3 <_ N ) -> ( N - 5 ) e. RR ) |
| 85 |
|
nndivre |
|- ( ( ( N - 5 ) e. RR /\ 6 e. NN ) -> ( ( N - 5 ) / 6 ) e. RR ) |
| 86 |
84 64 85
|
sylancl |
|- ( ( N e. RR /\ 3 <_ N ) -> ( ( N - 5 ) / 6 ) e. RR ) |
| 87 |
|
peano2re |
|- ( ( ( N - 5 ) / 6 ) e. RR -> ( ( ( N - 5 ) / 6 ) + 1 ) e. RR ) |
| 88 |
86 87
|
syl |
|- ( ( N e. RR /\ 3 <_ N ) -> ( ( ( N - 5 ) / 6 ) + 1 ) e. RR ) |
| 89 |
|
flle |
|- ( ( ( ( |_ ` N ) - 1 ) / 6 ) e. RR -> ( |_ ` ( ( ( |_ ` N ) - 1 ) / 6 ) ) <_ ( ( ( |_ ` N ) - 1 ) / 6 ) ) |
| 90 |
66 89
|
syl |
|- ( ( N e. RR /\ 3 <_ N ) -> ( |_ ` ( ( ( |_ ` N ) - 1 ) / 6 ) ) <_ ( ( ( |_ ` N ) - 1 ) / 6 ) ) |
| 91 |
|
1re |
|- 1 e. RR |
| 92 |
91
|
a1i |
|- ( ( N e. RR /\ 3 <_ N ) -> 1 e. RR ) |
| 93 |
|
flle |
|- ( N e. RR -> ( |_ ` N ) <_ N ) |
| 94 |
93
|
adantr |
|- ( ( N e. RR /\ 3 <_ N ) -> ( |_ ` N ) <_ N ) |
| 95 |
61 82 92 94
|
lesub1dd |
|- ( ( N e. RR /\ 3 <_ N ) -> ( ( |_ ` N ) - 1 ) <_ ( N - 1 ) ) |
| 96 |
|
6re |
|- 6 e. RR |
| 97 |
96
|
a1i |
|- ( ( N e. RR /\ 3 <_ N ) -> 6 e. RR ) |
| 98 |
|
6pos |
|- 0 < 6 |
| 99 |
98
|
a1i |
|- ( ( N e. RR /\ 3 <_ N ) -> 0 < 6 ) |
| 100 |
|
lediv1 |
|- ( ( ( ( |_ ` N ) - 1 ) e. RR /\ ( N - 1 ) e. RR /\ ( 6 e. RR /\ 0 < 6 ) ) -> ( ( ( |_ ` N ) - 1 ) <_ ( N - 1 ) <-> ( ( ( |_ ` N ) - 1 ) / 6 ) <_ ( ( N - 1 ) / 6 ) ) ) |
| 101 |
63 79 97 99 100
|
syl112anc |
|- ( ( N e. RR /\ 3 <_ N ) -> ( ( ( |_ ` N ) - 1 ) <_ ( N - 1 ) <-> ( ( ( |_ ` N ) - 1 ) / 6 ) <_ ( ( N - 1 ) / 6 ) ) ) |
| 102 |
95 101
|
mpbid |
|- ( ( N e. RR /\ 3 <_ N ) -> ( ( ( |_ ` N ) - 1 ) / 6 ) <_ ( ( N - 1 ) / 6 ) ) |
| 103 |
68 66 81 90 102
|
letrd |
|- ( ( N e. RR /\ 3 <_ N ) -> ( |_ ` ( ( ( |_ ` N ) - 1 ) / 6 ) ) <_ ( ( N - 1 ) / 6 ) ) |
| 104 |
|
flle |
|- ( ( ( ( |_ ` N ) - 5 ) / 6 ) e. RR -> ( |_ ` ( ( ( |_ ` N ) - 5 ) / 6 ) ) <_ ( ( ( |_ ` N ) - 5 ) / 6 ) ) |
| 105 |
73 104
|
syl |
|- ( ( N e. RR /\ 3 <_ N ) -> ( |_ ` ( ( ( |_ ` N ) - 5 ) / 6 ) ) <_ ( ( ( |_ ` N ) - 5 ) / 6 ) ) |
| 106 |
69
|
a1i |
|- ( ( N e. RR /\ 3 <_ N ) -> 5 e. RR ) |
| 107 |
61 82 106 94
|
lesub1dd |
|- ( ( N e. RR /\ 3 <_ N ) -> ( ( |_ ` N ) - 5 ) <_ ( N - 5 ) ) |
| 108 |
|
lediv1 |
|- ( ( ( ( |_ ` N ) - 5 ) e. RR /\ ( N - 5 ) e. RR /\ ( 6 e. RR /\ 0 < 6 ) ) -> ( ( ( |_ ` N ) - 5 ) <_ ( N - 5 ) <-> ( ( ( |_ ` N ) - 5 ) / 6 ) <_ ( ( N - 5 ) / 6 ) ) ) |
| 109 |
71 84 97 99 108
|
syl112anc |
|- ( ( N e. RR /\ 3 <_ N ) -> ( ( ( |_ ` N ) - 5 ) <_ ( N - 5 ) <-> ( ( ( |_ ` N ) - 5 ) / 6 ) <_ ( ( N - 5 ) / 6 ) ) ) |
| 110 |
107 109
|
mpbid |
|- ( ( N e. RR /\ 3 <_ N ) -> ( ( ( |_ ` N ) - 5 ) / 6 ) <_ ( ( N - 5 ) / 6 ) ) |
| 111 |
75 73 86 105 110
|
letrd |
|- ( ( N e. RR /\ 3 <_ N ) -> ( |_ ` ( ( ( |_ ` N ) - 5 ) / 6 ) ) <_ ( ( N - 5 ) / 6 ) ) |
| 112 |
75 86 92 111
|
leadd1dd |
|- ( ( N e. RR /\ 3 <_ N ) -> ( ( |_ ` ( ( ( |_ ` N ) - 5 ) / 6 ) ) + 1 ) <_ ( ( ( N - 5 ) / 6 ) + 1 ) ) |
| 113 |
68 77 81 88 103 112
|
le2addd |
