| Step | Hyp | Ref | Expression | 
						
							| 1 |  | carsgval.1 | ⊢ ( 𝜑  →  𝑂  ∈  𝑉 ) | 
						
							| 2 |  | carsgval.2 | ⊢ ( 𝜑  →  𝑀 : 𝒫  𝑂 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 3 |  | carsgsiga.1 | ⊢ ( 𝜑  →  ( 𝑀 ‘ ∅ )  =  0 ) | 
						
							| 4 |  | carsgsiga.2 | ⊢ ( ( 𝜑  ∧  𝑥  ≼  ω  ∧  𝑥  ⊆  𝒫  𝑂 )  →  ( 𝑀 ‘ ∪  𝑥 )  ≤  Σ* 𝑦  ∈  𝑥 ( 𝑀 ‘ 𝑦 ) ) | 
						
							| 5 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂  ∧  𝑓  ∈  𝒫  𝑂 )  ∧  𝑒  =  𝑓 )  →  𝑒  =  𝑓 ) | 
						
							| 6 | 5 | uneq2d | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂  ∧  𝑓  ∈  𝒫  𝑂 )  ∧  𝑒  =  𝑓 )  →  ( 𝑒  ∪  𝑒 )  =  ( 𝑒  ∪  𝑓 ) ) | 
						
							| 7 |  | unidm | ⊢ ( 𝑒  ∪  𝑒 )  =  𝑒 | 
						
							| 8 | 6 7 | eqtr3di | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂  ∧  𝑓  ∈  𝒫  𝑂 )  ∧  𝑒  =  𝑓 )  →  ( 𝑒  ∪  𝑓 )  =  𝑒 ) | 
						
							| 9 | 8 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂  ∧  𝑓  ∈  𝒫  𝑂 )  ∧  𝑒  =  𝑓 )  →  ( 𝑀 ‘ ( 𝑒  ∪  𝑓 ) )  =  ( 𝑀 ‘ 𝑒 ) ) | 
						
							| 10 |  | iccssxr | ⊢ ( 0 [,] +∞ )  ⊆  ℝ* | 
						
							| 11 |  | simp1 | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂  ∧  𝑓  ∈  𝒫  𝑂 )  →  𝜑 ) | 
						
							| 12 | 11 2 | syl | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂  ∧  𝑓  ∈  𝒫  𝑂 )  →  𝑀 : 𝒫  𝑂 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 13 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂  ∧  𝑓  ∈  𝒫  𝑂 )  →  𝑒  ∈  𝒫  𝑂 ) | 
						
							| 14 | 12 13 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂  ∧  𝑓  ∈  𝒫  𝑂 )  →  ( 𝑀 ‘ 𝑒 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 15 | 10 14 | sselid | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂  ∧  𝑓  ∈  𝒫  𝑂 )  →  ( 𝑀 ‘ 𝑒 )  ∈  ℝ* ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂  ∧  𝑓  ∈  𝒫  𝑂 )  ∧  𝑒  =  𝑓 )  →  ( 𝑀 ‘ 𝑒 )  ∈  ℝ* ) | 
						
							| 17 | 5 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂  ∧  𝑓  ∈  𝒫  𝑂 )  ∧  𝑒  =  𝑓 )  →  ( 𝑀 ‘ 𝑒 )  =  ( 𝑀 ‘ 𝑓 ) ) | 
						
							| 18 | 17 16 | eqeltrrd | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂  ∧  𝑓  ∈  𝒫  𝑂 )  ∧  𝑒  =  𝑓 )  →  ( 𝑀 ‘ 𝑓 )  ∈  ℝ* ) | 
						
							| 19 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂  ∧  𝑓  ∈  𝒫  𝑂 )  →  𝑓  ∈  𝒫  𝑂 ) | 
						
							| 20 | 12 19 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂  ∧  𝑓  ∈  𝒫  𝑂 )  →  ( 𝑀 ‘ 𝑓 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂  ∧  𝑓  ∈  𝒫  𝑂 )  ∧  𝑒  =  𝑓 )  →  ( 𝑀 ‘ 𝑓 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 22 |  | elxrge0 | ⊢ ( ( 𝑀 ‘ 𝑓 )  ∈  ( 0 [,] +∞ )  ↔  ( ( 𝑀 ‘ 𝑓 )  ∈  ℝ*  ∧  0  ≤  ( 𝑀 ‘ 𝑓 ) ) ) | 
						
