Metamath Proof Explorer


Theorem carsgmon

Description: Utility lemma: Apply monotony. (Contributed by Thierry Arnoux, 29-May-2020)

Ref Expression
Hypotheses carsgval.1 ( 𝜑𝑂𝑉 )
carsgval.2 ( 𝜑𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) )
carsgmon.1 ( 𝜑𝐴𝐵 )
carsgmon.2 ( 𝜑𝐵 ∈ 𝒫 𝑂 )
carsgmon.3 ( ( 𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂 ) → ( 𝑀𝑥 ) ≤ ( 𝑀𝑦 ) )
Assertion carsgmon ( 𝜑 → ( 𝑀𝐴 ) ≤ ( 𝑀𝐵 ) )

Proof

Step Hyp Ref Expression
1 carsgval.1 ( 𝜑𝑂𝑉 )
2 carsgval.2 ( 𝜑𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) )
3 carsgmon.1 ( 𝜑𝐴𝐵 )
4 carsgmon.2 ( 𝜑𝐵 ∈ 𝒫 𝑂 )
5 carsgmon.3 ( ( 𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂 ) → ( 𝑀𝑥 ) ≤ ( 𝑀𝑦 ) )
6 4 3 ssexd ( 𝜑𝐴 ∈ V )
7 id ( 𝜑𝜑 )
8 sseq1 ( 𝑥 = 𝐴 → ( 𝑥𝑦𝐴𝑦 ) )
9 8 3anbi2d ( 𝑥 = 𝐴 → ( ( 𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂 ) ↔ ( 𝜑𝐴𝑦𝑦 ∈ 𝒫 𝑂 ) ) )
10 fveq2 ( 𝑥 = 𝐴 → ( 𝑀𝑥 ) = ( 𝑀𝐴 ) )
11 10 breq1d ( 𝑥 = 𝐴 → ( ( 𝑀𝑥 ) ≤ ( 𝑀𝑦 ) ↔ ( 𝑀𝐴 ) ≤ ( 𝑀𝑦 ) ) )
12 9 11 imbi12d ( 𝑥 = 𝐴 → ( ( ( 𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂 ) → ( 𝑀𝑥 ) ≤ ( 𝑀𝑦 ) ) ↔ ( ( 𝜑𝐴𝑦𝑦 ∈ 𝒫 𝑂 ) → ( 𝑀𝐴 ) ≤ ( 𝑀𝑦 ) ) ) )
13 sseq2 ( 𝑦 = 𝐵 → ( 𝐴𝑦𝐴𝐵 ) )
14 eleq1 ( 𝑦 = 𝐵 → ( 𝑦 ∈ 𝒫 𝑂𝐵 ∈ 𝒫 𝑂 ) )
15 13 14 3anbi23d ( 𝑦 = 𝐵 → ( ( 𝜑𝐴𝑦𝑦 ∈ 𝒫 𝑂 ) ↔ ( 𝜑𝐴𝐵𝐵 ∈ 𝒫 𝑂 ) ) )
16 fveq2 ( 𝑦 = 𝐵 → ( 𝑀𝑦 ) = ( 𝑀𝐵 ) )
17 16 breq2d ( 𝑦 = 𝐵 → ( ( 𝑀𝐴 ) ≤ ( 𝑀𝑦 ) ↔ ( 𝑀𝐴 ) ≤ ( 𝑀𝐵 ) ) )
18 15 17 imbi12d ( 𝑦 = 𝐵 → ( ( ( 𝜑𝐴𝑦𝑦 ∈ 𝒫 𝑂 ) → ( 𝑀𝐴 ) ≤ ( 𝑀𝑦 ) ) ↔ ( ( 𝜑𝐴𝐵𝐵 ∈ 𝒫 𝑂 ) → ( 𝑀𝐴 ) ≤ ( 𝑀𝐵 ) ) ) )
19 12 18 5 vtocl2g ( ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝒫 𝑂 ) → ( ( 𝜑𝐴𝐵𝐵 ∈ 𝒫 𝑂 ) → ( 𝑀𝐴 ) ≤ ( 𝑀𝐵 ) ) )
20 19 imp ( ( ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝒫 𝑂 ) ∧ ( 𝜑𝐴𝐵𝐵 ∈ 𝒫 𝑂 ) ) → ( 𝑀𝐴 ) ≤ ( 𝑀𝐵 ) )
21 6 4 7 3 4 20 syl23anc ( 𝜑 → ( 𝑀𝐴 ) ≤ ( 𝑀𝐵 ) )