| Step | Hyp | Ref | Expression | 
						
							| 1 |  | carsgval.1 | ⊢ ( 𝜑  →  𝑂  ∈  𝑉 ) | 
						
							| 2 |  | carsgval.2 | ⊢ ( 𝜑  →  𝑀 : 𝒫  𝑂 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 3 |  | carsgsiga.1 | ⊢ ( 𝜑  →  ( 𝑀 ‘ ∅ )  =  0 ) | 
						
							| 4 |  | carsgsiga.2 | ⊢ ( ( 𝜑  ∧  𝑥  ≼  ω  ∧  𝑥  ⊆  𝒫  𝑂 )  →  ( 𝑀 ‘ ∪  𝑥 )  ≤  Σ* 𝑦  ∈  𝑥 ( 𝑀 ‘ 𝑦 ) ) | 
						
							| 5 |  | fiunelcarsg.1 | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 6 |  | fiunelcarsg.2 | ⊢ ( 𝜑  →  𝐴  ⊆  ( toCaraSiga ‘ 𝑀 ) ) | 
						
							| 7 |  | carsgclctunlem1.1 | ⊢ ( 𝜑  →  Disj  𝑦  ∈  𝐴 𝑦 ) | 
						
							| 8 |  | carsgclctunlem1.2 | ⊢ ( 𝜑  →  𝐸  ∈  𝒫  𝑂 ) | 
						
							| 9 |  | unieq | ⊢ ( 𝑎  =  ∅  →  ∪  𝑎  =  ∪  ∅ ) | 
						
							| 10 | 9 | ineq2d | ⊢ ( 𝑎  =  ∅  →  ( 𝐸  ∩  ∪  𝑎 )  =  ( 𝐸  ∩  ∪  ∅ ) ) | 
						
							| 11 | 10 | fveq2d | ⊢ ( 𝑎  =  ∅  →  ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝑎 ) )  =  ( 𝑀 ‘ ( 𝐸  ∩  ∪  ∅ ) ) ) | 
						
							| 12 |  | esumeq1 | ⊢ ( 𝑎  =  ∅  →  Σ* 𝑦  ∈  𝑎 ( 𝑀 ‘ ( 𝐸  ∩  𝑦 ) )  =  Σ* 𝑦  ∈  ∅ ( 𝑀 ‘ ( 𝐸  ∩  𝑦 ) ) ) | 
						
							| 13 | 11 12 | eqeq12d | ⊢ ( 𝑎  =  ∅  →  ( ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝑎 ) )  =  Σ* 𝑦  ∈  𝑎 ( 𝑀 ‘ ( 𝐸  ∩  𝑦 ) )  ↔  ( 𝑀 ‘ ( 𝐸  ∩  ∪  ∅ ) )  =  Σ* 𝑦  ∈  ∅ ( 𝑀 ‘ ( 𝐸  ∩  𝑦 ) ) ) ) | 
						
							| 14 |  | unieq | ⊢ ( 𝑎  =  𝑏  →  ∪  𝑎  =  ∪  𝑏 ) | 
						
							| 15 | 14 | ineq2d | ⊢ ( 𝑎  =  𝑏  →  ( 𝐸  ∩  ∪  𝑎 )  =  ( 𝐸  ∩  ∪  𝑏 ) ) | 
						
							| 16 | 15 | fveq2d | ⊢ ( 𝑎  =  𝑏  →  ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝑎 ) )  =  ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝑏 ) ) ) | 
						
							| 17 |  | esumeq1 | ⊢ ( 𝑎  =  𝑏  →  Σ* 𝑦  ∈  𝑎 ( 𝑀 ‘ ( 𝐸  ∩  𝑦 ) )  =  Σ* 𝑦  ∈  𝑏 ( 𝑀 ‘ ( 𝐸  ∩  𝑦 ) ) ) | 
						
							| 18 | 16 17 | eqeq12d | ⊢ ( 𝑎  =  𝑏  →  ( ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝑎 ) )  =  Σ* 𝑦  ∈  𝑎 ( 𝑀 ‘ ( 𝐸  ∩  𝑦 ) )  ↔  ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝑏 ) )  =  Σ* 𝑦  ∈  𝑏 ( 𝑀 ‘ ( 𝐸  ∩  𝑦 ) ) ) ) | 
						
							| 19 |  | unieq | ⊢ ( 𝑎  =  ( 𝑏  ∪  { 𝑥 } )  →  ∪  𝑎  =  ∪  ( 𝑏  ∪  { 𝑥 } ) ) | 
						
							| 20 | 19 | ineq2d | ⊢ ( 𝑎  =  ( 𝑏  ∪  { 𝑥 } )  →  ( 𝐸  ∩  ∪  𝑎 )  =  ( 𝐸  ∩  ∪  ( 𝑏  ∪  { 𝑥 } ) ) ) | 
						
