Metamath Proof Explorer


Theorem carsgsigalem

Description: Lemma for the following theorems. (Contributed by Thierry Arnoux, 23-May-2020)

Ref Expression
Hypotheses carsgval.1 ( 𝜑𝑂𝑉 )
carsgval.2 ( 𝜑𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) )
carsgsiga.1 ( 𝜑 → ( 𝑀 ‘ ∅ ) = 0 )
carsgsiga.2 ( ( 𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂 ) → ( 𝑀 𝑥 ) ≤ Σ* 𝑦𝑥 ( 𝑀𝑦 ) )
Assertion carsgsigalem ( ( 𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂 ) → ( 𝑀 ‘ ( 𝑒𝑓 ) ) ≤ ( ( 𝑀𝑒 ) +𝑒 ( 𝑀𝑓 ) ) )

Proof

Step Hyp Ref Expression
1 carsgval.1 ( 𝜑𝑂𝑉 )
2 carsgval.2 ( 𝜑𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) )
3 carsgsiga.1 ( 𝜑 → ( 𝑀 ‘ ∅ ) = 0 )
4 carsgsiga.2 ( ( 𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂 ) → ( 𝑀 𝑥 ) ≤ Σ* 𝑦𝑥 ( 𝑀𝑦 ) )
5 unidm ( 𝑒𝑒 ) = 𝑒
6 simpr ( ( ( 𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂 ) ∧ 𝑒 = 𝑓 ) → 𝑒 = 𝑓 )
7 6 uneq2d ( ( ( 𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂 ) ∧ 𝑒 = 𝑓 ) → ( 𝑒𝑒 ) = ( 𝑒𝑓 ) )
8 5 7 syl5reqr ( ( ( 𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂 ) ∧ 𝑒 = 𝑓 ) → ( 𝑒𝑓 ) = 𝑒 )
9 8 fveq2d ( ( ( 𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂 ) ∧ 𝑒 = 𝑓 ) → ( 𝑀 ‘ ( 𝑒𝑓 ) ) = ( 𝑀𝑒 ) )
10 iccssxr ( 0 [,] +∞ ) ⊆ ℝ*
11 simp1 ( ( 𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂 ) → 𝜑 )
12 11 2 syl ( ( 𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂 ) → 𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) )
13 simp2 ( ( 𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂 ) → 𝑒 ∈ 𝒫 𝑂 )
14 12 13 ffvelrnd ( ( 𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂 ) → ( 𝑀𝑒 ) ∈ ( 0 [,] +∞ ) )
15 10 14 sseldi ( ( 𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂 ) → ( 𝑀𝑒 ) ∈ ℝ* )
16 15 adantr ( ( ( 𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂 ) ∧ 𝑒 = 𝑓 ) → ( 𝑀𝑒 ) ∈ ℝ* )
17 6 fveq2d ( ( ( 𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂 ) ∧ 𝑒 = 𝑓 ) → ( 𝑀𝑒 ) = ( 𝑀𝑓 ) )
18 17 16 eqeltrrd ( ( ( 𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂 ) ∧ 𝑒 = 𝑓 ) → ( 𝑀𝑓 ) ∈ ℝ* )
19 simp3 ( ( 𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂 ) → 𝑓 ∈ 𝒫 𝑂 )
20 12 19 ffvelrnd ( ( 𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂 ) → ( 𝑀𝑓 ) ∈ ( 0 [,] +∞ ) )
