Metamath Proof Explorer


Theorem brsiga

Description: The Borel Algebra on real numbers is a Borel sigma-algebra. (Contributed by Thierry Arnoux, 27-Dec-2016)

Ref Expression
Assertion brsiga 𝔅 ∈ ( sigaGen “ Top )

Proof

Step Hyp Ref Expression
1 df-brsiga 𝔅 = ( sigaGen ‘ ( topGen ‘ ran (,) ) )
2 retop ( topGen ‘ ran (,) ) ∈ Top
3 df-sigagen sigaGen = ( 𝑥 ∈ V ↦ { 𝑠 ∈ ( sigAlgebra ‘ 𝑥 ) ∣ 𝑥𝑠 } )
4 3 funmpt2 Fun sigaGen
5 fvex ( topGen ‘ ran (,) ) ∈ V
6 sigagensiga ( ( topGen ‘ ran (,) ) ∈ V → ( sigaGen ‘ ( topGen ‘ ran (,) ) ) ∈ ( sigAlgebra ‘ ( topGen ‘ ran (,) ) ) )
7 elrnsiga ( ( sigaGen ‘ ( topGen ‘ ran (,) ) ) ∈ ( sigAlgebra ‘ ( topGen ‘ ran (,) ) ) → ( sigaGen ‘ ( topGen ‘ ran (,) ) ) ∈ ran sigAlgebra )
8 5 6 7 mp2b ( sigaGen ‘ ( topGen ‘ ran (,) ) ) ∈ ran sigAlgebra
9 0elsiga ( ( sigaGen ‘ ( topGen ‘ ran (,) ) ) ∈ ran sigAlgebra → ∅ ∈ ( sigaGen ‘ ( topGen ‘ ran (,) ) ) )
10 elfvdm ( ∅ ∈ ( sigaGen ‘ ( topGen ‘ ran (,) ) ) → ( topGen ‘ ran (,) ) ∈ dom sigaGen )
11 8 9 10 mp2b ( topGen ‘ ran (,) ) ∈ dom sigaGen
12 funfvima ( ( Fun sigaGen ∧ ( topGen ‘ ran (,) ) ∈ dom sigaGen ) → ( ( topGen ‘ ran (,) ) ∈ Top → ( sigaGen ‘ ( topGen ‘ ran (,) ) ) ∈ ( sigaGen “ Top ) ) )
13 4 11 12 mp2an ( ( topGen ‘ ran (,) ) ∈ Top → ( sigaGen ‘ ( topGen ‘ ran (,) ) ) ∈ ( sigaGen “ Top ) )
14 2 13 ax-mp ( sigaGen ‘ ( topGen ‘ ran (,) ) ) ∈ ( sigaGen “ Top )
15 1 14 eqeltri 𝔅 ∈ ( sigaGen “ Top )