| Step | Hyp | Ref | Expression | 
						
							| 1 |  | carsgval.1 | ⊢ ( 𝜑  →  𝑂  ∈  𝑉 ) | 
						
							| 2 |  | carsgval.2 | ⊢ ( 𝜑  →  𝑀 : 𝒫  𝑂 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 3 |  | carsgsiga.1 | ⊢ ( 𝜑  →  ( 𝑀 ‘ ∅ )  =  0 ) | 
						
							| 4 |  | carsgsiga.2 | ⊢ ( ( 𝜑  ∧  𝑥  ≼  ω  ∧  𝑥  ⊆  𝒫  𝑂 )  →  ( 𝑀 ‘ ∪  𝑥 )  ≤  Σ* 𝑦  ∈  𝑥 ( 𝑀 ‘ 𝑦 ) ) | 
						
							| 5 |  | fiunelcarsg.1 | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 6 |  | fiunelcarsg.2 | ⊢ ( 𝜑  →  𝐴  ⊆  ( toCaraSiga ‘ 𝑀 ) ) | 
						
							| 7 |  | unieq | ⊢ ( 𝑎  =  ∅  →  ∪  𝑎  =  ∪  ∅ ) | 
						
							| 8 |  | eqidd | ⊢ ( 𝑎  =  ∅  →  ( toCaraSiga ‘ 𝑀 )  =  ( toCaraSiga ‘ 𝑀 ) ) | 
						
							| 9 | 7 8 | eleq12d | ⊢ ( 𝑎  =  ∅  →  ( ∪  𝑎  ∈  ( toCaraSiga ‘ 𝑀 )  ↔  ∪  ∅  ∈  ( toCaraSiga ‘ 𝑀 ) ) ) | 
						
							| 10 |  | unieq | ⊢ ( 𝑎  =  𝑏  →  ∪  𝑎  =  ∪  𝑏 ) | 
						
							| 11 |  | eqidd | ⊢ ( 𝑎  =  𝑏  →  ( toCaraSiga ‘ 𝑀 )  =  ( toCaraSiga ‘ 𝑀 ) ) | 
						
							| 12 | 10 11 | eleq12d | ⊢ ( 𝑎  =  𝑏  →  ( ∪  𝑎  ∈  ( toCaraSiga ‘ 𝑀 )  ↔  ∪  𝑏  ∈  ( toCaraSiga ‘ 𝑀 ) ) ) | 
						
							| 13 |  | unieq | ⊢ ( 𝑎  =  ( 𝑏  ∪  { 𝑥 } )  →  ∪  𝑎  =  ∪  ( 𝑏  ∪  { 𝑥 } ) ) | 
						
							| 14 |  | eqidd | ⊢ ( 𝑎  =  ( 𝑏  ∪  { 𝑥 } )  →  ( toCaraSiga ‘ 𝑀 )  =  ( toCaraSiga ‘ 𝑀 ) ) | 
						
							| 15 | 13 14 | eleq12d | ⊢ ( 𝑎  =  ( 𝑏  ∪  { 𝑥 } )  →  ( ∪  𝑎  ∈  ( toCaraSiga ‘ 𝑀 )  ↔  ∪  ( 𝑏  ∪  { 𝑥 } )  ∈  ( toCaraSiga ‘ 𝑀 ) ) ) | 
						
							| 16 |  | unieq | ⊢ ( 𝑎  =  𝐴  →  ∪  𝑎  =  ∪  𝐴 ) | 
						
							| 17 |  | eqidd | ⊢ ( 𝑎  =  𝐴  →  ( toCaraSiga ‘ 𝑀 )  =  ( toCaraSiga ‘ 𝑀 ) ) | 
						
							| 18 | 16 17 | eleq12d | ⊢ ( 𝑎  =  𝐴  →  ( ∪  𝑎  ∈  ( toCaraSiga ‘ 𝑀 )  ↔  ∪  𝐴  ∈  ( toCaraSiga ‘ 𝑀 ) ) ) | 
						