							| 21 | 20 | fveq2d | ⊢ ( 𝑎  =  ( 𝑏  ∪  { 𝑥 } )  →  ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝑎 ) )  =  ( 𝑀 ‘ ( 𝐸  ∩  ∪  ( 𝑏  ∪  { 𝑥 } ) ) ) ) | 
						
							| 22 |  | esumeq1 | ⊢ ( 𝑎  =  ( 𝑏  ∪  { 𝑥 } )  →  Σ* 𝑦  ∈  𝑎 ( 𝑀 ‘ ( 𝐸  ∩  𝑦 ) )  =  Σ* 𝑦  ∈  ( 𝑏  ∪  { 𝑥 } ) ( 𝑀 ‘ ( 𝐸  ∩  𝑦 ) ) ) | 
						
							| 23 | 21 22 | eqeq12d | ⊢ ( 𝑎  =  ( 𝑏  ∪  { 𝑥 } )  →  ( ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝑎 ) )  =  Σ* 𝑦  ∈  𝑎 ( 𝑀 ‘ ( 𝐸  ∩  𝑦 ) )  ↔  ( 𝑀 ‘ ( 𝐸  ∩  ∪  ( 𝑏  ∪  { 𝑥 } ) ) )  =  Σ* 𝑦  ∈  ( 𝑏  ∪  { 𝑥 } ) ( 𝑀 ‘ ( 𝐸  ∩  𝑦 ) ) ) ) | 
						
							| 24 |  | unieq | ⊢ ( 𝑎  =  𝐴  →  ∪  𝑎  =  ∪  𝐴 ) | 
						
							| 25 | 24 | ineq2d | ⊢ ( 𝑎  =  𝐴  →  ( 𝐸  ∩  ∪  𝑎 )  =  ( 𝐸  ∩  ∪  𝐴 ) ) | 
						
							| 26 | 25 | fveq2d | ⊢ ( 𝑎  =  𝐴  →  ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝑎 ) )  =  ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝐴 ) ) ) | 
						
							| 27 |  | esumeq1 | ⊢ ( 𝑎  =  𝐴  →  Σ* 𝑦  ∈  𝑎 ( 𝑀 ‘ ( 𝐸  ∩  𝑦 ) )  =  Σ* 𝑦  ∈  𝐴 ( 𝑀 ‘ ( 𝐸  ∩  𝑦 ) ) ) | 
						
							| 28 | 26 27 | eqeq12d | ⊢ ( 𝑎  =  𝐴  →  ( ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝑎 ) )  =  Σ* 𝑦  ∈  𝑎 ( 𝑀 ‘ ( 𝐸  ∩  𝑦 ) )  ↔  ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝐴 ) )  =  Σ* 𝑦  ∈  𝐴 ( 𝑀 ‘ ( 𝐸  ∩  𝑦 ) ) ) ) | 
						
							| 29 |  | uni0 | ⊢ ∪  ∅  =  ∅ | 
						
							| 30 | 29 | ineq2i | ⊢ ( 𝐸  ∩  ∪  ∅ )  =  ( 𝐸  ∩  ∅ ) | 
						
							| 31 |  | in0 | ⊢ ( 𝐸  ∩  ∅ )  =  ∅ | 
						
							| 32 | 30 31 | eqtri | ⊢ ( 𝐸  ∩  ∪  ∅ )  =  ∅ | 
						
							| 33 | 32 | fveq2i | ⊢ ( 𝑀 ‘ ( 𝐸  ∩  ∪  ∅ ) )  =  ( 𝑀 ‘ ∅ ) | 
						
							| 34 |  | esumnul | ⊢ Σ* 𝑦  ∈  ∅ ( 𝑀 ‘ ( 𝐸  ∩  𝑦 ) )  =  0 | 
						
							| 35 | 3 33 34 | 3eqtr4g | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝐸  ∩  ∪  ∅ ) )  =  Σ* 𝑦  ∈  ∅ ( 𝑀 ‘ ( 𝐸  ∩  𝑦 ) ) ) | 
						
							| 36 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  ∧  ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝑏 ) )  =  Σ* 𝑦  ∈  𝑏 ( 𝑀 ‘ ( 𝐸  ∩  𝑦 ) ) )  →  ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝑏 ) )  =  Σ* 𝑦  ∈  𝑏 ( 𝑀 ‘ ( 𝐸  ∩  𝑦 ) ) ) | 
						