|- ( ( N e. RR /\ 3 <_ N ) -> ( ( |_ ` ( ( ( |_ ` N ) - 1 ) / 6 ) ) + ( ( |_ ` ( ( ( |_ ` N ) - 5 ) / 6 ) ) + 1 ) ) <_ ( ( ( N - 1 ) / 6 ) + ( ( ( N - 5 ) / 6 ) + 1 ) ) ) |
| 114 |
|
ovex |
|- ( k mod 6 ) e. _V |
| 115 |
114
|
elpr |
|- ( ( k mod 6 ) e. { 1 , 5 } <-> ( ( k mod 6 ) = 1 \/ ( k mod 6 ) = 5 ) ) |
| 116 |
115
|
rabbii |
|- { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) e. { 1 , 5 } } = { k e. ( 4 ... ( |_ ` N ) ) | ( ( k mod 6 ) = 1 \/ ( k mod 6 ) = 5 ) } |
| 117 |
|
unrab |
|- ( { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) = 1 } u. { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) = 5 } ) = { k e. ( 4 ... ( |_ ` N ) ) | ( ( k mod 6 ) = 1 \/ ( k mod 6 ) = 5 ) } |
| 118 |
116 117
|
eqtr4i |
|- { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) e. { 1 , 5 } } = ( { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) = 1 } u. { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) = 5 } ) |
| 119 |
118
|
fveq2i |
|- ( # ` { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) e. { 1 , 5 } } ) = ( # ` ( { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) = 1 } u. { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) = 5 } ) ) |
| 120 |
|
ssrab2 |
|- { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) = 1 } C_ ( 4 ... ( |_ ` N ) ) |
| 121 |
|
ssfi |
|- ( ( ( 4 ... ( |_ ` N ) ) e. Fin /\ { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) = 1 } C_ ( 4 ... ( |_ ` N ) ) ) -> { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) = 1 } e. Fin ) |
| 122 |
10 120 121
|
mp2an |
|- { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) = 1 } e. Fin |
| 123 |
|
ssrab2 |
|- { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) = 5 } C_ ( 4 ... ( |_ ` N ) ) |
| 124 |
|
ssfi |
|- ( ( ( 4 ... ( |_ ` N ) ) e. Fin /\ { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) = 5 } C_ ( 4 ... ( |_ ` N ) ) ) -> { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) = 5 } e. Fin ) |
| 125 |
10 123 124
|
mp2an |
|- { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) = 5 } e. Fin |
| 126 |
|
inrab |
|- ( { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) = 1 } i^i { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) = 5 } ) = { k e. ( 4 ... ( |_ ` N ) ) | ( ( k mod 6 ) = 1 /\ ( k mod 6 ) = 5 ) } |
| 127 |
|
rabeq0 |
|- ( { k e. ( 4 ... ( |_ ` N ) ) | ( ( k mod 6 ) = 1 /\ ( k mod 6 ) = 5 ) } = (/) <-> A. k e. ( 4 ... ( |_ ` N ) ) -. ( ( k mod 6 ) = 1 /\ ( k mod 6 ) = 5 ) ) |
| 128 |
|
1lt5 |
|- 1 < 5 |
| 129 |
91 128
|
ltneii |
|- 1 =/= 5 |
| 130 |
|
eqtr2 |
|- ( ( ( k mod 6 ) = 1 /\ ( k mod 6 ) = 5 ) -> 1 = 5 ) |
| 131 |
130
|
necon3ai |
|- ( 1 =/= 5 -> -. ( ( k mod 6 ) = 1 /\ ( k mod 6 ) = 5 ) ) |
| 132 |
129 131
|
ax-mp |
|- -. ( ( k mod 6 ) = 1 /\ ( k mod 6 ) = 5 ) |
| 133 |
132
|
a1i |
|- ( k e. ( 4 ... ( |_ ` N ) ) -> -. ( ( k mod 6 ) = 1 /\ ( k mod 6 ) = 5 ) ) |
| 134 |
127 133
|
mprgbir |
|- { k e. ( 4 ... ( |_ ` N ) ) | ( ( k mod 6 ) = 1 /\ ( k mod 6 ) = 5 ) } = (/) |
| 135 |
126 134
|
eqtri |
|- ( { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) = 1 } i^i { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) = 5 } ) = (/) |
| 136 |
|
hashun |
|- ( ( { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) = 1 } e. Fin /\ { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) = 5 } e. Fin /\ ( { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) = 1 } i^i { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) = 5 } ) = (/) ) -> ( # ` ( { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) = 1 } u. { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) = 5 } ) ) = ( ( # ` { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) = 1 } ) + ( # ` { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) = 5 } ) ) ) |
| 137 |
122 125 135 136
|
mp3an |
|- ( # ` ( { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) = 1 } u. { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) = 5 } ) ) = ( ( # ` { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) = 1 } ) + ( # ` { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) = 5 } ) ) |
| 138 |
119 137
|
eqtri |
|- ( # ` { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) e. { 1 , 5 } } ) = ( ( # ` { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) = 1 } ) + ( # ` { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) = 5 } ) ) |
| 139 |
|
elfzelz |
|- ( k e. ( 4 ... ( |_ ` N ) ) -> k e. ZZ ) |
| 140 |
|
nnrp |
|- ( 6 e. NN -> 6 e. RR+ ) |
| 141 |
64 140
|
ax-mp |
|- 6 e. RR+ |
| 142 |
|
0le1 |
|- 0 <_ 1 |
| 143 |
|
1lt6 |
|- 1 < 6 |
| 144 |
|
modid |
|- ( ( ( 1 e. RR /\ 6 e. RR+ ) /\ ( 0 <_ 1 /\ 1 < 6 ) ) -> ( 1 mod 6 ) = 1 ) |
| 145 |
91 141 142 143 144
|
mp4an |
|- ( 1 mod 6 ) = 1 |
| 146 |
145
|
eqeq2i |
|- ( ( k mod 6 ) = ( 1 mod 6 ) <-> ( k mod 6 ) = 1 ) |
| 147 |
|
1z |
|- 1 e. ZZ |
| 148 |
|
moddvds |
|- ( ( 6 e. NN /\ k e. ZZ /\ 1 e. ZZ ) -> ( ( k mod 6 ) = ( 1 mod 6 ) <-> 6 || ( k - 1 ) ) ) |
| 149 |
64 147 148
|
mp3an13 |
|- ( k e. ZZ -> ( ( k mod 6 ) = ( 1 mod 6 ) <-> 6 || ( k - 1 ) ) ) |
| 150 |
146 149
|
bitr3id |
|- ( k e. ZZ -> ( ( k mod 6 ) = 1 <-> 6 || ( k - 1 ) ) ) |
| 151 |
139 150
|
syl |
|- ( k e. ( 4 ... ( |_ ` N ) ) -> ( ( k mod 6 ) = 1 <-> 6 || ( k - 1 ) ) ) |
| 152 |
151
|
rabbiia |
|- { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) = 1 } = { k e. ( 4 ... ( |_ ` N ) ) | 6 || ( k - 1 ) } |
| 153 |
152
|
fveq2i |
|- ( # ` { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) = 1 } ) = ( # ` { k e. ( 4 ... ( |_ ` N ) ) | 6 || ( k - 1 ) } ) |
| 154 |
64
|
a1i |
|- ( ( N e. RR /\ 3 <_ N ) -> 6 e. NN ) |
| 155 |
|
4z |
|- 4 e. ZZ |
| 156 |
155
|
a1i |
|- ( ( N e. RR /\ 3 <_ N ) -> 4 e. ZZ ) |
| 157 |
|
4m1e3 |
|- ( 4 - 1 ) = 3 |
| 158 |
157
|
fveq2i |
|- ( ZZ>= ` ( 4 - 1 ) ) = ( ZZ>= ` 3 ) |
| 159 |
35 158
|
eleqtrrdi |
|- ( ( N e. RR /\ 3 <_ N ) -> ( |_ ` N ) e. ( ZZ>= ` ( 4 - 1 ) ) ) |
| 160 |
147
|
a1i |
|- ( ( N e. RR /\ 3 <_ N ) -> 1 e. ZZ ) |
| 161 |
154 156 159 160
|
hashdvds |
