| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-brsiga |
⊢ 𝔅ℝ = ( sigaGen ‘ ( topGen ‘ ran (,) ) ) |
| 2 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
| 3 |
|
df-sigagen |
⊢ sigaGen = ( 𝑥 ∈ V ↦ ∩ { 𝑠 ∈ ( sigAlgebra ‘ ∪ 𝑥 ) ∣ 𝑥 ⊆ 𝑠 } ) |
| 4 |
3
|
funmpt2 |
⊢ Fun sigaGen |
| 5 |
|
fvex |
⊢ ( topGen ‘ ran (,) ) ∈ V |
| 6 |
|
sigagensiga |
⊢ ( ( topGen ‘ ran (,) ) ∈ V → ( sigaGen ‘ ( topGen ‘ ran (,) ) ) ∈ ( sigAlgebra ‘ ∪ ( topGen ‘ ran (,) ) ) ) |
| 7 |
|
elrnsiga |
⊢ ( ( sigaGen ‘ ( topGen ‘ ran (,) ) ) ∈ ( sigAlgebra ‘ ∪ ( topGen ‘ ran (,) ) ) → ( sigaGen ‘ ( topGen ‘ ran (,) ) ) ∈ ∪ ran sigAlgebra ) |
| 8 |
5 6 7
|
mp2b |
⊢ ( sigaGen ‘ ( topGen ‘ ran (,) ) ) ∈ ∪ ran sigAlgebra |
| 9 |
|
0elsiga |
⊢ ( ( sigaGen ‘ ( topGen ‘ ran (,) ) ) ∈ ∪ ran sigAlgebra → ∅ ∈ ( sigaGen ‘ ( topGen ‘ ran (,) ) ) ) |
| 10 |
|
elfvdm |
⊢ ( ∅ ∈ ( sigaGen ‘ ( topGen ‘ ran (,) ) ) → ( topGen ‘ ran (,) ) ∈ dom sigaGen ) |
| 11 |
8 9 10
|
mp2b |
⊢ ( topGen ‘ ran (,) ) ∈ dom sigaGen |
| 12 |
|
funfvima |
⊢ ( ( Fun sigaGen ∧ ( topGen ‘ ran (,) ) ∈ dom sigaGen ) → ( ( topGen ‘ ran (,) ) ∈ Top → ( sigaGen ‘ ( topGen ‘ ran (,) ) ) ∈ ( sigaGen “ Top ) ) ) |
| 13 |
4 11 12
|
mp2an |
⊢ ( ( topGen ‘ ran (,) ) ∈ Top → ( sigaGen ‘ ( topGen ‘ ran (,) ) ) ∈ ( sigaGen “ Top ) ) |
| 14 |
2 13
|
ax-mp |
⊢ ( sigaGen ‘ ( topGen ‘ ran (,) ) ) ∈ ( sigaGen “ Top ) |
| 15 |
1 14
|
eqeltri |
⊢ 𝔅ℝ ∈ ( sigaGen “ Top ) |