| Step | Hyp | Ref | Expression | 
						
							| 1 |  | carsgval.1 | ⊢ ( 𝜑  →  𝑂  ∈  𝑉 ) | 
						
							| 2 |  | carsgval.2 | ⊢ ( 𝜑  →  𝑀 : 𝒫  𝑂 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 3 |  | carsgmon.1 | ⊢ ( 𝜑  →  𝐴  ⊆  𝐵 ) | 
						
							| 4 |  | carsgmon.2 | ⊢ ( 𝜑  →  𝐵  ∈  𝒫  𝑂 ) | 
						
							| 5 |  | carsgmon.3 | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  𝑦  ∧  𝑦  ∈  𝒫  𝑂 )  →  ( 𝑀 ‘ 𝑥 )  ≤  ( 𝑀 ‘ 𝑦 ) ) | 
						
							| 6 | 4 3 | ssexd | ⊢ ( 𝜑  →  𝐴  ∈  V ) | 
						
							| 7 |  | id | ⊢ ( 𝜑  →  𝜑 ) | 
						
							| 8 |  | sseq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  ⊆  𝑦  ↔  𝐴  ⊆  𝑦 ) ) | 
						
							| 9 | 8 | 3anbi2d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝜑  ∧  𝑥  ⊆  𝑦  ∧  𝑦  ∈  𝒫  𝑂 )  ↔  ( 𝜑  ∧  𝐴  ⊆  𝑦  ∧  𝑦  ∈  𝒫  𝑂 ) ) ) | 
						
							| 10 |  | fveq2 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑀 ‘ 𝑥 )  =  ( 𝑀 ‘ 𝐴 ) ) | 
						
							| 11 | 10 | breq1d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑀 ‘ 𝑥 )  ≤  ( 𝑀 ‘ 𝑦 )  ↔  ( 𝑀 ‘ 𝐴 )  ≤  ( 𝑀 ‘ 𝑦 ) ) ) | 
						
							| 12 | 9 11 | imbi12d | ⊢ ( 𝑥  =  𝐴  →  ( ( ( 𝜑  ∧  𝑥  ⊆  𝑦  ∧  𝑦  ∈  𝒫  𝑂 )  →  ( 𝑀 ‘ 𝑥 )  ≤  ( 𝑀 ‘ 𝑦 ) )  ↔  ( ( 𝜑  ∧  𝐴  ⊆  𝑦  ∧  𝑦  ∈  𝒫  𝑂 )  →  ( 𝑀 ‘ 𝐴 )  ≤  ( 𝑀 ‘ 𝑦 ) ) ) ) | 
						
							| 13 |  | sseq2 | ⊢ ( 𝑦  =  𝐵  →  ( 𝐴  ⊆  𝑦  ↔  𝐴  ⊆  𝐵 ) ) | 
						
							| 14 |  | eleq1 | ⊢ ( 𝑦  =  𝐵  →  ( 𝑦  ∈  𝒫  𝑂  ↔  𝐵  ∈  𝒫  𝑂 ) ) | 
						
							| 15 | 13 14 | 3anbi23d | ⊢ ( 𝑦  =  𝐵  →  ( ( 𝜑  ∧  𝐴  ⊆  𝑦  ∧  𝑦  ∈  𝒫  𝑂 )  ↔  ( 𝜑  ∧  𝐴  ⊆  𝐵  ∧  𝐵  ∈  𝒫  𝑂 ) ) ) | 
						
							| 16 |  | fveq2 | ⊢ ( 𝑦  =  𝐵  →  ( 𝑀 ‘ 𝑦 )  =  ( 𝑀 ‘ 𝐵 ) ) | 
						
							| 17 | 16 | breq2d | ⊢ ( 𝑦  =  𝐵  →  ( ( 𝑀 ‘ 𝐴 )  ≤  ( 𝑀 ‘ 𝑦 )  ↔  ( 𝑀 ‘ 𝐴 )  ≤  ( 𝑀 ‘ 𝐵 ) ) ) | 
						
							| 18 | 15 17 | imbi12d | ⊢ ( 𝑦  =  𝐵  →  ( ( ( 𝜑  ∧  𝐴  ⊆  𝑦  ∧  𝑦  ∈  𝒫  𝑂 )  →  ( 𝑀 ‘ 𝐴 )  ≤  ( 𝑀 ‘ 𝑦 ) )  ↔  ( ( 𝜑  ∧  𝐴  ⊆  𝐵  ∧  𝐵  ∈  𝒫  𝑂 )  →  ( 𝑀 ‘ 𝐴 )  ≤  ( 𝑀 ‘ 𝐵 ) ) ) ) | 
						
							| 19 | 12 18 5 | vtocl2g | ⊢ ( ( 𝐴  ∈  V  ∧  𝐵  ∈  𝒫  𝑂 )  →  ( ( 𝜑  ∧  𝐴  ⊆  𝐵  ∧  𝐵  ∈  𝒫  𝑂 )  →  ( 𝑀 ‘ 𝐴 )  ≤  ( 𝑀 ‘ 𝐵 ) ) ) | 
						
							| 20 | 19 | imp | ⊢ ( ( ( 𝐴  ∈  V  ∧  𝐵  ∈  𝒫  𝑂 )  ∧  ( 𝜑  ∧  𝐴  ⊆  𝐵  ∧  𝐵  ∈  𝒫  𝑂 ) )  →  ( 𝑀 ‘ 𝐴 )  ≤  ( 𝑀 ‘ 𝐵 ) ) | 
						
							| 21 | 6 4 7 3 4 20 | syl23anc | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝐴 )  ≤  ( 𝑀 ‘ 𝐵 ) ) |