Step |
Hyp |
Ref |
Expression |
1 |
|
carsgval.1 |
⊢ ( 𝜑 → 𝑂 ∈ 𝑉 ) |
2 |
|
carsgval.2 |
⊢ ( 𝜑 → 𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) ) |
3 |
|
carsgsiga.1 |
⊢ ( 𝜑 → ( 𝑀 ‘ ∅ ) = 0 ) |
4 |
|
carsgsiga.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂 ) → ( 𝑀 ‘ ∪ 𝑥 ) ≤ Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) |
5 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂 ) ∧ 𝑒 = 𝑓 ) → 𝑒 = 𝑓 ) |
6 |
5
|
uneq2d |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂 ) ∧ 𝑒 = 𝑓 ) → ( 𝑒 ∪ 𝑒 ) = ( 𝑒 ∪ 𝑓 ) ) |
7 |
|
unidm |
⊢ ( 𝑒 ∪ 𝑒 ) = 𝑒 |
8 |
6 7
|
eqtr3di |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂 ) ∧ 𝑒 = 𝑓 ) → ( 𝑒 ∪ 𝑓 ) = 𝑒 ) |
9 |
8
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂 ) ∧ 𝑒 = 𝑓 ) → ( 𝑀 ‘ ( 𝑒 ∪ 𝑓 ) ) = ( 𝑀 ‘ 𝑒 ) ) |
10 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
11 |
|
simp1 |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂 ) → 𝜑 ) |
12 |
11 2
|
syl |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂 ) → 𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) ) |
13 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂 ) → 𝑒 ∈ 𝒫 𝑂 ) |
14 |
12 13
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂 ) → ( 𝑀 ‘ 𝑒 ) ∈ ( 0 [,] +∞ ) ) |
15 |
10 14
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂 ) → ( 𝑀 ‘ 𝑒 ) ∈ ℝ* ) |
16 |
15
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂 ) ∧ 𝑒 = 𝑓 ) → ( 𝑀 ‘ 𝑒 ) ∈ ℝ* ) |
17 |
5
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂 ) ∧ 𝑒 = 𝑓 ) → ( 𝑀 ‘ 𝑒 ) = ( 𝑀 ‘ 𝑓 ) ) |
18 |
17 16
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂 ) ∧ 𝑒 = 𝑓 ) → ( 𝑀 ‘ 𝑓 ) ∈ ℝ* ) |
19 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂 ) → 𝑓 ∈ 𝒫 𝑂 ) |
20 |
12 19
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂 ) → ( 𝑀 ‘ 𝑓 ) ∈ ( 0 [,] +∞ ) ) |
21 |
20
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂 ) ∧ 𝑒 = 𝑓 ) → ( 𝑀 ‘ 𝑓 ) ∈ ( 0 [,] +∞ ) ) |
22 |
|
elxrge0 |
⊢ ( ( 𝑀 ‘ 𝑓 ) ∈ ( 0 [,] +∞ ) ↔ ( ( 𝑀 ‘ 𝑓 ) ∈ ℝ* ∧ 0 ≤ ( 𝑀 ‘ 𝑓 ) ) ) |
23 |
22
|
simprbi |
⊢ ( ( 𝑀 ‘ 𝑓 ) ∈ ( 0 [,] +∞ ) → 0 ≤ ( 𝑀 ‘ 𝑓 ) ) |
24 |
21 23
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂 ) ∧ 𝑒 = 𝑓 ) → 0 ≤ ( 𝑀 ‘ 𝑓 ) ) |
25 |
|
xraddge02 |
