Step |
Hyp |
Ref |
Expression |
1 |
|
carsgval.1 |
⊢ ( 𝜑 → 𝑂 ∈ 𝑉 ) |
2 |
|
carsgval.2 |
⊢ ( 𝜑 → 𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) ) |
3 |
|
carsgsiga.1 |
⊢ ( 𝜑 → ( 𝑀 ‘ ∅ ) = 0 ) |
4 |
|
carsgsiga.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂 ) → ( 𝑀 ‘ ∪ 𝑥 ) ≤ Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) |
5 |
|
fiunelcarsg.1 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
6 |
|
fiunelcarsg.2 |
⊢ ( 𝜑 → 𝐴 ⊆ ( toCaraSiga ‘ 𝑀 ) ) |
7 |
|
carsgclctunlem1.1 |
⊢ ( 𝜑 → Disj 𝑦 ∈ 𝐴 𝑦 ) |
8 |
|
carsgclctunlem1.2 |
⊢ ( 𝜑 → 𝐸 ∈ 𝒫 𝑂 ) |
9 |
|
unieq |
⊢ ( 𝑎 = ∅ → ∪ 𝑎 = ∪ ∅ ) |
10 |
9
|
ineq2d |
⊢ ( 𝑎 = ∅ → ( 𝐸 ∩ ∪ 𝑎 ) = ( 𝐸 ∩ ∪ ∅ ) ) |
11 |
10
|
fveq2d |
⊢ ( 𝑎 = ∅ → ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑎 ) ) = ( 𝑀 ‘ ( 𝐸 ∩ ∪ ∅ ) ) ) |
12 |
|
esumeq1 |
⊢ ( 𝑎 = ∅ → Σ* 𝑦 ∈ 𝑎 ( 𝑀 ‘ ( 𝐸 ∩ 𝑦 ) ) = Σ* 𝑦 ∈ ∅ ( 𝑀 ‘ ( 𝐸 ∩ 𝑦 ) ) ) |
13 |
11 12
|
eqeq12d |
⊢ ( 𝑎 = ∅ → ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑎 ) ) = Σ* 𝑦 ∈ 𝑎 ( 𝑀 ‘ ( 𝐸 ∩ 𝑦 ) ) ↔ ( 𝑀 ‘ ( 𝐸 ∩ ∪ ∅ ) ) = Σ* 𝑦 ∈ ∅ ( 𝑀 ‘ ( 𝐸 ∩ 𝑦 ) ) ) ) |
14 |
|
unieq |
⊢ ( 𝑎 = 𝑏 → ∪ 𝑎 = ∪ 𝑏 ) |
15 |
14
|
ineq2d |
⊢ ( 𝑎 = 𝑏 → ( 𝐸 ∩ ∪ 𝑎 ) = ( 𝐸 ∩ ∪ 𝑏 ) ) |
16 |
15
|
fveq2d |
⊢ ( 𝑎 = 𝑏 → ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑎 ) ) = ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑏 ) ) ) |
17 |
|
esumeq1 |
⊢ ( 𝑎 = 𝑏 → Σ* 𝑦 ∈ 𝑎 ( 𝑀 ‘ ( 𝐸 ∩ 𝑦 ) ) = Σ* 𝑦 ∈ 𝑏 ( 𝑀 ‘ ( 𝐸 ∩ 𝑦 ) ) ) |
18 |
16 17
|
eqeq12d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑎 ) ) = Σ* 𝑦 ∈ 𝑎 ( 𝑀 ‘ ( 𝐸 ∩ 𝑦 ) ) ↔ ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑏 ) ) = Σ* 𝑦 ∈ 𝑏 ( 𝑀 ‘ ( 𝐸 ∩ 𝑦 ) ) ) ) |
19 |
|
unieq |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑥 } ) → ∪ 𝑎 = ∪ ( 𝑏 ∪ { 𝑥 } ) ) |
20 |
19
|
ineq2d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑥 } ) → ( 𝐸 ∩ ∪ 𝑎 ) = ( 𝐸 ∩ ∪ ( 𝑏 ∪ { 𝑥 } ) ) ) |
21 |
20
|
fveq2d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑥 } ) → ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑎 ) ) = ( 𝑀 ‘ ( 𝐸 ∩ ∪ ( 𝑏 ∪ { 𝑥 } ) ) ) ) |
22 |
|
esumeq1 |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑥 } ) → Σ* 𝑦 ∈ 𝑎 ( 𝑀 ‘ ( 𝐸 ∩ 𝑦 ) ) = Σ* 𝑦 ∈ ( 𝑏 ∪ { 𝑥 } ) ( 𝑀 ‘ ( 𝐸 ∩ 𝑦 ) ) ) |
23 |
21 22
|