|- ( ( N e. RR /\ 3 <_ N ) -> ( # ` { k e. ( 4 ... ( |_ ` N ) ) | 6 || ( k - 1 ) } ) = ( ( |_ ` ( ( ( |_ ` N ) - 1 ) / 6 ) ) - ( |_ ` ( ( ( 4 - 1 ) - 1 ) / 6 ) ) ) ) |
| 162 |
153 161
|
eqtrid |
|- ( ( N e. RR /\ 3 <_ N ) -> ( # ` { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) = 1 } ) = ( ( |_ ` ( ( ( |_ ` N ) - 1 ) / 6 ) ) - ( |_ ` ( ( ( 4 - 1 ) - 1 ) / 6 ) ) ) ) |
| 163 |
|
2cn |
|- 2 e. CC |
| 164 |
|
ax-1cn |
|- 1 e. CC |
| 165 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
| 166 |
157 165
|
eqtri |
|- ( 4 - 1 ) = ( 2 + 1 ) |
| 167 |
163 164 166
|
mvrraddi |
|- ( ( 4 - 1 ) - 1 ) = 2 |
| 168 |
167
|
oveq1i |
|- ( ( ( 4 - 1 ) - 1 ) / 6 ) = ( 2 / 6 ) |
| 169 |
168
|
fveq2i |
|- ( |_ ` ( ( ( 4 - 1 ) - 1 ) / 6 ) ) = ( |_ ` ( 2 / 6 ) ) |
| 170 |
|
0re |
|- 0 e. RR |
| 171 |
64
|
nnne0i |
|- 6 =/= 0 |
| 172 |
7 96 171
|
redivcli |
|- ( 2 / 6 ) e. RR |
| 173 |
|
2pos |
|- 0 < 2 |
| 174 |
7 96 173 98
|
divgt0ii |
|- 0 < ( 2 / 6 ) |
| 175 |
170 172 174
|
ltleii |
|- 0 <_ ( 2 / 6 ) |
| 176 |
|
2lt6 |
|- 2 < 6 |
| 177 |
|
6cn |
|- 6 e. CC |
| 178 |
177
|
mulridi |
|- ( 6 x. 1 ) = 6 |
| 179 |
176 178
|
breqtrri |
|- 2 < ( 6 x. 1 ) |
| 180 |
96 98
|
pm3.2i |
|- ( 6 e. RR /\ 0 < 6 ) |
| 181 |
|
ltdivmul |
|- ( ( 2 e. RR /\ 1 e. RR /\ ( 6 e. RR /\ 0 < 6 ) ) -> ( ( 2 / 6 ) < 1 <-> 2 < ( 6 x. 1 ) ) ) |
| 182 |
7 91 180 181
|
mp3an |
|- ( ( 2 / 6 ) < 1 <-> 2 < ( 6 x. 1 ) ) |
| 183 |
179 182
|
mpbir |
|- ( 2 / 6 ) < 1 |
| 184 |
|
1e0p1 |
|- 1 = ( 0 + 1 ) |
| 185 |
183 184
|
breqtri |
|- ( 2 / 6 ) < ( 0 + 1 ) |
| 186 |
|
0z |
|- 0 e. ZZ |
| 187 |
|
flbi |
|- ( ( ( 2 / 6 ) e. RR /\ 0 e. ZZ ) -> ( ( |_ ` ( 2 / 6 ) ) = 0 <-> ( 0 <_ ( 2 / 6 ) /\ ( 2 / 6 ) < ( 0 + 1 ) ) ) ) |
| 188 |
172 186 187
|
mp2an |
|- ( ( |_ ` ( 2 / 6 ) ) = 0 <-> ( 0 <_ ( 2 / 6 ) /\ ( 2 / 6 ) < ( 0 + 1 ) ) ) |
| 189 |
175 185 188
|
mpbir2an |
|- ( |_ ` ( 2 / 6 ) ) = 0 |
| 190 |
169 189
|
eqtri |
|- ( |_ ` ( ( ( 4 - 1 ) - 1 ) / 6 ) ) = 0 |
| 191 |
190
|
oveq2i |
|- ( ( |_ ` ( ( ( |_ ` N ) - 1 ) / 6 ) ) - ( |_ ` ( ( ( 4 - 1 ) - 1 ) / 6 ) ) ) = ( ( |_ ` ( ( ( |_ ` N ) - 1 ) / 6 ) ) - 0 ) |
| 192 |
66
|
flcld |
|- ( ( N e. RR /\ 3 <_ N ) -> ( |_ ` ( ( ( |_ ` N ) - 1 ) / 6 ) ) e. ZZ ) |
| 193 |
192
|
zcnd |
|- ( ( N e. RR /\ 3 <_ N ) -> ( |_ ` ( ( ( |_ ` N ) - 1 ) / 6 ) ) e. CC ) |
| 194 |
193
|
subid1d |
|- ( ( N e. RR /\ 3 <_ N ) -> ( ( |_ ` ( ( ( |_ ` N ) - 1 ) / 6 ) ) - 0 ) = ( |_ ` ( ( ( |_ ` N ) - 1 ) / 6 ) ) ) |
| 195 |
191 194
|
eqtrid |
|- ( ( N e. RR /\ 3 <_ N ) -> ( ( |_ ` ( ( ( |_ ` N ) - 1 ) / 6 ) ) - ( |_ ` ( ( ( 4 - 1 ) - 1 ) / 6 ) ) ) = ( |_ ` ( ( ( |_ ` N ) - 1 ) / 6 ) ) ) |
| 196 |
162 195
|
eqtrd |
|- ( ( N e. RR /\ 3 <_ N ) -> ( # ` { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) = 1 } ) = ( |_ ` ( ( ( |_ ` N ) - 1 ) / 6 ) ) ) |
| 197 |
|
5pos |
|- 0 < 5 |
| 198 |
170 69 197
|
ltleii |
|- 0 <_ 5 |
| 199 |
|
5lt6 |
|- 5 < 6 |
| 200 |
|
modid |
|- ( ( ( 5 e. RR /\ 6 e. RR+ ) /\ ( 0 <_ 5 /\ 5 < 6 ) ) -> ( 5 mod 6 ) = 5 ) |
| 201 |
