| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							elfvdm | 
							⊢ ( 𝐴  ∈  ( card ‘ 𝐵 )  →  𝐵  ∈  dom  card )  | 
						
						
							| 2 | 
							
								
							 | 
							cardon | 
							⊢ ( card ‘ 𝐵 )  ∈  On  | 
						
						
							| 3 | 
							
								2
							 | 
							oneli | 
							⊢ ( 𝐴  ∈  ( card ‘ 𝐵 )  →  𝐴  ∈  On )  | 
						
						
							| 4 | 
							
								
							 | 
							breq1 | 
							⊢ ( 𝑥  =  𝐴  →  ( 𝑥  ≈  𝐵  ↔  𝐴  ≈  𝐵 ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							onintss | 
							⊢ ( 𝐴  ∈  On  →  ( 𝐴  ≈  𝐵  →  ∩  { 𝑥  ∈  On  ∣  𝑥  ≈  𝐵 }  ⊆  𝐴 ) )  | 
						
						
							| 6 | 
							
								3 5
							 | 
							syl | 
							⊢ ( 𝐴  ∈  ( card ‘ 𝐵 )  →  ( 𝐴  ≈  𝐵  →  ∩  { 𝑥  ∈  On  ∣  𝑥  ≈  𝐵 }  ⊆  𝐴 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							adantl | 
							⊢ ( ( 𝐵  ∈  dom  card  ∧  𝐴  ∈  ( card ‘ 𝐵 ) )  →  ( 𝐴  ≈  𝐵  →  ∩  { 𝑥  ∈  On  ∣  𝑥  ≈  𝐵 }  ⊆  𝐴 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							cardval3 | 
							⊢ ( 𝐵  ∈  dom  card  →  ( card ‘ 𝐵 )  =  ∩  { 𝑥  ∈  On  ∣  𝑥  ≈  𝐵 } )  | 
						
						
							| 9 | 
							
								8
							 | 
							sseq1d | 
							⊢ ( 𝐵  ∈  dom  card  →  ( ( card ‘ 𝐵 )  ⊆  𝐴  ↔  ∩  { 𝑥  ∈  On  ∣  𝑥  ≈  𝐵 }  ⊆  𝐴 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							adantr | 
							⊢ ( ( 𝐵  ∈  dom  card  ∧  𝐴  ∈  ( card ‘ 𝐵 ) )  →  ( ( card ‘ 𝐵 )  ⊆  𝐴  ↔  ∩  { 𝑥  ∈  On  ∣  𝑥  ≈  𝐵 }  ⊆  𝐴 ) )  | 
						
						
							| 11 | 
							
								7 10
							 | 
							sylibrd | 
							⊢ ( ( 𝐵  ∈  dom  card  ∧  𝐴  ∈  ( card ‘ 𝐵 ) )  →  ( 𝐴  ≈  𝐵  →  ( card ‘ 𝐵 )  ⊆  𝐴 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							ontri1 | 
							⊢ ( ( ( card ‘ 𝐵 )  ∈  On  ∧  𝐴  ∈  On )  →  ( ( card ‘ 𝐵 )  ⊆  𝐴  ↔  ¬  𝐴  ∈  ( card ‘ 𝐵 ) ) )  | 
						
						
							| 13 | 
							
								2 3 12
							 | 
							sylancr | 
							⊢ ( 𝐴  ∈  ( card ‘ 𝐵 )  →  ( ( card ‘ 𝐵 )  ⊆  𝐴  ↔  ¬  𝐴  ∈  ( card ‘ 𝐵 ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							adantl | 
							⊢ ( ( 𝐵  ∈  dom  card  ∧  𝐴  ∈  ( card ‘ 𝐵 ) )  →  ( ( card ‘ 𝐵 )  ⊆  𝐴  ↔  ¬  𝐴  ∈  ( card ‘ 𝐵 ) ) )  | 
						
						
							| 15 | 
							
								11 14
							 | 
							sylibd | 
							⊢ ( ( 𝐵  ∈  dom  card  ∧  𝐴  ∈  ( card ‘ 𝐵 ) )  →  ( 𝐴  ≈  𝐵  →  ¬  𝐴  ∈  ( card ‘ 𝐵 ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							con2d | 
							⊢ ( ( 𝐵  ∈  dom  card  ∧  𝐴  ∈  ( card ‘ 𝐵 ) )  →  ( 𝐴  ∈  ( card ‘ 𝐵 )  →  ¬  𝐴  ≈  𝐵 ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							ex | 
							⊢ ( 𝐵  ∈  dom  card  →  ( 𝐴  ∈  ( card ‘ 𝐵 )  →  ( 𝐴  ∈  ( card ‘ 𝐵 )  →  ¬  𝐴  ≈  𝐵 ) ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							pm2.43d | 
							⊢ ( 𝐵  ∈  dom  card  →  ( 𝐴  ∈  ( card ‘ 𝐵 )  →  ¬  𝐴  ≈  𝐵 ) )  | 
						
						
							| 19 | 
							
								1 18
							 | 
							mpcom | 
							⊢ ( 𝐴  ∈  ( card ‘ 𝐵 )  →  ¬  𝐴  ≈  𝐵 )  |