eqeq12d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑥 } ) → ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑎 ) ) = Σ* 𝑦 ∈ 𝑎 ( 𝑀 ‘ ( 𝐸 ∩ 𝑦 ) ) ↔ ( 𝑀 ‘ ( 𝐸 ∩ ∪ ( 𝑏 ∪ { 𝑥 } ) ) ) = Σ* 𝑦 ∈ ( 𝑏 ∪ { 𝑥 } ) ( 𝑀 ‘ ( 𝐸 ∩ 𝑦 ) ) ) ) |
24 |
|
unieq |
⊢ ( 𝑎 = 𝐴 → ∪ 𝑎 = ∪ 𝐴 ) |
25 |
24
|
ineq2d |
⊢ ( 𝑎 = 𝐴 → ( 𝐸 ∩ ∪ 𝑎 ) = ( 𝐸 ∩ ∪ 𝐴 ) ) |
26 |
25
|
fveq2d |
⊢ ( 𝑎 = 𝐴 → ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑎 ) ) = ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝐴 ) ) ) |
27 |
|
esumeq1 |
⊢ ( 𝑎 = 𝐴 → Σ* 𝑦 ∈ 𝑎 ( 𝑀 ‘ ( 𝐸 ∩ 𝑦 ) ) = Σ* 𝑦 ∈ 𝐴 ( 𝑀 ‘ ( 𝐸 ∩ 𝑦 ) ) ) |
28 |
26 27
|
eqeq12d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑎 ) ) = Σ* 𝑦 ∈ 𝑎 ( 𝑀 ‘ ( 𝐸 ∩ 𝑦 ) ) ↔ ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝐴 ) ) = Σ* 𝑦 ∈ 𝐴 ( 𝑀 ‘ ( 𝐸 ∩ 𝑦 ) ) ) ) |
29 |
|
uni0 |
⊢ ∪ ∅ = ∅ |
30 |
29
|
ineq2i |
⊢ ( 𝐸 ∩ ∪ ∅ ) = ( 𝐸 ∩ ∅ ) |
31 |
|
in0 |
⊢ ( 𝐸 ∩ ∅ ) = ∅ |
32 |
30 31
|
eqtri |
⊢ ( 𝐸 ∩ ∪ ∅ ) = ∅ |
33 |
32
|
fveq2i |
⊢ ( 𝑀 ‘ ( 𝐸 ∩ ∪ ∅ ) ) = ( 𝑀 ‘ ∅ ) |
34 |
|
esumnul |
⊢ Σ* 𝑦 ∈ ∅ ( 𝑀 ‘ ( 𝐸 ∩ 𝑦 ) ) = 0 |
35 |
3 33 34
|
3eqtr4g |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐸 ∩ ∪ ∅ ) ) = Σ* 𝑦 ∈ ∅ ( 𝑀 ‘ ( 𝐸 ∩ 𝑦 ) ) ) |
36 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑏 ) ) = Σ* 𝑦 ∈ 𝑏 ( 𝑀 ‘ ( 𝐸 ∩ 𝑦 ) ) ) → ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑏 ) ) = Σ* 𝑦 ∈ 𝑏 ( 𝑀 ‘ ( 𝐸 ∩ 𝑦 ) ) ) |
37 |
36
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑏 ) ) = Σ* 𝑦 ∈ 𝑏 ( 𝑀 ‘ ( 𝐸 ∩ 𝑦 ) ) ) → Σ* 𝑦 ∈ 𝑏 ( 𝑀 ‘ ( 𝐸 ∩ 𝑦 ) ) = ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑏 ) ) ) |
38 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ 𝑦 = 𝑥 ) → 𝑦 = 𝑥 ) |
39 |
38
|
ineq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ 𝑦 = 𝑥 ) → ( 𝐸 ∩ 𝑦 ) = ( 𝐸 ∩ 𝑥 ) ) |
40 |
39
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ 𝑦 = 𝑥 ) → ( 𝑀 ‘ ( 𝐸 ∩ 𝑦 ) ) = ( 𝑀 ‘ ( 𝐸 ∩ 𝑥 ) ) ) |
41 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) |
42 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → 𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) ) |
43 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → 𝐸 ∈ 𝒫 𝑂 ) |
44 |
43
|
elpwincl1 |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → ( 𝐸 ∩ 𝑥 ) ∈ 𝒫 𝑂 ) |