69 141 198 199 200
|
mp4an |
|- ( 5 mod 6 ) = 5 |
| 202 |
201
|
eqeq2i |
|- ( ( k mod 6 ) = ( 5 mod 6 ) <-> ( k mod 6 ) = 5 ) |
| 203 |
|
5nn |
|- 5 e. NN |
| 204 |
203
|
nnzi |
|- 5 e. ZZ |
| 205 |
|
moddvds |
|- ( ( 6 e. NN /\ k e. ZZ /\ 5 e. ZZ ) -> ( ( k mod 6 ) = ( 5 mod 6 ) <-> 6 || ( k - 5 ) ) ) |
| 206 |
64 204 205
|
mp3an13 |
|- ( k e. ZZ -> ( ( k mod 6 ) = ( 5 mod 6 ) <-> 6 || ( k - 5 ) ) ) |
| 207 |
202 206
|
bitr3id |
|- ( k e. ZZ -> ( ( k mod 6 ) = 5 <-> 6 || ( k - 5 ) ) ) |
| 208 |
139 207
|
syl |
|- ( k e. ( 4 ... ( |_ ` N ) ) -> ( ( k mod 6 ) = 5 <-> 6 || ( k - 5 ) ) ) |
| 209 |
208
|
rabbiia |
|- { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) = 5 } = { k e. ( 4 ... ( |_ ` N ) ) | 6 || ( k - 5 ) } |
| 210 |
209
|
fveq2i |
|- ( # ` { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) = 5 } ) = ( # ` { k e. ( 4 ... ( |_ ` N ) ) | 6 || ( k - 5 ) } ) |
| 211 |
204
|
a1i |
|- ( ( N e. RR /\ 3 <_ N ) -> 5 e. ZZ ) |
| 212 |
154 156 159 211
|
hashdvds |
|- ( ( N e. RR /\ 3 <_ N ) -> ( # ` { k e. ( 4 ... ( |_ ` N ) ) | 6 || ( k - 5 ) } ) = ( ( |_ ` ( ( ( |_ ` N ) - 5 ) / 6 ) ) - ( |_ ` ( ( ( 4 - 1 ) - 5 ) / 6 ) ) ) ) |
| 213 |
210 212
|
eqtrid |
|- ( ( N e. RR /\ 3 <_ N ) -> ( # ` { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) = 5 } ) = ( ( |_ ` ( ( ( |_ ` N ) - 5 ) / 6 ) ) - ( |_ ` ( ( ( 4 - 1 ) - 5 ) / 6 ) ) ) ) |
| 214 |
157
|
oveq1i |
|- ( ( 4 - 1 ) - 5 ) = ( 3 - 5 ) |
| 215 |
|
5cn |
|- 5 e. CC |
| 216 |
|
3cn |
|- 3 e. CC |
| 217 |
215 216
|
negsubdi2i |
|- -u ( 5 - 3 ) = ( 3 - 5 ) |
| 218 |
|
3p2e5 |
|- ( 3 + 2 ) = 5 |
| 219 |
218
|
oveq1i |
|- ( ( 3 + 2 ) - 3 ) = ( 5 - 3 ) |
| 220 |
|
pncan2 |
|- ( ( 3 e. CC /\ 2 e. CC ) -> ( ( 3 + 2 ) - 3 ) = 2 ) |
| 221 |
216 163 220
|
mp2an |
|- ( ( 3 + 2 ) - 3 ) = 2 |
| 222 |
219 221
|
eqtr3i |
|- ( 5 - 3 ) = 2 |
| 223 |
222
|
negeqi |
|- -u ( 5 - 3 ) = -u 2 |
| 224 |
214 217 223
|
3eqtr2i |
|- ( ( 4 - 1 ) - 5 ) = -u 2 |
| 225 |
224
|
oveq1i |
|- ( ( ( 4 - 1 ) - 5 ) / 6 ) = ( -u 2 / 6 ) |
| 226 |
|
divneg |
|- ( ( 2 e. CC /\ 6 e. CC /\ 6 =/= 0 ) -> -u ( 2 / 6 ) = ( -u 2 / 6 ) ) |
| 227 |
163 177 171 226
|
mp3an |
|- -u ( 2 / 6 ) = ( -u 2 / 6 ) |
| 228 |
225 227
|
eqtr4i |
|- ( ( ( 4 - 1 ) - 5 ) / 6 ) = -u ( 2 / 6 ) |
| 229 |
228
|
fveq2i |
|- ( |_ ` ( ( ( 4 - 1 ) - 5 ) / 6 ) ) = ( |_ ` -u ( 2 / 6 ) ) |
| 230 |
172 91 183
|
ltleii |
|- ( 2 / 6 ) <_ 1 |
| 231 |
172 91
|
lenegi |
|- ( ( 2 / 6 ) <_ 1 <-> -u 1 <_ -u ( 2 / 6 ) ) |
| 232 |
230 231
|
mpbi |
|- -u 1 <_ -u ( 2 / 6 ) |
| 233 |
170 172
|
ltnegi |
|- ( 0 < ( 2 / 6 ) <-> -u ( 2 / 6 ) < -u 0 ) |
| 234 |
174 233
|
mpbi |
|- -u ( 2 / 6 ) < -u 0 |
| 235 |
|
neg0 |
|- -u 0 = 0 |
| 236 |
|
1pneg1e0 |
|- ( 1 + -u 1 ) = 0 |
| 237 |
235 236
|
eqtr4i |
|- -u 0 = ( 1 + -u 1 ) |
| 238 |
|
neg1cn |
|- -u 1 e. CC |
| 239 |
238 164
|
addcomi |
|- ( -u 1 + 1 ) = ( 1 + -u 1 ) |
| 240 |
237 239
|
eqtr4i |
|- -u 0 = ( -u 1 + 1 ) |
| 241 |
234 240
|
breqtri |
|- -u ( 2 / 6 ) < ( -u 1 + 1 ) |