21 20 adantr ( ( ( 𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂 ) ∧ 𝑒 = 𝑓 ) → ( 𝑀𝑓 ) ∈ ( 0 [,] +∞ ) )
22 elxrge0 ( ( 𝑀𝑓 ) ∈ ( 0 [,] +∞ ) ↔ ( ( 𝑀𝑓 ) ∈ ℝ* ∧ 0 ≤ ( 𝑀𝑓 ) ) )
23 22 simprbi ( ( 𝑀𝑓 ) ∈ ( 0 [,] +∞ ) → 0 ≤ ( 𝑀𝑓 ) )
24 21 23 syl ( ( ( 𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂 ) ∧ 𝑒 = 𝑓 ) → 0 ≤ ( 𝑀𝑓 ) )
25 xraddge02 ( ( ( 𝑀𝑒 ) ∈ ℝ* ∧ ( 𝑀𝑓 ) ∈ ℝ* ) → ( 0 ≤ ( 𝑀𝑓 ) → ( 𝑀𝑒 ) ≤ ( ( 𝑀𝑒 ) +𝑒 ( 𝑀𝑓 ) ) ) )
26 25 imp ( ( ( ( 𝑀𝑒 ) ∈ ℝ* ∧ ( 𝑀𝑓 ) ∈ ℝ* ) ∧ 0 ≤ ( 𝑀𝑓 ) ) → ( 𝑀𝑒 ) ≤ ( ( 𝑀𝑒 ) +𝑒 ( 𝑀𝑓 ) ) )
27 16 18 24 26 syl21anc ( ( ( 𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂 ) ∧ 𝑒 = 𝑓 ) → ( 𝑀𝑒 ) ≤ ( ( 𝑀𝑒 ) +𝑒 ( 𝑀𝑓 ) ) )
28 9 27 eqbrtrd ( ( ( 𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂 ) ∧ 𝑒 = 𝑓 ) → ( 𝑀 ‘ ( 𝑒𝑓 ) ) ≤ ( ( 𝑀𝑒 ) +𝑒 ( 𝑀𝑓 ) ) )
29 uniprg ( ( 𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂 ) → { 𝑒 , 𝑓 } = ( 𝑒𝑓 ) )
30 29 fveq2d ( ( 𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂 ) → ( 𝑀 { 𝑒 , 𝑓 } ) = ( 𝑀 ‘ ( 𝑒𝑓 ) ) )
31 30 3adant1 ( ( 𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂 ) → ( 𝑀 { 𝑒 , 𝑓 } ) = ( 𝑀 ‘ ( 𝑒𝑓 ) ) )
32 prct ( ( 𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂 ) → { 𝑒 , 𝑓 } ≼ ω )
33 32 3adant1 ( ( 𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂 ) → { 𝑒 , 𝑓 } ≼ ω )
34 prssi ( ( 𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂 ) → { 𝑒 , 𝑓 } ⊆ 𝒫 𝑂 )
35 34 3adant1 ( ( 𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂 ) → { 𝑒 , 𝑓 } ⊆ 𝒫 𝑂 )
36 prex { 𝑒 , 𝑓 } ∈ V
37 breq1 ( 𝑥 = { 𝑒 , 𝑓 } → ( 𝑥 ≼ ω ↔ { 𝑒 , 𝑓 } ≼ ω ) )
38 sseq1 ( 𝑥 = { 𝑒 , 𝑓 } → ( 𝑥 ⊆ 𝒫 𝑂 ↔ { 𝑒 , 𝑓 } ⊆ 𝒫 𝑂 ) )
39 37 38 3anbi23d ( 𝑥 = { 𝑒 , 𝑓 } → ( ( 𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂 ) ↔ ( 𝜑 ∧ { 𝑒 , 𝑓 } ≼ ω ∧ { 𝑒 , 𝑓 } ⊆ 𝒫 𝑂 ) ) )
40 unieq ( 𝑥 = { 𝑒 , 𝑓 } → 𝑥 = { 𝑒 , 𝑓 } )
41 40 fveq2d ( 𝑥 = { 𝑒 , 𝑓 } → ( 𝑀 𝑥 ) = ( 𝑀 { 𝑒 , 𝑓 } ) )
42 esumeq1 ( 𝑥 = { 𝑒 , 𝑓 } → Σ* 𝑦𝑥 ( 𝑀𝑦 ) = Σ* 𝑦 ∈ { 𝑒 , 𝑓 } ( 𝑀𝑦 ) )
43 41 42 breq12d ( 𝑥 = { 𝑒 , 𝑓 } → ( ( 𝑀 𝑥 ) ≤ Σ* 𝑦𝑥 ( 𝑀𝑦 ) ↔ ( 𝑀 { 𝑒 , 𝑓 } ) ≤ Σ* 𝑦 ∈ { 𝑒 , 𝑓 } ( 𝑀𝑦 ) ) )
44 39 43 imbi12d ( 𝑥 = { 𝑒 , 𝑓 } → ( ( ( 𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂 ) → ( 𝑀 𝑥 ) ≤ Σ* 𝑦𝑥 ( 𝑀𝑦 ) ) ↔ ( ( 𝜑 ∧ { 𝑒 , 𝑓 } ≼ ω ∧ { 𝑒 , 𝑓 } ⊆ 𝒫 𝑂 ) → ( 𝑀 { 𝑒 , 𝑓 } ) ≤ Σ* 𝑦 ∈ { 𝑒 , 𝑓 } ( 𝑀𝑦 ) ) ) )
