Step |
Hyp |
Ref |
Expression |
1 |
|
carsgval.1 |
⊢ ( 𝜑 → 𝑂 ∈ 𝑉 ) |
2 |
|
carsgval.2 |
⊢ ( 𝜑 → 𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) ) |
3 |
|
carsgsiga.1 |
⊢ ( 𝜑 → ( 𝑀 ‘ ∅ ) = 0 ) |
4 |
|
carsgsiga.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂 ) → ( 𝑀 ‘ ∪ 𝑥 ) ≤ Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) |
5 |
|
fiunelcarsg.1 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
6 |
|
fiunelcarsg.2 |
⊢ ( 𝜑 → 𝐴 ⊆ ( toCaraSiga ‘ 𝑀 ) ) |
7 |
|
unieq |
⊢ ( 𝑎 = ∅ → ∪ 𝑎 = ∪ ∅ ) |
8 |
|
eqidd |
⊢ ( 𝑎 = ∅ → ( toCaraSiga ‘ 𝑀 ) = ( toCaraSiga ‘ 𝑀 ) ) |
9 |
7 8
|
eleq12d |
⊢ ( 𝑎 = ∅ → ( ∪ 𝑎 ∈ ( toCaraSiga ‘ 𝑀 ) ↔ ∪ ∅ ∈ ( toCaraSiga ‘ 𝑀 ) ) ) |
10 |
|
unieq |
⊢ ( 𝑎 = 𝑏 → ∪ 𝑎 = ∪ 𝑏 ) |
11 |
|
eqidd |
⊢ ( 𝑎 = 𝑏 → ( toCaraSiga ‘ 𝑀 ) = ( toCaraSiga ‘ 𝑀 ) ) |
12 |
10 11
|
eleq12d |
⊢ ( 𝑎 = 𝑏 → ( ∪ 𝑎 ∈ ( toCaraSiga ‘ 𝑀 ) ↔ ∪ 𝑏 ∈ ( toCaraSiga ‘ 𝑀 ) ) ) |
13 |
|
unieq |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑥 } ) → ∪ 𝑎 = ∪ ( 𝑏 ∪ { 𝑥 } ) ) |
14 |
|
eqidd |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑥 } ) → ( toCaraSiga ‘ 𝑀 ) = ( toCaraSiga ‘ 𝑀 ) ) |
15 |
13 14
|
eleq12d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑥 } ) → ( ∪ 𝑎 ∈ ( toCaraSiga ‘ 𝑀 ) ↔ ∪ ( 𝑏 ∪ { 𝑥 } ) ∈ ( toCaraSiga ‘ 𝑀 ) ) ) |
16 |
|
unieq |
⊢ ( 𝑎 = 𝐴 → ∪ 𝑎 = ∪ 𝐴 ) |
17 |
|
eqidd |
⊢ ( 𝑎 = 𝐴 → ( toCaraSiga ‘ 𝑀 ) = ( toCaraSiga ‘ 𝑀 ) ) |
18 |
16 17
|
eleq12d |
⊢ ( 𝑎 = 𝐴 → ( ∪ 𝑎 ∈ ( toCaraSiga ‘ 𝑀 ) ↔ ∪ 𝐴 ∈ ( toCaraSiga ‘ 𝑀 ) ) ) |
19 |
|
uni0 |
⊢ ∪ ∅ = ∅ |
20 |
|
difid |
⊢ ( 𝑂 ∖ 𝑂 ) = ∅ |
21 |
19 20
|
eqtr4i |
⊢ ∪ ∅ = ( 𝑂 ∖ 𝑂 ) |
22 |
1 2 3
|
baselcarsg |
⊢ ( 𝜑 → 𝑂 ∈ ( toCaraSiga ‘ 𝑀 ) ) |
23 |
1 2 22
|
difelcarsg |
⊢ ( 𝜑 → ( 𝑂 ∖ 𝑂 ) ∈ ( toCaraSiga ‘ 𝑀 ) ) |
24 |
21 23
|
eqeltrid |
⊢ ( 𝜑 → ∪ ∅ ∈ ( toCaraSiga ‘ 𝑀 ) ) |
25 |
|
uniun |
⊢ ∪ ( 𝑏 ∪ { 𝑥 } ) = ( ∪ 𝑏 ∪ ∪ { 𝑥 } ) |
26 |
|
vex |
⊢ 𝑥 ∈ V |
27 |
26
|
unisn |
⊢ ∪ { 𝑥 } = 𝑥 |
28 |
27
|
uneq2i |