| 242 |
172
|
renegcli |
|- -u ( 2 / 6 ) e. RR |
| 243 |
|
neg1z |
|- -u 1 e. ZZ |
| 244 |
|
flbi |
|- ( ( -u ( 2 / 6 ) e. RR /\ -u 1 e. ZZ ) -> ( ( |_ ` -u ( 2 / 6 ) ) = -u 1 <-> ( -u 1 <_ -u ( 2 / 6 ) /\ -u ( 2 / 6 ) < ( -u 1 + 1 ) ) ) ) |
| 245 |
242 243 244
|
mp2an |
|- ( ( |_ ` -u ( 2 / 6 ) ) = -u 1 <-> ( -u 1 <_ -u ( 2 / 6 ) /\ -u ( 2 / 6 ) < ( -u 1 + 1 ) ) ) |
| 246 |
232 241 245
|
mpbir2an |
|- ( |_ ` -u ( 2 / 6 ) ) = -u 1 |
| 247 |
229 246
|
eqtri |
|- ( |_ ` ( ( ( 4 - 1 ) - 5 ) / 6 ) ) = -u 1 |
| 248 |
247
|
oveq2i |
|- ( ( |_ ` ( ( ( |_ ` N ) - 5 ) / 6 ) ) - ( |_ ` ( ( ( 4 - 1 ) - 5 ) / 6 ) ) ) = ( ( |_ ` ( ( ( |_ ` N ) - 5 ) / 6 ) ) - -u 1 ) |
| 249 |
73
|
flcld |
|- ( ( N e. RR /\ 3 <_ N ) -> ( |_ ` ( ( ( |_ ` N ) - 5 ) / 6 ) ) e. ZZ ) |
| 250 |
249
|
zcnd |
|- ( ( N e. RR /\ 3 <_ N ) -> ( |_ ` ( ( ( |_ ` N ) - 5 ) / 6 ) ) e. CC ) |
| 251 |
|
subneg |
|- ( ( ( |_ ` ( ( ( |_ ` N ) - 5 ) / 6 ) ) e. CC /\ 1 e. CC ) -> ( ( |_ ` ( ( ( |_ ` N ) - 5 ) / 6 ) ) - -u 1 ) = ( ( |_ ` ( ( ( |_ ` N ) - 5 ) / 6 ) ) + 1 ) ) |
| 252 |
250 164 251
|
sylancl |
|- ( ( N e. RR /\ 3 <_ N ) -> ( ( |_ ` ( ( ( |_ ` N ) - 5 ) / 6 ) ) - -u 1 ) = ( ( |_ ` ( ( ( |_ ` N ) - 5 ) / 6 ) ) + 1 ) ) |
| 253 |
248 252
|
eqtrid |
|- ( ( N e. RR /\ 3 <_ N ) -> ( ( |_ ` ( ( ( |_ ` N ) - 5 ) / 6 ) ) - ( |_ ` ( ( ( 4 - 1 ) - 5 ) / 6 ) ) ) = ( ( |_ ` ( ( ( |_ ` N ) - 5 ) / 6 ) ) + 1 ) ) |
| 254 |
213 253
|
eqtrd |
|- ( ( N e. RR /\ 3 <_ N ) -> ( # ` { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) = 5 } ) = ( ( |_ ` ( ( ( |_ ` N ) - 5 ) / 6 ) ) + 1 ) ) |
| 255 |
196 254
|
oveq12d |
|- ( ( N e. RR /\ 3 <_ N ) -> ( ( # ` { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) = 1 } ) + ( # ` { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) = 5 } ) ) = ( ( |_ ` ( ( ( |_ ` N ) - 1 ) / 6 ) ) + ( ( |_ ` ( ( ( |_ ` N ) - 5 ) / 6 ) ) + 1 ) ) ) |
| 256 |
138 255
|
eqtrid |
|- ( ( N e. RR /\ 3 <_ N ) -> ( # ` { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) e. { 1 , 5 } } ) = ( ( |_ ` ( ( ( |_ ` N ) - 1 ) / 6 ) ) + ( ( |_ ` ( ( ( |_ ` N ) - 5 ) / 6 ) ) + 1 ) ) ) |
| 257 |
82
|
recnd |
|- ( ( N e. RR /\ 3 <_ N ) -> N e. CC ) |
| 258 |
257
|
2timesd |
|- ( ( N e. RR /\ 3 <_ N ) -> ( 2 x. N ) = ( N + N ) ) |
| 259 |
|
df-6 |
|- 6 = ( 5 + 1 ) |
| 260 |
215 164
|
addcomi |
|- ( 5 + 1 ) = ( 1 + 5 ) |
| 261 |
259 260
|
eqtri |
|- 6 = ( 1 + 5 ) |
| 262 |
261
|
a1i |
|- ( ( N e. RR /\ 3 <_ N ) -> 6 = ( 1 + 5 ) ) |
| 263 |
258 262
|
oveq12d |
|- ( ( N e. RR /\ 3 <_ N ) -> ( ( 2 x. N ) - 6 ) = ( ( N + N ) - ( 1 + 5 ) ) ) |
| 264 |
|
addsub4 |
|- ( ( ( N e. CC /\ N e. CC ) /\ ( 1 e. CC /\ 5 e. CC ) ) -> ( ( N + N ) - ( 1 + 5 ) ) = ( ( N - 1 ) + ( N - 5 ) ) ) |
| 265 |
164 215 264
|
mpanr12 |
|- ( ( N e. CC /\ N e. CC ) -> ( ( N + N ) - ( 1 + 5 ) ) = ( ( N - 1 ) + ( N - 5 ) ) ) |
| 266 |
257 257 265
|
syl2anc |
|- ( ( N e. RR /\ 3 <_ N ) -> ( ( N + N ) - ( 1 + 5 ) ) = ( ( N - 1 ) + ( N - 5 ) ) ) |
| 267 |
263 266
|
eqtrd |