45 |
42 44
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → ( 𝑀 ‘ ( 𝐸 ∩ 𝑥 ) ) ∈ ( 0 [,] +∞ ) ) |
46 |
40 41 45
|
esumsn |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → Σ* 𝑦 ∈ { 𝑥 } ( 𝑀 ‘ ( 𝐸 ∩ 𝑦 ) ) = ( 𝑀 ‘ ( 𝐸 ∩ 𝑥 ) ) ) |
47 |
46
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑏 ) ) = Σ* 𝑦 ∈ 𝑏 ( 𝑀 ‘ ( 𝐸 ∩ 𝑦 ) ) ) → Σ* 𝑦 ∈ { 𝑥 } ( 𝑀 ‘ ( 𝐸 ∩ 𝑦 ) ) = ( 𝑀 ‘ ( 𝐸 ∩ 𝑥 ) ) ) |
48 |
37 47
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑏 ) ) = Σ* 𝑦 ∈ 𝑏 ( 𝑀 ‘ ( 𝐸 ∩ 𝑦 ) ) ) → ( Σ* 𝑦 ∈ 𝑏 ( 𝑀 ‘ ( 𝐸 ∩ 𝑦 ) ) +𝑒 Σ* 𝑦 ∈ { 𝑥 } ( 𝑀 ‘ ( 𝐸 ∩ 𝑦 ) ) ) = ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑏 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∩ 𝑥 ) ) ) ) |
49 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) |
50 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑏 |
51 |
|
nfcv |
⊢ Ⅎ 𝑦 { 𝑥 } |
52 |
|
vex |
⊢ 𝑏 ∈ V |
53 |
52
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → 𝑏 ∈ V ) |
54 |
|
snex |
⊢ { 𝑥 } ∈ V |
55 |
54
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → { 𝑥 } ∈ V ) |
56 |
41
|
eldifbd |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → ¬ 𝑥 ∈ 𝑏 ) |
57 |
|
disjsn |
⊢ ( ( 𝑏 ∩ { 𝑥 } ) = ∅ ↔ ¬ 𝑥 ∈ 𝑏 ) |
58 |
56 57
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → ( 𝑏 ∩ { 𝑥 } ) = ∅ ) |
59 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ 𝑦 ∈ 𝑏 ) → 𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) ) |
60 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ 𝑦 ∈ 𝑏 ) → 𝐸 ∈ 𝒫 𝑂 ) |
61 |
60
|
elpwincl1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ 𝑦 ∈ 𝑏 ) → ( 𝐸 ∩ 𝑦 ) ∈ 𝒫 𝑂 ) |
62 |
59 61
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ 𝑦 ∈ 𝑏 ) → ( 𝑀 ‘ ( 𝐸 ∩ 𝑦 ) ) ∈ ( 0 [,] +∞ ) ) |
63 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ 𝑦 ∈ { 𝑥 } ) → 𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) ) |
64 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ 𝑦 ∈ { 𝑥 } ) → 𝐸 ∈ 𝒫 𝑂 ) |
65 |
64
|
elpwincl1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ 𝑦 ∈ { 𝑥 } ) → ( 𝐸 ∩ 𝑦 ) ∈ 𝒫 𝑂 ) |
66 |
63 65
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ 𝑦 ∈ { 𝑥 } ) → ( 𝑀 ‘ ( 𝐸 ∩ 𝑦 ) ) ∈ ( 0 [,] +∞ ) ) |
67 |
49 50 51 53 55 58 62 66
|
