Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
|- ( A e. dom card -> A e. _V ) |
2 |
|
isnum2 |
|- ( A e. dom card <-> E. x e. On x ~~ A ) |
3 |
|
rabn0 |
|- ( { x e. On | x ~~ A } =/= (/) <-> E. x e. On x ~~ A ) |
4 |
|
intex |
|- ( { x e. On | x ~~ A } =/= (/) <-> |^| { x e. On | x ~~ A } e. _V ) |
5 |
2 3 4
|
3bitr2i |
|- ( A e. dom card <-> |^| { x e. On | x ~~ A } e. _V ) |
6 |
5
|
biimpi |
|- ( A e. dom card -> |^| { x e. On | x ~~ A } e. _V ) |
7 |
|
breq2 |
|- ( y = A -> ( x ~~ y <-> x ~~ A ) ) |
8 |
7
|
rabbidv |
|- ( y = A -> { x e. On | x ~~ y } = { x e. On | x ~~ A } ) |
9 |
8
|
inteqd |
|- ( y = A -> |^| { x e. On | x ~~ y } = |^| { x e. On | x ~~ A } ) |
10 |
|
df-card |
|- card = ( y e. _V |-> |^| { x e. On | x ~~ y } ) |
11 |
9 10
|
fvmptg |
|- ( ( A e. _V /\ |^| { x e. On | x ~~ A } e. _V ) -> ( card ` A ) = |^| { x e. On | x ~~ A } ) |
12 |
1 6 11
|
syl2anc |
|- ( A e. dom card -> ( card ` A ) = |^| { x e. On | x ~~ A } ) |