							| 37 | 36 | eqcomd | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  ∧  ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝑏 ) )  =  Σ* 𝑦  ∈  𝑏 ( 𝑀 ‘ ( 𝐸  ∩  𝑦 ) ) )  →  Σ* 𝑦  ∈  𝑏 ( 𝑀 ‘ ( 𝐸  ∩  𝑦 ) )  =  ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝑏 ) ) ) | 
						
							| 38 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  ∧  𝑦  =  𝑥 )  →  𝑦  =  𝑥 ) | 
						
							| 39 | 38 | ineq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  ∧  𝑦  =  𝑥 )  →  ( 𝐸  ∩  𝑦 )  =  ( 𝐸  ∩  𝑥 ) ) | 
						
							| 40 | 39 | fveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  ∧  𝑦  =  𝑥 )  →  ( 𝑀 ‘ ( 𝐸  ∩  𝑦 ) )  =  ( 𝑀 ‘ ( 𝐸  ∩  𝑥 ) ) ) | 
						
							| 41 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  →  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) | 
						
							| 42 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  →  𝑀 : 𝒫  𝑂 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 43 | 8 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  →  𝐸  ∈  𝒫  𝑂 ) | 
						
							| 44 | 43 | elpwincl1 | ⊢ ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  →  ( 𝐸  ∩  𝑥 )  ∈  𝒫  𝑂 ) | 
						
							| 45 | 42 44 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  →  ( 𝑀 ‘ ( 𝐸  ∩  𝑥 ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 46 | 40 41 45 | esumsn | ⊢ ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  →  Σ* 𝑦  ∈  { 𝑥 } ( 𝑀 ‘ ( 𝐸  ∩  𝑦 ) )  =  ( 𝑀 ‘ ( 𝐸  ∩  𝑥 ) ) ) | 
						
							| 47 | 46 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  ∧  ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝑏 ) )  =  Σ* 𝑦  ∈  𝑏 ( 𝑀 ‘ ( 𝐸  ∩  𝑦 ) ) )  →  Σ* 𝑦  ∈  { 𝑥 } ( 𝑀 ‘ ( 𝐸  ∩  𝑦 ) )  =  ( 𝑀 ‘ ( 𝐸  ∩  𝑥 ) ) ) | 
						
							| 48 | 37 47 | oveq12d | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  ∧  ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝑏 ) )  =  Σ* 𝑦  ∈  𝑏 ( 𝑀 ‘ ( 𝐸  ∩  𝑦 ) ) )  →  ( Σ* 𝑦  ∈  𝑏 ( 𝑀 ‘ ( 𝐸  ∩  𝑦 ) )  +𝑒  Σ* 𝑦  ∈  { 𝑥 } ( 𝑀 ‘ ( 𝐸  ∩  𝑦 ) ) )  =  ( ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝑏 ) )  +𝑒  ( 𝑀 ‘ ( 𝐸  ∩  𝑥 ) ) ) ) | 
						
							| 49 |  | nfv | ⊢ Ⅎ 𝑦 ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) ) | 
						
							| 50 |  | nfcv | ⊢ Ⅎ 𝑦 𝑏 | 
						
							| 51 |  | nfcv | ⊢ Ⅎ 𝑦 { 𝑥 } | 
						
							| 52 |  | vex | ⊢ 𝑏  ∈  V | 
						
							| 53 | 52 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  →  𝑏  ∈  V ) | 
						
							| 54 |  | vsnex | ⊢ { 𝑥 }  ∈  V | 
						
							| 55 | 54 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  →  { 𝑥 }  ∈  V ) | 
						
							| 56 | 41 | eldifbd | ⊢ ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  →  ¬  𝑥  ∈  𝑏 ) | 
						
							| 57 |  | disjsn | ⊢ ( ( 𝑏  ∩  { 𝑥 } )  =  ∅  ↔  ¬  𝑥  ∈  𝑏 ) | 
						
							| 58 | 56 57 | sylibr | ⊢ ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  →  ( 𝑏  ∩  { 𝑥 } )  =  ∅ ) | 
						
							| 59 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  ∧  𝑦  ∈  𝑏 )  →  𝑀 : 𝒫  𝑂 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 60 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  ∧  𝑦  ∈  𝑏 )  →  𝐸  ∈  𝒫  𝑂 ) | 
						
							| 61 | 60 | elpwincl1 | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  ∧  𝑦  ∈  𝑏 )  →  ( 𝐸  ∩  𝑦 )  ∈  𝒫  𝑂 ) | 
						