							| 19 |  | uni0 | ⊢ ∪  ∅  =  ∅ | 
						
							| 20 |  | difid | ⊢ ( 𝑂  ∖  𝑂 )  =  ∅ | 
						
							| 21 | 19 20 | eqtr4i | ⊢ ∪  ∅  =  ( 𝑂  ∖  𝑂 ) | 
						
							| 22 | 1 2 3 | baselcarsg | ⊢ ( 𝜑  →  𝑂  ∈  ( toCaraSiga ‘ 𝑀 ) ) | 
						
							| 23 | 1 2 22 | difelcarsg | ⊢ ( 𝜑  →  ( 𝑂  ∖  𝑂 )  ∈  ( toCaraSiga ‘ 𝑀 ) ) | 
						
							| 24 | 21 23 | eqeltrid | ⊢ ( 𝜑  →  ∪  ∅  ∈  ( toCaraSiga ‘ 𝑀 ) ) | 
						
							| 25 |  | uniun | ⊢ ∪  ( 𝑏  ∪  { 𝑥 } )  =  ( ∪  𝑏  ∪  ∪  { 𝑥 } ) | 
						
							| 26 |  | unisnv | ⊢ ∪  { 𝑥 }  =  𝑥 | 
						
							| 27 | 26 | uneq2i | ⊢ ( ∪  𝑏  ∪  ∪  { 𝑥 } )  =  ( ∪  𝑏  ∪  𝑥 ) | 
						
							| 28 | 25 27 | eqtri | ⊢ ∪  ( 𝑏  ∪  { 𝑥 } )  =  ( ∪  𝑏  ∪  𝑥 ) | 
						
							| 29 | 1 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  ∧  ∪  𝑏  ∈  ( toCaraSiga ‘ 𝑀 ) )  →  𝑂  ∈  𝑉 ) | 
						
							| 30 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  ∧  ∪  𝑏  ∈  ( toCaraSiga ‘ 𝑀 ) )  →  𝑀 : 𝒫  𝑂 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 31 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  ∧  ∪  𝑏  ∈  ( toCaraSiga ‘ 𝑀 ) )  →  ∪  𝑏  ∈  ( toCaraSiga ‘ 𝑀 ) ) | 
						
							| 32 |  | simpll | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  ∧  ∪  𝑏  ∈  ( toCaraSiga ‘ 𝑀 ) )  →  𝜑 ) | 
						
							| 33 | 1 2 3 4 | carsgsigalem | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂  ∧  𝑓  ∈  𝒫  𝑂 )  →  ( 𝑀 ‘ ( 𝑒  ∪  𝑓 ) )  ≤  ( ( 𝑀 ‘ 𝑒 )  +𝑒  ( 𝑀 ‘ 𝑓 ) ) ) | 
						
							| 34 | 32 33 | syl3an1 | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  ∧  ∪  𝑏  ∈  ( toCaraSiga ‘ 𝑀 ) )  ∧  𝑒  ∈  𝒫  𝑂  ∧  𝑓  ∈  𝒫  𝑂 )  →  ( 𝑀 ‘ ( 𝑒  ∪  𝑓 ) )  ≤  ( ( 𝑀 ‘ 𝑒 )  +𝑒  ( 𝑀 ‘ 𝑓 ) ) ) | 
						
							| 35 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  ∧  ∪  𝑏  ∈  ( toCaraSiga ‘ 𝑀 ) )  →  𝐴  ⊆  ( toCaraSiga ‘ 𝑀 ) ) | 
						
							| 36 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  ∧  ∪  𝑏  ∈  ( toCaraSiga ‘ 𝑀 ) )  →  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) | 
						
							| 37 | 36 | eldifad | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  ∧  ∪  𝑏  ∈  ( toCaraSiga ‘ 𝑀 ) )  →  𝑥  ∈  𝐴 ) | 
						
							| 38 | 35 37 | sseldd | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  ∧  ∪  𝑏  ∈  ( toCaraSiga ‘ 𝑀 ) )  →  𝑥  ∈  ( toCaraSiga ‘ 𝑀 ) ) | 
						
							| 39 | 29 30 31 34 38 | unelcarsg | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  ∧  ∪  𝑏  ∈  ( toCaraSiga ‘ 𝑀 ) )  →  ( ∪  𝑏  ∪  𝑥 )  ∈  ( toCaraSiga ‘ 𝑀 ) ) | 
						
							| 40 | 28 39 | eqeltrid | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  ∧  ∪  𝑏  ∈  ( toCaraSiga ‘ 𝑀 ) )  →  ∪  ( 𝑏  ∪  { 𝑥 } )  ∈  ( toCaraSiga ‘ 𝑀 ) ) | 
						
							| 41 | 40 | ex | ⊢ ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  →  ( ∪  𝑏  ∈  ( toCaraSiga ‘ 𝑀 )  →  ∪  ( 𝑏  ∪  { 𝑥 } )  ∈  ( toCaraSiga ‘ 𝑀 ) ) ) | 
						
							| 42 | 9 12 15 18 24 41 5 | findcard2d | ⊢ ( 𝜑  →  ∪  𝐴  ∈  ( toCaraSiga ‘ 𝑀 ) ) |