Metamath Proof Explorer


Theorem fiunelcarsg

Description: The Caratheodory measurable sets are closed under finite union. (Contributed by Thierry Arnoux, 23-May-2020)

Ref Expression
Hypotheses carsgval.1 ( 𝜑𝑂𝑉 )
carsgval.2 ( 𝜑𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) )
carsgsiga.1 ( 𝜑 → ( 𝑀 ‘ ∅ ) = 0 )
carsgsiga.2 ( ( 𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂 ) → ( 𝑀 𝑥 ) ≤ Σ* 𝑦𝑥 ( 𝑀𝑦 ) )
fiunelcarsg.1 ( 𝜑𝐴 ∈ Fin )
fiunelcarsg.2 ( 𝜑𝐴 ⊆ ( toCaraSiga ‘ 𝑀 ) )
Assertion fiunelcarsg ( 𝜑 𝐴 ∈ ( toCaraSiga ‘ 𝑀 ) )

Proof

Step Hyp Ref Expression
1 carsgval.1 ( 𝜑𝑂𝑉 )
2 carsgval.2 ( 𝜑𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) )
3 carsgsiga.1 ( 𝜑 → ( 𝑀 ‘ ∅ ) = 0 )
4 carsgsiga.2 ( ( 𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂 ) → ( 𝑀 𝑥 ) ≤ Σ* 𝑦𝑥 ( 𝑀𝑦 ) )
5 fiunelcarsg.1 ( 𝜑𝐴 ∈ Fin )
6 fiunelcarsg.2 ( 𝜑𝐴 ⊆ ( toCaraSiga ‘ 𝑀 ) )
7 unieq ( 𝑎 = ∅ → 𝑎 = ∅ )
8 eqidd ( 𝑎 = ∅ → ( toCaraSiga ‘ 𝑀 ) = ( toCaraSiga ‘ 𝑀 ) )
9 7 8 eleq12d ( 𝑎 = ∅ → ( 𝑎 ∈ ( toCaraSiga ‘ 𝑀 ) ↔ ∅ ∈ ( toCaraSiga ‘ 𝑀 ) ) )
10 unieq ( 𝑎 = 𝑏 𝑎 = 𝑏 )
11 eqidd ( 𝑎 = 𝑏 → ( toCaraSiga ‘ 𝑀 ) = ( toCaraSiga ‘ 𝑀 ) )
12 10 11 eleq12d ( 𝑎 = 𝑏 → ( 𝑎 ∈ ( toCaraSiga ‘ 𝑀 ) ↔ 𝑏 ∈ ( toCaraSiga ‘ 𝑀 ) ) )
13 unieq ( 𝑎 = ( 𝑏 ∪ { 𝑥 } ) → 𝑎 = ( 𝑏 ∪ { 𝑥 } ) )
14 eqidd ( 𝑎 = ( 𝑏 ∪ { 𝑥 } ) → ( toCaraSiga ‘ 𝑀 ) = ( toCaraSiga ‘ 𝑀 ) )
15 13 14 eleq12d ( 𝑎 = ( 𝑏 ∪ { 𝑥 } ) → ( 𝑎 ∈ ( toCaraSiga ‘ 𝑀 ) ↔ ( 𝑏 ∪ { 𝑥 } ) ∈ ( toCaraSiga ‘ 𝑀 ) ) )
16 unieq ( 𝑎 = 𝐴 𝑎 = 𝐴 )
17 eqidd ( 𝑎 = 𝐴 → ( toCaraSiga ‘ 𝑀 ) = ( toCaraSiga ‘ 𝑀 ) )
18 16 17 eleq12d ( 𝑎 = 𝐴 → ( 𝑎 ∈ ( toCaraSiga ‘ 𝑀 ) ↔ 𝐴 ∈ ( toCaraSiga ‘ 𝑀 ) ) )
19 uni0 ∅ = ∅
20 difid ( 𝑂𝑂 ) = ∅
21 19 20 eqtr4i ∅ = ( 𝑂𝑂 )
22 1 2 3 baselcarsg ( 𝜑𝑂 ∈ ( toCaraSiga ‘ 𝑀 ) )
23 1 2 22 difelcarsg ( 𝜑 → ( 𝑂𝑂 ) ∈ ( toCaraSiga ‘ 𝑀 ) )
24 21 23 eqeltrid ( 𝜑 ∅ ∈ ( toCaraSiga ‘ 𝑀 ) )
25 uniun ( 𝑏 ∪ { 𝑥 } ) = ( 𝑏 { 𝑥 } )