							| 62 | 59 61 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  ∧  𝑦  ∈  𝑏 )  →  ( 𝑀 ‘ ( 𝐸  ∩  𝑦 ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 63 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  ∧  𝑦  ∈  { 𝑥 } )  →  𝑀 : 𝒫  𝑂 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 64 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  ∧  𝑦  ∈  { 𝑥 } )  →  𝐸  ∈  𝒫  𝑂 ) | 
						
							| 65 | 64 | elpwincl1 | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  ∧  𝑦  ∈  { 𝑥 } )  →  ( 𝐸  ∩  𝑦 )  ∈  𝒫  𝑂 ) | 
						
							| 66 | 63 65 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  ∧  𝑦  ∈  { 𝑥 } )  →  ( 𝑀 ‘ ( 𝐸  ∩  𝑦 ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 67 | 49 50 51 53 55 58 62 66 | esumsplit | ⊢ ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  →  Σ* 𝑦  ∈  ( 𝑏  ∪  { 𝑥 } ) ( 𝑀 ‘ ( 𝐸  ∩  𝑦 ) )  =  ( Σ* 𝑦  ∈  𝑏 ( 𝑀 ‘ ( 𝐸  ∩  𝑦 ) )  +𝑒  Σ* 𝑦  ∈  { 𝑥 } ( 𝑀 ‘ ( 𝐸  ∩  𝑦 ) ) ) ) | 
						
							| 68 | 67 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  ∧  ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝑏 ) )  =  Σ* 𝑦  ∈  𝑏 ( 𝑀 ‘ ( 𝐸  ∩  𝑦 ) ) )  →  Σ* 𝑦  ∈  ( 𝑏  ∪  { 𝑥 } ) ( 𝑀 ‘ ( 𝐸  ∩  𝑦 ) )  =  ( Σ* 𝑦  ∈  𝑏 ( 𝑀 ‘ ( 𝐸  ∩  𝑦 ) )  +𝑒  Σ* 𝑦  ∈  { 𝑥 } ( 𝑀 ‘ ( 𝐸  ∩  𝑦 ) ) ) ) | 
						
							| 69 |  | uniun | ⊢ ∪  ( 𝑏  ∪  { 𝑥 } )  =  ( ∪  𝑏  ∪  ∪  { 𝑥 } ) | 
						
							| 70 |  | unisnv | ⊢ ∪  { 𝑥 }  =  𝑥 | 
						
							| 71 | 70 | uneq2i | ⊢ ( ∪  𝑏  ∪  ∪  { 𝑥 } )  =  ( ∪  𝑏  ∪  𝑥 ) | 
						
							| 72 | 69 71 | eqtri | ⊢ ∪  ( 𝑏  ∪  { 𝑥 } )  =  ( ∪  𝑏  ∪  𝑥 ) | 
						
							| 73 | 72 | ineq2i | ⊢ ( 𝐸  ∩  ∪  ( 𝑏  ∪  { 𝑥 } ) )  =  ( 𝐸  ∩  ( ∪  𝑏  ∪  𝑥 ) ) | 
						
							| 74 | 73 | fveq2i | ⊢ ( 𝑀 ‘ ( 𝐸  ∩  ∪  ( 𝑏  ∪  { 𝑥 } ) ) )  =  ( 𝑀 ‘ ( 𝐸  ∩  ( ∪  𝑏  ∪  𝑥 ) ) ) | 
						
							| 75 |  | inass | ⊢ ( ( 𝐸  ∩  ( ∪  𝑏  ∪  𝑥 ) )  ∩  ∪  𝑏 )  =  ( 𝐸  ∩  ( ( ∪  𝑏  ∪  𝑥 )  ∩  ∪  𝑏 ) ) | 
						
							| 76 |  | indir | ⊢ ( ( ∪  𝑏  ∪  𝑥 )  ∩  ∪  𝑏 )  =  ( ( ∪  𝑏  ∩  ∪  𝑏 )  ∪  ( 𝑥  ∩  ∪  𝑏 ) ) | 
						
							| 77 |  | inidm | ⊢ ( ∪  𝑏  ∩  ∪  𝑏 )  =  ∪  𝑏 | 
						
							| 78 | 77 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  →  ( ∪  𝑏  ∩  ∪  𝑏 )  =  ∪  𝑏 ) | 
						
							| 79 |  | incom | ⊢ ( ∪  𝑏  ∩  𝑥 )  =  ( 𝑥  ∩  ∪  𝑏 ) | 
						
							| 80 | 7 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  →  Disj  𝑦  ∈  𝐴 𝑦 ) | 
						