⊢ ( ∪ 𝑏 ∪ ∪ { 𝑥 } ) = ( ∪ 𝑏 ∪ 𝑥 ) |
29 |
25 28
|
eqtri |
⊢ ∪ ( 𝑏 ∪ { 𝑥 } ) = ( ∪ 𝑏 ∪ 𝑥 ) |
30 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ ∪ 𝑏 ∈ ( toCaraSiga ‘ 𝑀 ) ) → 𝑂 ∈ 𝑉 ) |
31 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ ∪ 𝑏 ∈ ( toCaraSiga ‘ 𝑀 ) ) → 𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) ) |
32 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ ∪ 𝑏 ∈ ( toCaraSiga ‘ 𝑀 ) ) → ∪ 𝑏 ∈ ( toCaraSiga ‘ 𝑀 ) ) |
33 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ ∪ 𝑏 ∈ ( toCaraSiga ‘ 𝑀 ) ) → 𝜑 ) |
34 |
1 2 3 4
|
carsgsigalem |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂 ) → ( 𝑀 ‘ ( 𝑒 ∪ 𝑓 ) ) ≤ ( ( 𝑀 ‘ 𝑒 ) +𝑒 ( 𝑀 ‘ 𝑓 ) ) ) |
35 |
33 34
|
syl3an1 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ ∪ 𝑏 ∈ ( toCaraSiga ‘ 𝑀 ) ) ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂 ) → ( 𝑀 ‘ ( 𝑒 ∪ 𝑓 ) ) ≤ ( ( 𝑀 ‘ 𝑒 ) +𝑒 ( 𝑀 ‘ 𝑓 ) ) ) |
36 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ ∪ 𝑏 ∈ ( toCaraSiga ‘ 𝑀 ) ) → 𝐴 ⊆ ( toCaraSiga ‘ 𝑀 ) ) |
37 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ ∪ 𝑏 ∈ ( toCaraSiga ‘ 𝑀 ) ) → 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) |
38 |
37
|
eldifad |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ ∪ 𝑏 ∈ ( toCaraSiga ‘ 𝑀 ) ) → 𝑥 ∈ 𝐴 ) |
39 |
36 38
|
sseldd |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ ∪ 𝑏 ∈ ( toCaraSiga ‘ 𝑀 ) ) → 𝑥 ∈ ( toCaraSiga ‘ 𝑀 ) ) |
40 |
30 31 32 35 39
|
unelcarsg |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ ∪ 𝑏 ∈ ( toCaraSiga ‘ 𝑀 ) ) → ( ∪ 𝑏 ∪ 𝑥 ) ∈ ( toCaraSiga ‘ 𝑀 ) ) |
41 |
29 40
|
eqeltrid |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ ∪ 𝑏 ∈ ( toCaraSiga ‘ 𝑀 ) ) → ∪ ( 𝑏 ∪ { 𝑥 } ) ∈ ( toCaraSiga ‘ 𝑀 ) ) |
42 |
41
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → ( ∪ 𝑏 ∈ ( toCaraSiga ‘ 𝑀 ) → ∪ ( 𝑏 ∪ { 𝑥 } ) ∈ ( toCaraSiga ‘ 𝑀 ) ) ) |
43 |
9 12 15 18 24 42 5
|
findcard2d |
⊢ ( 𝜑 → ∪ 𝐴 ∈ ( toCaraSiga ‘ 𝑀 ) ) |