							| 23 | 22 | simprbi | ⊢ ( ( 𝑀 ‘ 𝑓 )  ∈  ( 0 [,] +∞ )  →  0  ≤  ( 𝑀 ‘ 𝑓 ) ) | 
						
							| 24 | 21 23 | syl | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂  ∧  𝑓  ∈  𝒫  𝑂 )  ∧  𝑒  =  𝑓 )  →  0  ≤  ( 𝑀 ‘ 𝑓 ) ) | 
						
							| 25 |  | xraddge02 | ⊢ ( ( ( 𝑀 ‘ 𝑒 )  ∈  ℝ*  ∧  ( 𝑀 ‘ 𝑓 )  ∈  ℝ* )  →  ( 0  ≤  ( 𝑀 ‘ 𝑓 )  →  ( 𝑀 ‘ 𝑒 )  ≤  ( ( 𝑀 ‘ 𝑒 )  +𝑒  ( 𝑀 ‘ 𝑓 ) ) ) ) | 
						
							| 26 | 25 | imp | ⊢ ( ( ( ( 𝑀 ‘ 𝑒 )  ∈  ℝ*  ∧  ( 𝑀 ‘ 𝑓 )  ∈  ℝ* )  ∧  0  ≤  ( 𝑀 ‘ 𝑓 ) )  →  ( 𝑀 ‘ 𝑒 )  ≤  ( ( 𝑀 ‘ 𝑒 )  +𝑒  ( 𝑀 ‘ 𝑓 ) ) ) | 
						
							| 27 | 16 18 24 26 | syl21anc | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂  ∧  𝑓  ∈  𝒫  𝑂 )  ∧  𝑒  =  𝑓 )  →  ( 𝑀 ‘ 𝑒 )  ≤  ( ( 𝑀 ‘ 𝑒 )  +𝑒  ( 𝑀 ‘ 𝑓 ) ) ) | 
						
							| 28 | 9 27 | eqbrtrd | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂  ∧  𝑓  ∈  𝒫  𝑂 )  ∧  𝑒  =  𝑓 )  →  ( 𝑀 ‘ ( 𝑒  ∪  𝑓 ) )  ≤  ( ( 𝑀 ‘ 𝑒 )  +𝑒  ( 𝑀 ‘ 𝑓 ) ) ) | 
						
							| 29 |  | uniprg | ⊢ ( ( 𝑒  ∈  𝒫  𝑂  ∧  𝑓  ∈  𝒫  𝑂 )  →  ∪  { 𝑒 ,  𝑓 }  =  ( 𝑒  ∪  𝑓 ) ) | 
						
							| 30 | 29 | fveq2d | ⊢ ( ( 𝑒  ∈  𝒫  𝑂  ∧  𝑓  ∈  𝒫  𝑂 )  →  ( 𝑀 ‘ ∪  { 𝑒 ,  𝑓 } )  =  ( 𝑀 ‘ ( 𝑒  ∪  𝑓 ) ) ) | 
						
							| 31 | 30 | 3adant1 | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂  ∧  𝑓  ∈  𝒫  𝑂 )  →  ( 𝑀 ‘ ∪  { 𝑒 ,  𝑓 } )  =  ( 𝑀 ‘ ( 𝑒  ∪  𝑓 ) ) ) | 
						
							| 32 |  | prct | ⊢ ( ( 𝑒  ∈  𝒫  𝑂  ∧  𝑓  ∈  𝒫  𝑂 )  →  { 𝑒 ,  𝑓 }  ≼  ω ) | 
						
							| 33 | 32 | 3adant1 | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂  ∧  𝑓  ∈  𝒫  𝑂 )  →  { 𝑒 ,  𝑓 }  ≼  ω ) | 
						
							| 34 |  | prssi | ⊢ ( ( 𝑒  ∈  𝒫  𝑂  ∧  𝑓  ∈  𝒫  𝑂 )  →  { 𝑒 ,  𝑓 }  ⊆  𝒫  𝑂 ) | 
						
							| 35 | 34 | 3adant1 | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂  ∧  𝑓  ∈  𝒫  𝑂 )  →  { 𝑒 ,  𝑓 }  ⊆  𝒫  𝑂 ) | 
						
							| 36 |  | prex | ⊢ { 𝑒 ,  𝑓 }  ∈  V | 
						
							| 37 |  | breq1 | ⊢ ( 𝑥  =  { 𝑒 ,  𝑓 }  →  ( 𝑥  ≼  ω  ↔  { 𝑒 ,  𝑓 }  ≼  ω ) ) | 
						
							| 38 |  | sseq1 | ⊢ ( 𝑥  =  { 𝑒 ,  𝑓 }  →  ( 𝑥  ⊆  𝒫  𝑂  ↔  { 𝑒 ,  𝑓 }  ⊆  𝒫  𝑂 ) ) | 
						