							| 81 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑏  ⊆  𝐴 )  →  𝑏  ⊆  𝐴 ) | 
						
							| 82 | 81 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  →  𝑏  ⊆  𝐴 ) | 
						
							| 83 | 80 82 41 | disjuniel | ⊢ ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  →  ( ∪  𝑏  ∩  𝑥 )  =  ∅ ) | 
						
							| 84 | 79 83 | eqtr3id | ⊢ ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  →  ( 𝑥  ∩  ∪  𝑏 )  =  ∅ ) | 
						
							| 85 | 78 84 | uneq12d | ⊢ ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  →  ( ( ∪  𝑏  ∩  ∪  𝑏 )  ∪  ( 𝑥  ∩  ∪  𝑏 ) )  =  ( ∪  𝑏  ∪  ∅ ) ) | 
						
							| 86 |  | un0 | ⊢ ( ∪  𝑏  ∪  ∅ )  =  ∪  𝑏 | 
						
							| 87 | 85 86 | eqtrdi | ⊢ ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  →  ( ( ∪  𝑏  ∩  ∪  𝑏 )  ∪  ( 𝑥  ∩  ∪  𝑏 ) )  =  ∪  𝑏 ) | 
						
							| 88 | 76 87 | eqtrid | ⊢ ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  →  ( ( ∪  𝑏  ∪  𝑥 )  ∩  ∪  𝑏 )  =  ∪  𝑏 ) | 
						
							| 89 | 88 | ineq2d | ⊢ ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  →  ( 𝐸  ∩  ( ( ∪  𝑏  ∪  𝑥 )  ∩  ∪  𝑏 ) )  =  ( 𝐸  ∩  ∪  𝑏 ) ) | 
						
							| 90 | 75 89 | eqtrid | ⊢ ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  →  ( ( 𝐸  ∩  ( ∪  𝑏  ∪  𝑥 ) )  ∩  ∪  𝑏 )  =  ( 𝐸  ∩  ∪  𝑏 ) ) | 
						
							| 91 | 90 | fveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  →  ( 𝑀 ‘ ( ( 𝐸  ∩  ( ∪  𝑏  ∪  𝑥 ) )  ∩  ∪  𝑏 ) )  =  ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝑏 ) ) ) | 
						
							| 92 |  | indif2 | ⊢ ( 𝐸  ∩  ( ( ∪  𝑏  ∪  𝑥 )  ∖  ∪  𝑏 ) )  =  ( ( 𝐸  ∩  ( ∪  𝑏  ∪  𝑥 ) )  ∖  ∪  𝑏 ) | 
						
							| 93 |  | uncom | ⊢ ( ∪  𝑏  ∪  𝑥 )  =  ( 𝑥  ∪  ∪  𝑏 ) | 
						
							| 94 | 93 | difeq1i | ⊢ ( ( ∪  𝑏  ∪  𝑥 )  ∖  ∪  𝑏 )  =  ( ( 𝑥  ∪  ∪  𝑏 )  ∖  ∪  𝑏 ) | 
						
							| 95 |  | difun2 | ⊢ ( ( 𝑥  ∪  ∪  𝑏 )  ∖  ∪  𝑏 )  =  ( 𝑥  ∖  ∪  𝑏 ) | 
						
							| 96 |  | disj3 | ⊢ ( ( 𝑥  ∩  ∪  𝑏 )  =  ∅  ↔  𝑥  =  ( 𝑥  ∖  ∪  𝑏 ) ) | 
						
							| 97 | 96 | biimpi | ⊢ ( ( 𝑥  ∩  ∪  𝑏 )  =  ∅  →  𝑥  =  ( 𝑥  ∖  ∪  𝑏 ) ) | 
						
							| 98 | 95 97 | eqtr4id | ⊢ ( ( 𝑥  ∩  ∪  𝑏 )  =  ∅  →  ( ( 𝑥  ∪  ∪  𝑏 )  ∖  ∪  𝑏 )  =  𝑥 ) | 
						
							| 99 | 94 98 | eqtrid | ⊢ ( ( 𝑥  ∩  ∪  𝑏 )  =  ∅  →  ( ( ∪  𝑏  ∪  𝑥 )  ∖  ∪  𝑏 )  =  𝑥 ) | 
						
							| 100 | 84 99 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  →  ( ( ∪  𝑏  ∪  𝑥 )  ∖  ∪  𝑏 )  =  𝑥 ) | 
						
							| 101 | 100 | ineq2d | ⊢ ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  →  ( 𝐸  ∩  ( ( ∪  𝑏  ∪  𝑥 )  ∖  ∪  𝑏 ) )  =  ( 𝐸  ∩  𝑥 ) ) | 
						