|- ( ( N e. RR /\ 3 <_ N ) -> ( ( 2 x. N ) - 6 ) = ( ( N - 1 ) + ( N - 5 ) ) ) |
| 268 |
267
|
oveq1d |
|- ( ( N e. RR /\ 3 <_ N ) -> ( ( ( 2 x. N ) - 6 ) / 6 ) = ( ( ( N - 1 ) + ( N - 5 ) ) / 6 ) ) |
| 269 |
|
mulcl |
|- ( ( 2 e. CC /\ N e. CC ) -> ( 2 x. N ) e. CC ) |
| 270 |
163 257 269
|
sylancr |
|- ( ( N e. RR /\ 3 <_ N ) -> ( 2 x. N ) e. CC ) |
| 271 |
177 171
|
pm3.2i |
|- ( 6 e. CC /\ 6 =/= 0 ) |
| 272 |
|
divsubdir |
|- ( ( ( 2 x. N ) e. CC /\ 6 e. CC /\ ( 6 e. CC /\ 6 =/= 0 ) ) -> ( ( ( 2 x. N ) - 6 ) / 6 ) = ( ( ( 2 x. N ) / 6 ) - ( 6 / 6 ) ) ) |
| 273 |
177 271 272
|
mp3an23 |
|- ( ( 2 x. N ) e. CC -> ( ( ( 2 x. N ) - 6 ) / 6 ) = ( ( ( 2 x. N ) / 6 ) - ( 6 / 6 ) ) ) |
| 274 |
270 273
|
syl |
|- ( ( N e. RR /\ 3 <_ N ) -> ( ( ( 2 x. N ) - 6 ) / 6 ) = ( ( ( 2 x. N ) / 6 ) - ( 6 / 6 ) ) ) |
| 275 |
|
3t2e6 |
|- ( 3 x. 2 ) = 6 |
| 276 |
216 163
|
mulcomi |
|- ( 3 x. 2 ) = ( 2 x. 3 ) |
| 277 |
275 276
|
eqtr3i |
|- 6 = ( 2 x. 3 ) |
| 278 |
277
|
oveq2i |
|- ( ( 2 x. N ) / 6 ) = ( ( 2 x. N ) / ( 2 x. 3 ) ) |
| 279 |
|
3ne0 |
|- 3 =/= 0 |
| 280 |
216 279
|
pm3.2i |
|- ( 3 e. CC /\ 3 =/= 0 ) |
| 281 |
|
2cnne0 |
|- ( 2 e. CC /\ 2 =/= 0 ) |
| 282 |
|
divcan5 |
|- ( ( N e. CC /\ ( 3 e. CC /\ 3 =/= 0 ) /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( 2 x. N ) / ( 2 x. 3 ) ) = ( N / 3 ) ) |
| 283 |
280 281 282
|
mp3an23 |
|- ( N e. CC -> ( ( 2 x. N ) / ( 2 x. 3 ) ) = ( N / 3 ) ) |
| 284 |
257 283
|
syl |
|- ( ( N e. RR /\ 3 <_ N ) -> ( ( 2 x. N ) / ( 2 x. 3 ) ) = ( N / 3 ) ) |
| 285 |
278 284
|
eqtrid |
|- ( ( N e. RR /\ 3 <_ N ) -> ( ( 2 x. N ) / 6 ) = ( N / 3 ) ) |
| 286 |
177 171
|
dividi |
|- ( 6 / 6 ) = 1 |
| 287 |
286
|
a1i |
|- ( ( N e. RR /\ 3 <_ N ) -> ( 6 / 6 ) = 1 ) |
| 288 |
285 287
|
oveq12d |
|- ( ( N e. RR /\ 3 <_ N ) -> ( ( ( 2 x. N ) / 6 ) - ( 6 / 6 ) ) = ( ( N / 3 ) - 1 ) ) |
| 289 |
274 288
|
eqtrd |
|- ( ( N e. RR /\ 3 <_ N ) -> ( ( ( 2 x. N ) - 6 ) / 6 ) = ( ( N / 3 ) - 1 ) ) |
| 290 |
79
|
recnd |
|- ( ( N e. RR /\ 3 <_ N ) -> ( N - 1 ) e. CC ) |
| 291 |
84
|
recnd |
|- ( ( N e. RR /\ 3 <_ N ) -> ( N - 5 ) e. CC ) |
| 292 |
|
divdir |
|- ( ( ( N - 1 ) e. CC /\ ( N - 5 ) e. CC /\ ( 6 e. CC /\ 6 =/= 0 ) ) -> ( ( ( N - 1 ) + ( N - 5 ) ) / 6 ) = ( ( ( N - 1 ) / 6 ) + ( ( N - 5 ) / 6 ) ) ) |
| 293 |
271 292
|
mp3an3 |
|- ( ( ( N - 1 ) e. CC /\ ( N - 5 ) e. CC ) -> ( ( ( N - 1 ) + ( N - 5 ) ) / 6 ) = ( ( ( N - 1 ) / 6 ) + ( ( N - 5 ) / 6 ) ) ) |
| 294 |
290 291 293
|
syl2anc |
|- ( ( N e. RR /\ 3 <_ N ) -> ( ( ( N - 1 ) + ( N - 5 ) ) / 6 ) = ( ( ( N - 1 ) / 6 ) + ( ( N - 5 ) / 6 ) ) ) |
| 295 |
268 289 294
|
3eqtr3d |
|- ( ( N e. RR /\ 3 <_ N ) -> ( ( N / 3 ) - 1 ) = ( ( ( N - 1 ) / 6 ) + ( ( N - 5 ) / 6 ) ) ) |
| 296 |
295
|
oveq1d |
|- ( ( N e. RR /\ 3 <_ N ) -> ( ( ( N / 3 ) - 1 ) + 1 ) = ( ( ( ( N - 1 ) / 6 ) + ( ( N - 5 ) / 6 ) ) + 1 ) ) |
| 297 |
21
|
recnd |
|- ( ( N e. RR /\ 3 <_ N ) -> ( N / 3 ) e. CC ) |
| 298 |
|
npcan |
|- ( ( ( N / 3 ) e. CC /\ 1 e. CC ) -> ( ( ( N / 3 ) - 1 ) + 1 ) = ( N / 3 ) ) |