							| 39 | 37 38 | 3anbi23d | ⊢ ( 𝑥  =  { 𝑒 ,  𝑓 }  →  ( ( 𝜑  ∧  𝑥  ≼  ω  ∧  𝑥  ⊆  𝒫  𝑂 )  ↔  ( 𝜑  ∧  { 𝑒 ,  𝑓 }  ≼  ω  ∧  { 𝑒 ,  𝑓 }  ⊆  𝒫  𝑂 ) ) ) | 
						
							| 40 |  | unieq | ⊢ ( 𝑥  =  { 𝑒 ,  𝑓 }  →  ∪  𝑥  =  ∪  { 𝑒 ,  𝑓 } ) | 
						
							| 41 | 40 | fveq2d | ⊢ ( 𝑥  =  { 𝑒 ,  𝑓 }  →  ( 𝑀 ‘ ∪  𝑥 )  =  ( 𝑀 ‘ ∪  { 𝑒 ,  𝑓 } ) ) | 
						
							| 42 |  | esumeq1 | ⊢ ( 𝑥  =  { 𝑒 ,  𝑓 }  →  Σ* 𝑦  ∈  𝑥 ( 𝑀 ‘ 𝑦 )  =  Σ* 𝑦  ∈  { 𝑒 ,  𝑓 } ( 𝑀 ‘ 𝑦 ) ) | 
						
							| 43 | 41 42 | breq12d | ⊢ ( 𝑥  =  { 𝑒 ,  𝑓 }  →  ( ( 𝑀 ‘ ∪  𝑥 )  ≤  Σ* 𝑦  ∈  𝑥 ( 𝑀 ‘ 𝑦 )  ↔  ( 𝑀 ‘ ∪  { 𝑒 ,  𝑓 } )  ≤  Σ* 𝑦  ∈  { 𝑒 ,  𝑓 } ( 𝑀 ‘ 𝑦 ) ) ) | 
						
							| 44 | 39 43 | imbi12d | ⊢ ( 𝑥  =  { 𝑒 ,  𝑓 }  →  ( ( ( 𝜑  ∧  𝑥  ≼  ω  ∧  𝑥  ⊆  𝒫  𝑂 )  →  ( 𝑀 ‘ ∪  𝑥 )  ≤  Σ* 𝑦  ∈  𝑥 ( 𝑀 ‘ 𝑦 ) )  ↔  ( ( 𝜑  ∧  { 𝑒 ,  𝑓 }  ≼  ω  ∧  { 𝑒 ,  𝑓 }  ⊆  𝒫  𝑂 )  →  ( 𝑀 ‘ ∪  { 𝑒 ,  𝑓 } )  ≤  Σ* 𝑦  ∈  { 𝑒 ,  𝑓 } ( 𝑀 ‘ 𝑦 ) ) ) ) | 
						
							| 45 | 44 4 | vtoclg | ⊢ ( { 𝑒 ,  𝑓 }  ∈  V  →  ( ( 𝜑  ∧  { 𝑒 ,  𝑓 }  ≼  ω  ∧  { 𝑒 ,  𝑓 }  ⊆  𝒫  𝑂 )  →  ( 𝑀 ‘ ∪  { 𝑒 ,  𝑓 } )  ≤  Σ* 𝑦  ∈  { 𝑒 ,  𝑓 } ( 𝑀 ‘ 𝑦 ) ) ) | 
						
							| 46 | 36 45 | ax-mp | ⊢ ( ( 𝜑  ∧  { 𝑒 ,  𝑓 }  ≼  ω  ∧  { 𝑒 ,  𝑓 }  ⊆  𝒫  𝑂 )  →  ( 𝑀 ‘ ∪  { 𝑒 ,  𝑓 } )  ≤  Σ* 𝑦  ∈  { 𝑒 ,  𝑓 } ( 𝑀 ‘ 𝑦 ) ) | 
						
							| 47 | 11 33 35 46 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂  ∧  𝑓  ∈  𝒫  𝑂 )  →  ( 𝑀 ‘ ∪  { 𝑒 ,  𝑓 } )  ≤  Σ* 𝑦  ∈  { 𝑒 ,  𝑓 } ( 𝑀 ‘ 𝑦 ) ) | 
						