							| 102 | 92 101 | eqtr3id | ⊢ ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  →  ( ( 𝐸  ∩  ( ∪  𝑏  ∪  𝑥 ) )  ∖  ∪  𝑏 )  =  ( 𝐸  ∩  𝑥 ) ) | 
						
							| 103 | 102 | fveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  →  ( 𝑀 ‘ ( ( 𝐸  ∩  ( ∪  𝑏  ∪  𝑥 ) )  ∖  ∪  𝑏 ) )  =  ( 𝑀 ‘ ( 𝐸  ∩  𝑥 ) ) ) | 
						
							| 104 | 91 103 | oveq12d | ⊢ ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  →  ( ( 𝑀 ‘ ( ( 𝐸  ∩  ( ∪  𝑏  ∪  𝑥 ) )  ∩  ∪  𝑏 ) )  +𝑒  ( 𝑀 ‘ ( ( 𝐸  ∩  ( ∪  𝑏  ∪  𝑥 ) )  ∖  ∪  𝑏 ) ) )  =  ( ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝑏 ) )  +𝑒  ( 𝑀 ‘ ( 𝐸  ∩  𝑥 ) ) ) ) | 
						
							| 105 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑏  ⊆  𝐴 )  →  𝑂  ∈  𝑉 ) | 
						
							| 106 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑏  ⊆  𝐴 )  →  𝑀 : 𝒫  𝑂 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 107 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑏  ⊆  𝐴 )  →  ( 𝑀 ‘ ∅ )  =  0 ) | 
						
							| 108 | 4 | 3adant1r | ⊢ ( ( ( 𝜑  ∧  𝑏  ⊆  𝐴 )  ∧  𝑥  ≼  ω  ∧  𝑥  ⊆  𝒫  𝑂 )  →  ( 𝑀 ‘ ∪  𝑥 )  ≤  Σ* 𝑦  ∈  𝑥 ( 𝑀 ‘ 𝑦 ) ) | 
						
							| 109 |  | ssfi | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝑏  ⊆  𝐴 )  →  𝑏  ∈  Fin ) | 
						
							| 110 | 5 109 | sylan | ⊢ ( ( 𝜑  ∧  𝑏  ⊆  𝐴 )  →  𝑏  ∈  Fin ) | 
						
							| 111 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑏  ⊆  𝐴 )  →  𝐴  ⊆  ( toCaraSiga ‘ 𝑀 ) ) | 
						
							| 112 | 81 111 | sstrd | ⊢ ( ( 𝜑  ∧  𝑏  ⊆  𝐴 )  →  𝑏  ⊆  ( toCaraSiga ‘ 𝑀 ) ) | 
						
							| 113 | 105 106 107 108 110 112 | fiunelcarsg | ⊢ ( ( 𝜑  ∧  𝑏  ⊆  𝐴 )  →  ∪  𝑏  ∈  ( toCaraSiga ‘ 𝑀 ) ) | 
						
							| 114 | 1 2 | elcarsg | ⊢ ( 𝜑  →  ( ∪  𝑏  ∈  ( toCaraSiga ‘ 𝑀 )  ↔  ( ∪  𝑏  ⊆  𝑂  ∧  ∀ 𝑒  ∈  𝒫  𝑂 ( ( 𝑀 ‘ ( 𝑒  ∩  ∪  𝑏 ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  ∪  𝑏 ) ) )  =  ( 𝑀 ‘ 𝑒 ) ) ) ) | 
						
							| 115 | 114 | adantr | ⊢ ( ( 𝜑  ∧  𝑏  ⊆  𝐴 )  →  ( ∪  𝑏  ∈  ( toCaraSiga ‘ 𝑀 )  ↔  ( ∪  𝑏  ⊆  𝑂  ∧  ∀ 𝑒  ∈  𝒫  𝑂 ( ( 𝑀 ‘ ( 𝑒  ∩  ∪  𝑏 ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  ∪  𝑏 ) ) )  =  ( 𝑀 ‘ 𝑒 ) ) ) ) | 
						
							| 116 | 113 115 | mpbid | ⊢ ( ( 𝜑  ∧  𝑏  ⊆  𝐴 )  →  ( ∪  𝑏  ⊆  𝑂  ∧  ∀ 𝑒  ∈  𝒫  𝑂 ( ( 𝑀 ‘ ( 𝑒  ∩  ∪  𝑏 ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  ∪  𝑏 ) ) )  =  ( 𝑀 ‘ 𝑒 ) ) ) | 
						