⊢ ( ( ( 𝑀 ‘ 𝑒 ) ∈ ℝ* ∧ ( 𝑀 ‘ 𝑓 ) ∈ ℝ* ) → ( 0 ≤ ( 𝑀 ‘ 𝑓 ) → ( 𝑀 ‘ 𝑒 ) ≤ ( ( 𝑀 ‘ 𝑒 ) +𝑒 ( 𝑀 ‘ 𝑓 ) ) ) ) |
26 |
25
|
imp |
⊢ ( ( ( ( 𝑀 ‘ 𝑒 ) ∈ ℝ* ∧ ( 𝑀 ‘ 𝑓 ) ∈ ℝ* ) ∧ 0 ≤ ( 𝑀 ‘ 𝑓 ) ) → ( 𝑀 ‘ 𝑒 ) ≤ ( ( 𝑀 ‘ 𝑒 ) +𝑒 ( 𝑀 ‘ 𝑓 ) ) ) |
27 |
16 18 24 26
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂 ) ∧ 𝑒 = 𝑓 ) → ( 𝑀 ‘ 𝑒 ) ≤ ( ( 𝑀 ‘ 𝑒 ) +𝑒 ( 𝑀 ‘ 𝑓 ) ) ) |
28 |
9 27
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂 ) ∧ 𝑒 = 𝑓 ) → ( 𝑀 ‘ ( 𝑒 ∪ 𝑓 ) ) ≤ ( ( 𝑀 ‘ 𝑒 ) +𝑒 ( 𝑀 ‘ 𝑓 ) ) ) |
29 |
|
uniprg |
⊢ ( ( 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂 ) → ∪ { 𝑒 , 𝑓 } = ( 𝑒 ∪ 𝑓 ) ) |
30 |
29
|
fveq2d |
⊢ ( ( 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂 ) → ( 𝑀 ‘ ∪ { 𝑒 , 𝑓 } ) = ( 𝑀 ‘ ( 𝑒 ∪ 𝑓 ) ) ) |
31 |
30
|
3adant1 |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂 ) → ( 𝑀 ‘ ∪ { 𝑒 , 𝑓 } ) = ( 𝑀 ‘ ( 𝑒 ∪ 𝑓 ) ) ) |
32 |
|
prct |
⊢ ( ( 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂 ) → { 𝑒 , 𝑓 } ≼ ω ) |
33 |
32
|
3adant1 |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂 ) → { 𝑒 , 𝑓 } ≼ ω ) |
34 |
|
prssi |
⊢ ( ( 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂 ) → { 𝑒 , 𝑓 } ⊆ 𝒫 𝑂 ) |
35 |
34
|
3adant1 |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂 ) → { 𝑒 , 𝑓 } ⊆ 𝒫 𝑂 ) |
36 |
|
prex |
⊢ { 𝑒 , 𝑓 } ∈ V |
37 |
|
breq1 |
⊢ ( 𝑥 = { 𝑒 , 𝑓 } → ( 𝑥 ≼ ω ↔ { 𝑒 , 𝑓 } ≼ ω ) ) |
38 |
|
sseq1 |
⊢ ( 𝑥 = { 𝑒 , 𝑓 } → ( 𝑥 ⊆ 𝒫 𝑂 ↔ { 𝑒 , 𝑓 } ⊆ 𝒫 𝑂 ) ) |
39 |
37 38
|
3anbi23d |
⊢ ( 𝑥 = { 𝑒 , 𝑓 } → ( ( 𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂 ) ↔ ( 𝜑 ∧ { 𝑒 , 𝑓 } ≼ ω ∧ { 𝑒 , 𝑓 } ⊆ 𝒫 𝑂 ) ) ) |
40 |
|
unieq |
⊢ ( 𝑥 = { 𝑒 , 𝑓 } → ∪ 𝑥 = ∪ { 𝑒 , 𝑓 } ) |
41 |
40
|
fveq2d |
⊢ ( 𝑥 = { 𝑒 , 𝑓 } → ( 𝑀 ‘ ∪ 𝑥 ) = ( 𝑀 ‘ ∪ { 𝑒 , 𝑓 } ) ) |
42 |
|
esumeq1 |
⊢ ( 𝑥 = { 𝑒 , 𝑓 } → Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) = Σ* 𝑦 ∈ { 𝑒 , 𝑓 } ( 𝑀 ‘ 𝑦 ) ) |
43 |
41 42
|
breq12d |
⊢ ( 𝑥 = { 𝑒 , 𝑓 } → ( ( 𝑀 ‘ ∪ 𝑥 ) ≤ Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ↔ ( 𝑀 ‘ ∪ { 𝑒 , 𝑓 } ) ≤ Σ* 𝑦 ∈ { 𝑒 , 𝑓 } ( 𝑀 ‘ 𝑦 ) ) ) |
44 |
39 43
|
imbi12d |
⊢ ( 𝑥 = { 𝑒 , 𝑓 } → ( ( ( 𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂 ) → ( 𝑀 ‘ ∪ 𝑥 ) ≤ Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) ↔ ( ( 𝜑 ∧ { 𝑒 , 𝑓 } ≼ ω ∧ { 𝑒 , 𝑓 } ⊆ 𝒫 𝑂 ) → ( 𝑀 ‘ ∪ { 𝑒 , 𝑓 } ) ≤ Σ* 𝑦 ∈ { 𝑒 , 𝑓 } ( 𝑀 ‘ 𝑦 ) ) ) ) |