							| 48 | 31 47 | eqbrtrrd | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂  ∧  𝑓  ∈  𝒫  𝑂 )  →  ( 𝑀 ‘ ( 𝑒  ∪  𝑓 ) )  ≤  Σ* 𝑦  ∈  { 𝑒 ,  𝑓 } ( 𝑀 ‘ 𝑦 ) ) | 
						
							| 49 | 48 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂  ∧  𝑓  ∈  𝒫  𝑂 )  ∧  𝑒  ≠  𝑓 )  →  ( 𝑀 ‘ ( 𝑒  ∪  𝑓 ) )  ≤  Σ* 𝑦  ∈  { 𝑒 ,  𝑓 } ( 𝑀 ‘ 𝑦 ) ) | 
						
							| 50 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂  ∧  𝑓  ∈  𝒫  𝑂 )  ∧  𝑦  =  𝑒 )  →  𝑦  =  𝑒 ) | 
						
							| 51 | 50 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂  ∧  𝑓  ∈  𝒫  𝑂 )  ∧  𝑦  =  𝑒 )  →  ( 𝑀 ‘ 𝑦 )  =  ( 𝑀 ‘ 𝑒 ) ) | 
						
							| 52 | 51 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂  ∧  𝑓  ∈  𝒫  𝑂 )  ∧  𝑒  ≠  𝑓 )  ∧  𝑦  =  𝑒 )  →  ( 𝑀 ‘ 𝑦 )  =  ( 𝑀 ‘ 𝑒 ) ) | 
						
							| 53 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂  ∧  𝑓  ∈  𝒫  𝑂 )  ∧  𝑦  =  𝑓 )  →  𝑦  =  𝑓 ) | 
						
							| 54 | 53 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂  ∧  𝑓  ∈  𝒫  𝑂 )  ∧  𝑦  =  𝑓 )  →  ( 𝑀 ‘ 𝑦 )  =  ( 𝑀 ‘ 𝑓 ) ) | 
						
							| 55 | 54 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂  ∧  𝑓  ∈  𝒫  𝑂 )  ∧  𝑒  ≠  𝑓 )  ∧  𝑦  =  𝑓 )  →  ( 𝑀 ‘ 𝑦 )  =  ( 𝑀 ‘ 𝑓 ) ) | 
						
							| 56 | 13 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂  ∧  𝑓  ∈  𝒫  𝑂 )  ∧  𝑒  ≠  𝑓 )  →  𝑒  ∈  𝒫  𝑂 ) | 
						
							| 57 | 19 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂  ∧  𝑓  ∈  𝒫  𝑂 )  ∧  𝑒  ≠  𝑓 )  →  𝑓  ∈  𝒫  𝑂 ) | 
						
							| 58 | 14 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂  ∧  𝑓  ∈  𝒫  𝑂 )  ∧  𝑒  ≠  𝑓 )  →  ( 𝑀 ‘ 𝑒 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 59 | 20 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂  ∧  𝑓  ∈  𝒫  𝑂 )  ∧  𝑒  ≠  𝑓 )  →  ( 𝑀 ‘ 𝑓 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 60 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂  ∧  𝑓  ∈  𝒫  𝑂 )  ∧  𝑒  ≠  𝑓 )  →  𝑒  ≠  𝑓 ) | 
						
							| 61 | 52 55 56 57 58 59 60 | esumpr | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂  ∧  𝑓  ∈  𝒫  𝑂 )  ∧  𝑒  ≠  𝑓 )  →  Σ* 𝑦  ∈  { 𝑒 ,  𝑓 } ( 𝑀 ‘ 𝑦 )  =  ( ( 𝑀 ‘ 𝑒 )  +𝑒  ( 𝑀 ‘ 𝑓 ) ) ) | 
						
							| 62 | 49 61 | breqtrd | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂  ∧  𝑓  ∈  𝒫  𝑂 )  ∧  𝑒  ≠  𝑓 )  →  ( 𝑀 ‘ ( 𝑒  ∪  𝑓 ) )  ≤  ( ( 𝑀 ‘ 𝑒 )  +𝑒  ( 𝑀 ‘ 𝑓 ) ) ) | 
						
							| 63 | 28 62 | pm2.61dane | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂  ∧  𝑓  ∈  𝒫  𝑂 )  →  ( 𝑀 ‘ ( 𝑒  ∪  𝑓 ) )  ≤  ( ( 𝑀 ‘ 𝑒 )  +𝑒  ( 𝑀 ‘ 𝑓 ) ) ) |