| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cardid2 | 
							⊢ ( 𝐴  ∈  dom  card  →  ( card ‘ 𝐴 )  ≈  𝐴 )  | 
						
						
							| 2 | 
							
								1
							 | 
							ensymd | 
							⊢ ( 𝐴  ∈  dom  card  →  𝐴  ≈  ( card ‘ 𝐴 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							breq2 | 
							⊢ ( ( card ‘ 𝐴 )  =  ∅  →  ( 𝐴  ≈  ( card ‘ 𝐴 )  ↔  𝐴  ≈  ∅ ) )  | 
						
						
							| 4 | 
							
								
							 | 
							en0 | 
							⊢ ( 𝐴  ≈  ∅  ↔  𝐴  =  ∅ )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							bitrdi | 
							⊢ ( ( card ‘ 𝐴 )  =  ∅  →  ( 𝐴  ≈  ( card ‘ 𝐴 )  ↔  𝐴  =  ∅ ) )  | 
						
						
							| 6 | 
							
								2 5
							 | 
							syl5ibcom | 
							⊢ ( 𝐴  ∈  dom  card  →  ( ( card ‘ 𝐴 )  =  ∅  →  𝐴  =  ∅ ) )  | 
						
						
							| 7 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝐴  =  ∅  →  ( card ‘ 𝐴 )  =  ( card ‘ ∅ ) )  | 
						
						
							| 8 | 
							
								
							 | 
							card0 | 
							⊢ ( card ‘ ∅ )  =  ∅  | 
						
						
							| 9 | 
							
								7 8
							 | 
							eqtrdi | 
							⊢ ( 𝐴  =  ∅  →  ( card ‘ 𝐴 )  =  ∅ )  | 
						
						
							| 10 | 
							
								6 9
							 | 
							impbid1 | 
							⊢ ( 𝐴  ∈  dom  card  →  ( ( card ‘ 𝐴 )  =  ∅  ↔  𝐴  =  ∅ ) )  |