| 299 |
297 164 298
|
sylancl |
|- ( ( N e. RR /\ 3 <_ N ) -> ( ( ( N / 3 ) - 1 ) + 1 ) = ( N / 3 ) ) |
| 300 |
81
|
recnd |
|- ( ( N e. RR /\ 3 <_ N ) -> ( ( N - 1 ) / 6 ) e. CC ) |
| 301 |
86
|
recnd |
|- ( ( N e. RR /\ 3 <_ N ) -> ( ( N - 5 ) / 6 ) e. CC ) |
| 302 |
164
|
a1i |
|- ( ( N e. RR /\ 3 <_ N ) -> 1 e. CC ) |
| 303 |
300 301 302
|
addassd |
|- ( ( N e. RR /\ 3 <_ N ) -> ( ( ( ( N - 1 ) / 6 ) + ( ( N - 5 ) / 6 ) ) + 1 ) = ( ( ( N - 1 ) / 6 ) + ( ( ( N - 5 ) / 6 ) + 1 ) ) ) |
| 304 |
296 299 303
|
3eqtr3d |
|- ( ( N e. RR /\ 3 <_ N ) -> ( N / 3 ) = ( ( ( N - 1 ) / 6 ) + ( ( ( N - 5 ) / 6 ) + 1 ) ) ) |
| 305 |
113 256 304
|
3brtr4d |
|- ( ( N e. RR /\ 3 <_ N ) -> ( # ` { k e. ( 4 ... ( |_ ` N ) ) | ( k mod 6 ) e. { 1 , 5 } } ) <_ ( N / 3 ) ) |
| 306 |
9 17 21 59 305
|
letrd |
|- ( ( N e. RR /\ 3 <_ N ) -> ( ( ppi ` N ) - 2 ) <_ ( N / 3 ) ) |
| 307 |
7
|
a1i |
|- ( ( N e. RR /\ 3 <_ N ) -> 2 e. RR ) |
| 308 |
6 307 21
|
lesubaddd |
|- ( ( N e. RR /\ 3 <_ N ) -> ( ( ( ppi ` N ) - 2 ) <_ ( N / 3 ) <-> ( ppi ` N ) <_ ( ( N / 3 ) + 2 ) ) ) |
| 309 |
306 308
|
mpbid |
|- ( ( N e. RR /\ 3 <_ N ) -> ( ppi ` N ) <_ ( ( N / 3 ) + 2 ) ) |
| 310 |
309
|
adantlr |
|- ( ( ( N e. RR /\ 0 <_ N ) /\ 3 <_ N ) -> ( ppi ` N ) <_ ( ( N / 3 ) + 2 ) ) |
| 311 |
5
|
ad2antrr |
|- ( ( ( N e. RR /\ 0 <_ N ) /\ N <_ 3 ) -> ( ppi ` N ) e. RR ) |
| 312 |
7
|
a1i |
|- ( ( ( N e. RR /\ 0 <_ N ) /\ N <_ 3 ) -> 2 e. RR ) |
| 313 |
20
|
ad2antrr |
|- ( ( ( N e. RR /\ 0 <_ N ) /\ N <_ 3 ) -> ( N / 3 ) e. RR ) |
| 314 |
|
readdcl |
|- ( ( ( N / 3 ) e. RR /\ 2 e. RR ) -> ( ( N / 3 ) + 2 ) e. RR ) |
| 315 |
313 7 314
|
sylancl |
|- ( ( ( N e. RR /\ 0 <_ N ) /\ N <_ 3 ) -> ( ( N / 3 ) + 2 ) e. RR ) |
| 316 |
|
ppiwordi |
|- ( ( N e. RR /\ 3 e. RR /\ N <_ 3 ) -> ( ppi ` N ) <_ ( ppi ` 3 ) ) |
| 317 |
1 316
|
mp3an2 |
|- ( ( N e. RR /\ N <_ 3 ) -> ( ppi ` N ) <_ ( ppi ` 3 ) ) |
| 318 |
317
|
adantlr |
|- ( ( ( N e. RR /\ 0 <_ N ) /\ N <_ 3 ) -> ( ppi ` N ) <_ ( ppi ` 3 ) ) |
| 319 |
318 24
|
breqtrdi |
|- ( ( ( N e. RR /\ 0 <_ N ) /\ N <_ 3 ) -> ( ppi ` N ) <_ 2 ) |
| 320 |
|
3pos |
|- 0 < 3 |
| 321 |
|
divge0 |
|- ( ( ( N e. RR /\ 0 <_ N ) /\ ( 3 e. RR /\ 0 < 3 ) ) -> 0 <_ ( N / 3 ) ) |
| 322 |
1 320 321
|
mpanr12 |
|- ( ( N e. RR /\ 0 <_ N ) -> 0 <_ ( N / 3 ) ) |
| 323 |
322
|
adantr |
|- ( ( ( N e. RR /\ 0 <_ N ) /\ N <_ 3 ) -> 0 <_ ( N / 3 ) ) |
| 324 |
|
addge02 |
|- ( ( 2 e. RR /\ ( N / 3 ) e. RR ) -> ( 0 <_ ( N / 3 ) <-> 2 <_ ( ( N / 3 ) + 2 ) ) ) |
| 325 |
7 313 324
|
sylancr |
|- ( ( ( N e. RR /\ 0 <_ N ) /\ N <_ 3 ) -> ( 0 <_ ( N / 3 ) <-> 2 <_ ( ( N / 3 ) + 2 ) ) ) |
| 326 |
323 325
|
mpbid |
|- ( ( ( N e. RR /\ 0 <_ N ) /\ N <_ 3 ) -> 2 <_ ( ( N / 3 ) + 2 ) ) |
| 327 |
311 312 315 319 326
|
letrd |
|- ( ( ( N e. RR /\ 0 <_ N ) /\ N <_ 3 ) -> ( ppi ` N ) <_ ( ( N / 3 ) + 2 ) ) |
| 328 |
2 3 310 327
|
lecasei |
|- ( ( N e. RR /\ 0 <_ N ) -> ( ppi ` N ) <_ ( ( N / 3 ) + 2 ) ) |