26 vex 𝑥 ∈ V
27 26 unisn { 𝑥 } = 𝑥
28 27 uneq2i ( 𝑏 { 𝑥 } ) = ( 𝑏𝑥 )
29 25 28 eqtri ( 𝑏 ∪ { 𝑥 } ) = ( 𝑏𝑥 )
30 1 ad2antrr ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) ∧ 𝑏 ∈ ( toCaraSiga ‘ 𝑀 ) ) → 𝑂𝑉 )
31 2 ad2antrr ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) ∧ 𝑏 ∈ ( toCaraSiga ‘ 𝑀 ) ) → 𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) )
32 simpr ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) ∧ 𝑏 ∈ ( toCaraSiga ‘ 𝑀 ) ) → 𝑏 ∈ ( toCaraSiga ‘ 𝑀 ) )
33 simpll ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) ∧ 𝑏 ∈ ( toCaraSiga ‘ 𝑀 ) ) → 𝜑 )
34 1 2 3 4 carsgsigalem ( ( 𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂 ) → ( 𝑀 ‘ ( 𝑒𝑓 ) ) ≤ ( ( 𝑀𝑒 ) +𝑒 ( 𝑀𝑓 ) ) )
35 33 34 syl3an1 ( ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) ∧ 𝑏 ∈ ( toCaraSiga ‘ 𝑀 ) ) ∧ 𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂 ) → ( 𝑀 ‘ ( 𝑒𝑓 ) ) ≤ ( ( 𝑀𝑒 ) +𝑒 ( 𝑀𝑓 ) ) )
36 6 ad2antrr ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) ∧ 𝑏 ∈ ( toCaraSiga ‘ 𝑀 ) ) → 𝐴 ⊆ ( toCaraSiga ‘ 𝑀 ) )
37 simplrr ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) ∧ 𝑏 ∈ ( toCaraSiga ‘ 𝑀 ) ) → 𝑥 ∈ ( 𝐴𝑏 ) )
38 37 eldifad ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) ∧ 𝑏 ∈ ( toCaraSiga ‘ 𝑀 ) ) → 𝑥𝐴 )
39 36 38 sseldd ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) ∧ 𝑏 ∈ ( toCaraSiga ‘ 𝑀 ) ) → 𝑥 ∈ ( toCaraSiga ‘ 𝑀 ) )
40 30 31 32 35 39 unelcarsg ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) ∧ 𝑏 ∈ ( toCaraSiga ‘ 𝑀 ) ) → ( 𝑏𝑥 ) ∈ ( toCaraSiga ‘ 𝑀 ) )
41 29 40 eqeltrid ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) ∧ 𝑏 ∈ ( toCaraSiga ‘ 𝑀 ) ) → ( 𝑏 ∪ { 𝑥 } ) ∈ ( toCaraSiga ‘ 𝑀 ) )
42 41 ex ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) → ( 𝑏 ∈ ( toCaraSiga ‘ 𝑀 ) → ( 𝑏 ∪ { 𝑥 } ) ∈ ( toCaraSiga ‘ 𝑀 ) ) )
43 9 12 15 18 24 42 5 findcard2d ( 𝜑 𝐴 ∈ ( toCaraSiga ‘ 𝑀 ) )