Step |
Hyp |
Ref |
Expression |
1 |
|
df-brsiga |
|- BrSiga = ( sigaGen ` ( topGen ` ran (,) ) ) |
2 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
3 |
|
df-sigagen |
|- sigaGen = ( x e. _V |-> |^| { s e. ( sigAlgebra ` U. x ) | x C_ s } ) |
4 |
3
|
funmpt2 |
|- Fun sigaGen |
5 |
|
fvex |
|- ( topGen ` ran (,) ) e. _V |
6 |
|
sigagensiga |
|- ( ( topGen ` ran (,) ) e. _V -> ( sigaGen ` ( topGen ` ran (,) ) ) e. ( sigAlgebra ` U. ( topGen ` ran (,) ) ) ) |
7 |
|
elrnsiga |
|- ( ( sigaGen ` ( topGen ` ran (,) ) ) e. ( sigAlgebra ` U. ( topGen ` ran (,) ) ) -> ( sigaGen ` ( topGen ` ran (,) ) ) e. U. ran sigAlgebra ) |
8 |
5 6 7
|
mp2b |
|- ( sigaGen ` ( topGen ` ran (,) ) ) e. U. ran sigAlgebra |
9 |
|
0elsiga |
|- ( ( sigaGen ` ( topGen ` ran (,) ) ) e. U. ran sigAlgebra -> (/) e. ( sigaGen ` ( topGen ` ran (,) ) ) ) |
10 |
|
elfvdm |
|- ( (/) e. ( sigaGen ` ( topGen ` ran (,) ) ) -> ( topGen ` ran (,) ) e. dom sigaGen ) |
11 |
8 9 10
|
mp2b |
|- ( topGen ` ran (,) ) e. dom sigaGen |
12 |
|
funfvima |
|- ( ( Fun sigaGen /\ ( topGen ` ran (,) ) e. dom sigaGen ) -> ( ( topGen ` ran (,) ) e. Top -> ( sigaGen ` ( topGen ` ran (,) ) ) e. ( sigaGen " Top ) ) ) |
13 |
4 11 12
|
mp2an |
|- ( ( topGen ` ran (,) ) e. Top -> ( sigaGen ` ( topGen ` ran (,) ) ) e. ( sigaGen " Top ) ) |
14 |
2 13
|
ax-mp |
|- ( sigaGen ` ( topGen ` ran (,) ) ) e. ( sigaGen " Top ) |
15 |
1 14
|
eqeltri |
|- BrSiga e. ( sigaGen " Top ) |