							| 117 | 116 | simprd | ⊢ ( ( 𝜑  ∧  𝑏  ⊆  𝐴 )  →  ∀ 𝑒  ∈  𝒫  𝑂 ( ( 𝑀 ‘ ( 𝑒  ∩  ∪  𝑏 ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  ∪  𝑏 ) ) )  =  ( 𝑀 ‘ 𝑒 ) ) | 
						
							| 118 | 117 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  →  ∀ 𝑒  ∈  𝒫  𝑂 ( ( 𝑀 ‘ ( 𝑒  ∩  ∪  𝑏 ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  ∪  𝑏 ) ) )  =  ( 𝑀 ‘ 𝑒 ) ) | 
						
							| 119 | 43 | elpwincl1 | ⊢ ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  →  ( 𝐸  ∩  ( ∪  𝑏  ∪  𝑥 ) )  ∈  𝒫  𝑂 ) | 
						
							| 120 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  ∧  𝑒  =  ( 𝐸  ∩  ( ∪  𝑏  ∪  𝑥 ) ) )  →  𝑒  =  ( 𝐸  ∩  ( ∪  𝑏  ∪  𝑥 ) ) ) | 
						
							| 121 | 120 | ineq1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  ∧  𝑒  =  ( 𝐸  ∩  ( ∪  𝑏  ∪  𝑥 ) ) )  →  ( 𝑒  ∩  ∪  𝑏 )  =  ( ( 𝐸  ∩  ( ∪  𝑏  ∪  𝑥 ) )  ∩  ∪  𝑏 ) ) | 
						
							| 122 | 121 | fveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  ∧  𝑒  =  ( 𝐸  ∩  ( ∪  𝑏  ∪  𝑥 ) ) )  →  ( 𝑀 ‘ ( 𝑒  ∩  ∪  𝑏 ) )  =  ( 𝑀 ‘ ( ( 𝐸  ∩  ( ∪  𝑏  ∪  𝑥 ) )  ∩  ∪  𝑏 ) ) ) | 
						
							| 123 | 120 | difeq1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  ∧  𝑒  =  ( 𝐸  ∩  ( ∪  𝑏  ∪  𝑥 ) ) )  →  ( 𝑒  ∖  ∪  𝑏 )  =  ( ( 𝐸  ∩  ( ∪  𝑏  ∪  𝑥 ) )  ∖  ∪  𝑏 ) ) | 
						
							| 124 | 123 | fveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  ∧  𝑒  =  ( 𝐸  ∩  ( ∪  𝑏  ∪  𝑥 ) ) )  →  ( 𝑀 ‘ ( 𝑒  ∖  ∪  𝑏 ) )  =  ( 𝑀 ‘ ( ( 𝐸  ∩  ( ∪  𝑏  ∪  𝑥 ) )  ∖  ∪  𝑏 ) ) ) | 
						
							| 125 | 122 124 | oveq12d | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  ∧  𝑒  =  ( 𝐸  ∩  ( ∪  𝑏  ∪  𝑥 ) ) )  →  ( ( 𝑀 ‘ ( 𝑒  ∩  ∪  𝑏 ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  ∪  𝑏 ) ) )  =  ( ( 𝑀 ‘ ( ( 𝐸  ∩  ( ∪  𝑏  ∪  𝑥 ) )  ∩  ∪  𝑏 ) )  +𝑒  ( 𝑀 ‘ ( ( 𝐸  ∩  ( ∪  𝑏  ∪  𝑥 ) )  ∖  ∪  𝑏 ) ) ) ) | 
						
							| 126 | 120 | fveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  ∧  𝑒  =  ( 𝐸  ∩  ( ∪  𝑏  ∪  𝑥 ) ) )  →  ( 𝑀 ‘ 𝑒 )  =  ( 𝑀 ‘ ( 𝐸  ∩  ( ∪  𝑏  ∪  𝑥 ) ) ) ) | 
						
							| 127 | 125 126 | eqeq12d | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  ∧  𝑒  =  ( 𝐸  ∩  ( ∪  𝑏  ∪  𝑥 ) ) )  →  ( ( ( 𝑀 ‘ ( 𝑒  ∩  ∪  𝑏 ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  ∪  𝑏 ) ) )  =  ( 𝑀 ‘ 𝑒 )  ↔  ( ( 𝑀 ‘ ( ( 𝐸  ∩  ( ∪  𝑏  ∪  𝑥 ) )  ∩  ∪  𝑏 ) )  +𝑒  ( 𝑀 ‘ ( ( 𝐸  ∩  ( ∪  𝑏  ∪  𝑥 ) )  ∖  ∪  𝑏 ) ) )  =  ( 𝑀 ‘ ( 𝐸  ∩  ( ∪  𝑏  ∪  𝑥 ) ) ) ) ) | 
						
