Metamath Proof Explorer


Theorem cantnfcl

Description: Basic properties of the order isomorphism G used later. The support of an F e. S is a finite subset of A , so it is well-ordered by _E and the order isomorphism has domain a finite ordinal. (Contributed by Mario Carneiro, 25-May-2015) (Revised by AV, 28-Jun-2019)

Ref Expression
Hypotheses cantnfs.s 𝑆 = dom ( 𝐴 CNF 𝐵 )
cantnfs.a ( 𝜑𝐴 ∈ On )
cantnfs.b ( 𝜑𝐵 ∈ On )
cantnfcl.g 𝐺 = OrdIso ( E , ( 𝐹 supp ∅ ) )
cantnfcl.f ( 𝜑𝐹𝑆 )
Assertion cantnfcl ( 𝜑 → ( E We ( 𝐹 supp ∅ ) ∧ dom 𝐺 ∈ ω ) )

Proof

Step Hyp Ref Expression
1 cantnfs.s 𝑆 = dom ( 𝐴 CNF 𝐵 )
2 cantnfs.a ( 𝜑𝐴 ∈ On )
3 cantnfs.b ( 𝜑𝐵 ∈ On )
4 cantnfcl.g 𝐺 = OrdIso ( E , ( 𝐹 supp ∅ ) )
5 cantnfcl.f ( 𝜑𝐹𝑆 )
6 suppssdm ( 𝐹 supp ∅ ) ⊆ dom 𝐹
7 1 2 3 cantnfs ( 𝜑 → ( 𝐹𝑆 ↔ ( 𝐹 : 𝐵𝐴𝐹 finSupp ∅ ) ) )
8 5 7 mpbid ( 𝜑 → ( 𝐹 : 𝐵𝐴𝐹 finSupp ∅ ) )
9 8 simpld ( 𝜑𝐹 : 𝐵𝐴 )
10 6 9 fssdm ( 𝜑 → ( 𝐹 supp ∅ ) ⊆ 𝐵 )
11 onss ( 𝐵 ∈ On → 𝐵 ⊆ On )
12 3 11 syl ( 𝜑𝐵 ⊆ On )
13 10 12 sstrd ( 𝜑 → ( 𝐹 supp ∅ ) ⊆ On )
14 epweon E We On
15 wess ( ( 𝐹 supp ∅ ) ⊆ On → ( E We On → E We ( 𝐹 supp ∅ ) ) )
16 13 14 15 mpisyl ( 𝜑 → E We ( 𝐹 supp ∅ ) )
17 ovexd ( 𝜑 → ( 𝐹 supp ∅ ) ∈ V )
18 4 oion ( ( 𝐹 supp ∅ ) ∈ V → dom 𝐺 ∈ On )
19 17 18 syl ( 𝜑 → dom 𝐺 ∈ On )
20 8 simprd ( 𝜑𝐹 finSupp ∅ )
21 20 fsuppimpd ( 𝜑 → ( 𝐹 supp ∅ ) ∈ Fin )
22 4 oien ( ( ( 𝐹 supp ∅ ) ∈ V ∧ E We ( 𝐹 supp ∅ ) ) → dom 𝐺 ≈ ( 𝐹 supp ∅ ) )
23 17 16 22 syl2anc ( 𝜑 → dom 𝐺 ≈ ( 𝐹 supp ∅ ) )
24 enfii ( ( ( 𝐹 supp ∅ ) ∈ Fin ∧ dom 𝐺 ≈ ( 𝐹 supp ∅ ) ) → dom 𝐺 ∈ Fin )
25 21 23 24 syl2anc ( 𝜑 → dom 𝐺 ∈ Fin )
26 19 25 elind ( 𝜑 → dom 𝐺 ∈ ( On ∩ Fin ) )
27 onfin2 ω = ( On ∩ Fin )
28 26 27 eleqtrrdi ( 𝜑 → dom 𝐺 ∈ ω )
29 16 28 jca ( 𝜑 → ( E We ( 𝐹 supp ∅ ) ∧ dom 𝐺 ∈ ω ) )