45 |
44 4
|
vtoclg |
⊢ ( { 𝑒 , 𝑓 } ∈ V → ( ( 𝜑 ∧ { 𝑒 , 𝑓 } ≼ ω ∧ { 𝑒 , 𝑓 } ⊆ 𝒫 𝑂 ) → ( 𝑀 ‘ ∪ { 𝑒 , 𝑓 } ) ≤ Σ* 𝑦 ∈ { 𝑒 , 𝑓 } ( 𝑀 ‘ 𝑦 ) ) ) |
46 |
36 45
|
ax-mp |
⊢ ( ( 𝜑 ∧ { 𝑒 , 𝑓 } ≼ ω ∧ { 𝑒 , 𝑓 } ⊆ 𝒫 𝑂 ) → ( 𝑀 ‘ ∪ { 𝑒 , 𝑓 } ) ≤ Σ* 𝑦 ∈ { 𝑒 , 𝑓 } ( 𝑀 ‘ 𝑦 ) ) |
47 |
11 33 35 46
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂 ) → ( 𝑀 ‘ ∪ { 𝑒 , 𝑓 } ) ≤ Σ* 𝑦 ∈ { 𝑒 , 𝑓 } ( 𝑀 ‘ 𝑦 ) ) |
48 |
31 47
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂 ) → ( 𝑀 ‘ ( 𝑒 ∪ 𝑓 ) ) ≤ Σ* 𝑦 ∈ { 𝑒 , 𝑓 } ( 𝑀 ‘ 𝑦 ) ) |
49 |
48
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂 ) ∧ 𝑒 ≠ 𝑓 ) → ( 𝑀 ‘ ( 𝑒 ∪ 𝑓 ) ) ≤ Σ* 𝑦 ∈ { 𝑒 , 𝑓 } ( 𝑀 ‘ 𝑦 ) ) |
50 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂 ) ∧ 𝑦 = 𝑒 ) → 𝑦 = 𝑒 ) |
51 |
50
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂 ) ∧ 𝑦 = 𝑒 ) → ( 𝑀 ‘ 𝑦 ) = ( 𝑀 ‘ 𝑒 ) ) |
52 |
51
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂 ) ∧ 𝑒 ≠ 𝑓 ) ∧ 𝑦 = 𝑒 ) → ( 𝑀 ‘ 𝑦 ) = ( 𝑀 ‘ 𝑒 ) ) |
53 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂 ) ∧ 𝑦 = 𝑓 ) → 𝑦 = 𝑓 ) |
54 |
53
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂 ) ∧ 𝑦 = 𝑓 ) → ( 𝑀 ‘ 𝑦 ) = ( 𝑀 ‘ 𝑓 ) ) |
55 |
54
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂 ) ∧ 𝑒 ≠ 𝑓 ) ∧ 𝑦 = 𝑓 ) → ( 𝑀 ‘ 𝑦 ) = ( 𝑀 ‘ 𝑓 ) ) |
56 |
13
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂 ) ∧ 𝑒 ≠ 𝑓 ) → 𝑒 ∈ 𝒫 𝑂 ) |
57 |
19
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂 ) ∧ 𝑒 ≠ 𝑓 ) → 𝑓 ∈ 𝒫 𝑂 ) |
58 |
14
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂 ) ∧ 𝑒 ≠ 𝑓 ) → ( 𝑀 ‘ 𝑒 ) ∈ ( 0 [,] +∞ ) ) |
59 |
20
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂 ) ∧ 𝑒 ≠ 𝑓 ) → ( 𝑀 ‘ 𝑓 ) ∈ ( 0 [,] +∞ ) ) |
60 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂 ) ∧ 𝑒 ≠ 𝑓 ) → 𝑒 ≠ 𝑓 ) |
61 |
52 55 56 57 58 59 60
|
esumpr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂 ) ∧ 𝑒 ≠ 𝑓 ) → Σ* 𝑦 ∈ { 𝑒 , 𝑓 } ( 𝑀 ‘ 𝑦 ) = ( ( 𝑀 ‘ 𝑒 ) +𝑒 ( 𝑀 ‘ 𝑓 ) ) ) |
62 |
49 61
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂 ) ∧ 𝑒 ≠ 𝑓 ) → ( 𝑀 ‘ ( 𝑒 ∪ 𝑓 ) ) ≤ ( ( 𝑀 ‘ 𝑒 ) +𝑒 ( 𝑀 ‘ 𝑓 ) ) ) |
63 |
28 62
|
pm2.61dane |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂 ) → ( 𝑀 ‘ ( 𝑒 ∪ 𝑓 ) ) ≤ ( ( 𝑀 ‘ 𝑒 ) +𝑒 ( 𝑀 ‘ 𝑓 ) ) ) |