Step |
Hyp |
Ref |
Expression |
1 |
|
carsgval.1 |
⊢ ( 𝜑 → 𝑂 ∈ 𝑉 ) |
2 |
|
carsgval.2 |
⊢ ( 𝜑 → 𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) ) |
3 |
|
carsgmon.1 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
4 |
|
carsgmon.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝒫 𝑂 ) |
5 |
|
carsgmon.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂 ) → ( 𝑀 ‘ 𝑥 ) ≤ ( 𝑀 ‘ 𝑦 ) ) |
6 |
4 3
|
ssexd |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
7 |
|
id |
⊢ ( 𝜑 → 𝜑 ) |
8 |
|
sseq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ⊆ 𝑦 ↔ 𝐴 ⊆ 𝑦 ) ) |
9 |
8
|
3anbi2d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝜑 ∧ 𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂 ) ↔ ( 𝜑 ∧ 𝐴 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂 ) ) ) |
10 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑀 ‘ 𝑥 ) = ( 𝑀 ‘ 𝐴 ) ) |
11 |
10
|
breq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑀 ‘ 𝑥 ) ≤ ( 𝑀 ‘ 𝑦 ) ↔ ( 𝑀 ‘ 𝐴 ) ≤ ( 𝑀 ‘ 𝑦 ) ) ) |
12 |
9 11
|
imbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂 ) → ( 𝑀 ‘ 𝑥 ) ≤ ( 𝑀 ‘ 𝑦 ) ) ↔ ( ( 𝜑 ∧ 𝐴 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂 ) → ( 𝑀 ‘ 𝐴 ) ≤ ( 𝑀 ‘ 𝑦 ) ) ) ) |
13 |
|
sseq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 ⊆ 𝑦 ↔ 𝐴 ⊆ 𝐵 ) ) |
14 |
|
eleq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 ∈ 𝒫 𝑂 ↔ 𝐵 ∈ 𝒫 𝑂 ) ) |
15 |
13 14
|
3anbi23d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝜑 ∧ 𝐴 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂 ) ↔ ( 𝜑 ∧ 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝒫 𝑂 ) ) ) |
16 |
|
fveq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝑀 ‘ 𝑦 ) = ( 𝑀 ‘ 𝐵 ) ) |
17 |
16
|
breq2d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝑀 ‘ 𝐴 ) ≤ ( 𝑀 ‘ 𝑦 ) ↔ ( 𝑀 ‘ 𝐴 ) ≤ ( 𝑀 ‘ 𝐵 ) ) ) |
18 |
15 17
|
imbi12d |
⊢ ( 𝑦 = 𝐵 → ( ( ( 𝜑 ∧ 𝐴 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂 ) → ( 𝑀 ‘ 𝐴 ) ≤ ( 𝑀 ‘ 𝑦 ) ) ↔ ( ( 𝜑 ∧ 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝒫 𝑂 ) → ( 𝑀 ‘ 𝐴 ) ≤ ( 𝑀 ‘ 𝐵 ) ) ) ) |
19 |
12 18 5
|
vtocl2g |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝒫 𝑂 ) → ( ( 𝜑 ∧ 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝒫 𝑂 ) → ( 𝑀 ‘ 𝐴 ) ≤ ( 𝑀 ‘ 𝐵 ) ) ) |
20 |
19
|
imp |
⊢ ( ( ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝒫 𝑂 ) ∧ ( 𝜑 ∧ 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝒫 𝑂 ) ) → ( 𝑀 ‘ 𝐴 ) ≤ ( 𝑀 ‘ 𝐵 ) ) |
21 |
6 4 7 3 4 20
|
syl23anc |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ≤ ( 𝑀 ‘ 𝐵 ) ) |