Step |
Hyp |
Ref |
Expression |
1 |
|
elfvdm |
|- ( A e. ( card ` B ) -> B e. dom card ) |
2 |
|
cardon |
|- ( card ` B ) e. On |
3 |
2
|
oneli |
|- ( A e. ( card ` B ) -> A e. On ) |
4 |
|
breq1 |
|- ( x = A -> ( x ~~ B <-> A ~~ B ) ) |
5 |
4
|
onintss |
|- ( A e. On -> ( A ~~ B -> |^| { x e. On | x ~~ B } C_ A ) ) |
6 |
3 5
|
syl |
|- ( A e. ( card ` B ) -> ( A ~~ B -> |^| { x e. On | x ~~ B } C_ A ) ) |
7 |
6
|
adantl |
|- ( ( B e. dom card /\ A e. ( card ` B ) ) -> ( A ~~ B -> |^| { x e. On | x ~~ B } C_ A ) ) |
8 |
|
cardval3 |
|- ( B e. dom card -> ( card ` B ) = |^| { x e. On | x ~~ B } ) |
9 |
8
|
sseq1d |
|- ( B e. dom card -> ( ( card ` B ) C_ A <-> |^| { x e. On | x ~~ B } C_ A ) ) |
10 |
9
|
adantr |
|- ( ( B e. dom card /\ A e. ( card ` B ) ) -> ( ( card ` B ) C_ A <-> |^| { x e. On | x ~~ B } C_ A ) ) |
11 |
7 10
|
sylibrd |
|- ( ( B e. dom card /\ A e. ( card ` B ) ) -> ( A ~~ B -> ( card ` B ) C_ A ) ) |
12 |
|
ontri1 |
|- ( ( ( card ` B ) e. On /\ A e. On ) -> ( ( card ` B ) C_ A <-> -. A e. ( card ` B ) ) ) |
13 |
2 3 12
|
sylancr |
|- ( A e. ( card ` B ) -> ( ( card ` B ) C_ A <-> -. A e. ( card ` B ) ) ) |
14 |
13
|
adantl |
|- ( ( B e. dom card /\ A e. ( card ` B ) ) -> ( ( card ` B ) C_ A <-> -. A e. ( card ` B ) ) ) |
15 |
11 14
|
sylibd |
|- ( ( B e. dom card /\ A e. ( card ` B ) ) -> ( A ~~ B -> -. A e. ( card ` B ) ) ) |
16 |
15
|
con2d |
|- ( ( B e. dom card /\ A e. ( card ` B ) ) -> ( A e. ( card ` B ) -> -. A ~~ B ) ) |
17 |
16
|
ex |
|- ( B e. dom card -> ( A e. ( card ` B ) -> ( A e. ( card ` B ) -> -. A ~~ B ) ) ) |
18 |
17
|
pm2.43d |
|- ( B e. dom card -> ( A e. ( card ` B ) -> -. A ~~ B ) ) |
19 |
1 18
|
mpcom |
|- ( A e. ( card ` B ) -> -. A ~~ B ) |