45 44 4 vtoclg ( { 𝑒 , 𝑓 } ∈ V → ( ( 𝜑 ∧ { 𝑒 , 𝑓 } ≼ ω ∧ { 𝑒 , 𝑓 } ⊆ 𝒫 𝑂 ) → ( 𝑀 { 𝑒 , 𝑓 } ) ≤ Σ* 𝑦 ∈ { 𝑒 , 𝑓 } ( 𝑀𝑦 ) ) )
46 36 45 ax-mp ( ( 𝜑 ∧ { 𝑒 , 𝑓 } ≼ ω ∧ { 𝑒 , 𝑓 } ⊆ 𝒫 𝑂 ) → ( 𝑀 { 𝑒 , 𝑓 } ) ≤ Σ* 𝑦 ∈ { 𝑒 , 𝑓 } ( 𝑀𝑦 ) )
47 11 33 35 46 syl3anc ( ( 𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂 ) → ( 𝑀 { 𝑒 , 𝑓 } ) ≤ Σ* 𝑦 ∈ { 𝑒 , 𝑓 } ( 𝑀𝑦 ) )
48 31 47 eqbrtrrd ( ( 𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂 ) → ( 𝑀 ‘ ( 𝑒𝑓 ) ) ≤ Σ* 𝑦 ∈ { 𝑒 , 𝑓 } ( 𝑀𝑦 ) )
49 48 adantr ( ( ( 𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂 ) ∧ 𝑒𝑓 ) → ( 𝑀 ‘ ( 𝑒𝑓 ) ) ≤ Σ* 𝑦 ∈ { 𝑒 , 𝑓 } ( 𝑀𝑦 ) )
50 simpr ( ( ( 𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂 ) ∧ 𝑦 = 𝑒 ) → 𝑦 = 𝑒 )
51 50 fveq2d ( ( ( 𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂 ) ∧ 𝑦 = 𝑒 ) → ( 𝑀𝑦 ) = ( 𝑀𝑒 ) )
52 51 adantlr ( ( ( ( 𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂 ) ∧ 𝑒𝑓 ) ∧ 𝑦 = 𝑒 ) → ( 𝑀𝑦 ) = ( 𝑀𝑒 ) )
53 simpr ( ( ( 𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂 ) ∧ 𝑦 = 𝑓 ) → 𝑦 = 𝑓 )
54 53 fveq2d ( ( ( 𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂 ) ∧ 𝑦 = 𝑓 ) → ( 𝑀𝑦 ) = ( 𝑀𝑓 ) )
55 54 adantlr ( ( ( ( 𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂 ) ∧ 𝑒𝑓 ) ∧ 𝑦 = 𝑓 ) → ( 𝑀𝑦 ) = ( 𝑀𝑓 ) )
56 13 adantr ( ( ( 𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂 ) ∧ 𝑒𝑓 ) → 𝑒 ∈ 𝒫 𝑂 )
57 19 adantr ( ( ( 𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂 ) ∧ 𝑒𝑓 ) → 𝑓 ∈ 𝒫 𝑂 )
58 14 adantr ( ( ( 𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂 ) ∧ 𝑒𝑓 ) → ( 𝑀𝑒 ) ∈ ( 0 [,] +∞ ) )
59 20 adantr ( ( ( 𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂 ) ∧ 𝑒𝑓 ) → ( 𝑀𝑓 ) ∈ ( 0 [,] +∞ ) )
60 simpr ( ( ( 𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂 ) ∧ 𝑒𝑓 ) → 𝑒𝑓 )
61 52 55 56 57 58 59 60 esumpr ( ( ( 𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂 ) ∧ 𝑒𝑓 ) → Σ* 𝑦 ∈ { 𝑒 , 𝑓 } ( 𝑀𝑦 ) = ( ( 𝑀𝑒 ) +𝑒 ( 𝑀𝑓 ) ) )
62 49 61 breqtrd ( ( ( 𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂 ) ∧ 𝑒𝑓 ) → ( 𝑀 ‘ ( 𝑒𝑓 ) ) ≤ ( ( 𝑀𝑒 ) +𝑒 ( 𝑀𝑓 ) ) )
63 28 62 pm2.61dane ( ( 𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂 ) → ( 𝑀 ‘ ( 𝑒𝑓 ) ) ≤ ( ( 𝑀𝑒 ) +𝑒 ( 𝑀𝑓 ) ) )