							| 128 | 119 127 | rspcdv | ⊢ ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  →  ( ∀ 𝑒  ∈  𝒫  𝑂 ( ( 𝑀 ‘ ( 𝑒  ∩  ∪  𝑏 ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  ∪  𝑏 ) ) )  =  ( 𝑀 ‘ 𝑒 )  →  ( ( 𝑀 ‘ ( ( 𝐸  ∩  ( ∪  𝑏  ∪  𝑥 ) )  ∩  ∪  𝑏 ) )  +𝑒  ( 𝑀 ‘ ( ( 𝐸  ∩  ( ∪  𝑏  ∪  𝑥 ) )  ∖  ∪  𝑏 ) ) )  =  ( 𝑀 ‘ ( 𝐸  ∩  ( ∪  𝑏  ∪  𝑥 ) ) ) ) ) | 
						
							| 129 | 118 128 | mpd | ⊢ ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  →  ( ( 𝑀 ‘ ( ( 𝐸  ∩  ( ∪  𝑏  ∪  𝑥 ) )  ∩  ∪  𝑏 ) )  +𝑒  ( 𝑀 ‘ ( ( 𝐸  ∩  ( ∪  𝑏  ∪  𝑥 ) )  ∖  ∪  𝑏 ) ) )  =  ( 𝑀 ‘ ( 𝐸  ∩  ( ∪  𝑏  ∪  𝑥 ) ) ) ) | 
						
							| 130 | 104 129 | eqtr3d | ⊢ ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  →  ( ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝑏 ) )  +𝑒  ( 𝑀 ‘ ( 𝐸  ∩  𝑥 ) ) )  =  ( 𝑀 ‘ ( 𝐸  ∩  ( ∪  𝑏  ∪  𝑥 ) ) ) ) | 
						
							| 131 | 130 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  ∧  ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝑏 ) )  =  Σ* 𝑦  ∈  𝑏 ( 𝑀 ‘ ( 𝐸  ∩  𝑦 ) ) )  →  ( ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝑏 ) )  +𝑒  ( 𝑀 ‘ ( 𝐸  ∩  𝑥 ) ) )  =  ( 𝑀 ‘ ( 𝐸  ∩  ( ∪  𝑏  ∪  𝑥 ) ) ) ) | 
						
							| 132 | 74 131 | eqtr4id | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  ∧  ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝑏 ) )  =  Σ* 𝑦  ∈  𝑏 ( 𝑀 ‘ ( 𝐸  ∩  𝑦 ) ) )  →  ( 𝑀 ‘ ( 𝐸  ∩  ∪  ( 𝑏  ∪  { 𝑥 } ) ) )  =  ( ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝑏 ) )  +𝑒  ( 𝑀 ‘ ( 𝐸  ∩  𝑥 ) ) ) ) | 
						
							| 133 | 48 68 132 | 3eqtr4rd | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  ∧  ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝑏 ) )  =  Σ* 𝑦  ∈  𝑏 ( 𝑀 ‘ ( 𝐸  ∩  𝑦 ) ) )  →  ( 𝑀 ‘ ( 𝐸  ∩  ∪  ( 𝑏  ∪  { 𝑥 } ) ) )  =  Σ* 𝑦  ∈  ( 𝑏  ∪  { 𝑥 } ) ( 𝑀 ‘ ( 𝐸  ∩  𝑦 ) ) ) | 
						
							| 134 | 133 | ex | ⊢ ( ( 𝜑  ∧  ( 𝑏  ⊆  𝐴  ∧  𝑥  ∈  ( 𝐴  ∖  𝑏 ) ) )  →  ( ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝑏 ) )  =  Σ* 𝑦  ∈  𝑏 ( 𝑀 ‘ ( 𝐸  ∩  𝑦 ) )  →  ( 𝑀 ‘ ( 𝐸  ∩  ∪  ( 𝑏  ∪  { 𝑥 } ) ) )  =  Σ* 𝑦  ∈  ( 𝑏  ∪  { 𝑥 } ) ( 𝑀 ‘ ( 𝐸  ∩  𝑦 ) ) ) ) | 
						
							| 135 | 13 18 23 28 35 134 5 | findcard2d | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝐴 ) )  =  Σ* 𝑦  ∈  𝐴 ( 𝑀 ‘ ( 𝐸  ∩  𝑦 ) ) ) |