esumsplit |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → Σ* 𝑦 ∈ ( 𝑏 ∪ { 𝑥 } ) ( 𝑀 ‘ ( 𝐸 ∩ 𝑦 ) ) = ( Σ* 𝑦 ∈ 𝑏 ( 𝑀 ‘ ( 𝐸 ∩ 𝑦 ) ) +𝑒 Σ* 𝑦 ∈ { 𝑥 } ( 𝑀 ‘ ( 𝐸 ∩ 𝑦 ) ) ) ) |
68 |
67
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑏 ) ) = Σ* 𝑦 ∈ 𝑏 ( 𝑀 ‘ ( 𝐸 ∩ 𝑦 ) ) ) → Σ* 𝑦 ∈ ( 𝑏 ∪ { 𝑥 } ) ( 𝑀 ‘ ( 𝐸 ∩ 𝑦 ) ) = ( Σ* 𝑦 ∈ 𝑏 ( 𝑀 ‘ ( 𝐸 ∩ 𝑦 ) ) +𝑒 Σ* 𝑦 ∈ { 𝑥 } ( 𝑀 ‘ ( 𝐸 ∩ 𝑦 ) ) ) ) |
69 |
|
uniun |
⊢ ∪ ( 𝑏 ∪ { 𝑥 } ) = ( ∪ 𝑏 ∪ ∪ { 𝑥 } ) |
70 |
|
vex |
⊢ 𝑥 ∈ V |
71 |
70
|
unisn |
⊢ ∪ { 𝑥 } = 𝑥 |
72 |
71
|
uneq2i |
⊢ ( ∪ 𝑏 ∪ ∪ { 𝑥 } ) = ( ∪ 𝑏 ∪ 𝑥 ) |
73 |
69 72
|
eqtri |
⊢ ∪ ( 𝑏 ∪ { 𝑥 } ) = ( ∪ 𝑏 ∪ 𝑥 ) |
74 |
73
|
ineq2i |
⊢ ( 𝐸 ∩ ∪ ( 𝑏 ∪ { 𝑥 } ) ) = ( 𝐸 ∩ ( ∪ 𝑏 ∪ 𝑥 ) ) |
75 |
74
|
fveq2i |
⊢ ( 𝑀 ‘ ( 𝐸 ∩ ∪ ( 𝑏 ∪ { 𝑥 } ) ) ) = ( 𝑀 ‘ ( 𝐸 ∩ ( ∪ 𝑏 ∪ 𝑥 ) ) ) |
76 |
|
inass |
⊢ ( ( 𝐸 ∩ ( ∪ 𝑏 ∪ 𝑥 ) ) ∩ ∪ 𝑏 ) = ( 𝐸 ∩ ( ( ∪ 𝑏 ∪ 𝑥 ) ∩ ∪ 𝑏 ) ) |
77 |
|
indir |
⊢ ( ( ∪ 𝑏 ∪ 𝑥 ) ∩ ∪ 𝑏 ) = ( ( ∪ 𝑏 ∩ ∪ 𝑏 ) ∪ ( 𝑥 ∩ ∪ 𝑏 ) ) |
78 |
|
inidm |
⊢ ( ∪ 𝑏 ∩ ∪ 𝑏 ) = ∪ 𝑏 |
79 |
78
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → ( ∪ 𝑏 ∩ ∪ 𝑏 ) = ∪ 𝑏 ) |
80 |
|
incom |
⊢ ( ∪ 𝑏 ∩ 𝑥 ) = ( 𝑥 ∩ ∪ 𝑏 ) |
81 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → Disj 𝑦 ∈ 𝐴 𝑦 ) |
82 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) → 𝑏 ⊆ 𝐴 ) |
83 |
82
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → 𝑏 ⊆ 𝐴 ) |
84 |
81 83 41
|
disjuniel |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → ( ∪ 𝑏 ∩ 𝑥 ) = ∅ ) |
85 |
80 84
|
eqtr3id |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → ( 𝑥 ∩ ∪ 𝑏 ) = ∅ ) |
86 |
79 85
|
uneq12d |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → ( ( ∪ 𝑏 ∩ ∪ 𝑏 ) ∪ ( 𝑥 ∩ ∪ 𝑏 ) ) = ( ∪ 𝑏 ∪ ∅ ) ) |
87 |
|
un0 |
⊢ ( ∪ 𝑏 ∪ ∅ ) = ∪ 𝑏 |
88 |
86 87
|
eqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → ( ( ∪ 𝑏 ∩ ∪ 𝑏 ) ∪ ( 𝑥 ∩ ∪ 𝑏 ) ) = ∪ 𝑏 ) |
89 |
77 88
|
syl5eq |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → ( ( ∪ 𝑏 ∪ 𝑥 ) ∩ ∪ 𝑏 ) = ∪ 𝑏 ) |
90 |
89
|
ineq2d |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → ( 𝐸 ∩ ( ( ∪ 𝑏 ∪ 𝑥 ) ∩ ∪ 𝑏 ) ) = ( 𝐸 ∩ ∪ 𝑏 ) ) |
91 |
76 90
|
syl5eq |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → ( ( 𝐸 ∩ ( ∪ 𝑏 ∪ 𝑥 ) ) ∩ ∪ 𝑏 ) = ( 𝐸 ∩ ∪ 𝑏 ) ) |
92 |
91
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → ( 𝑀 ‘ ( ( 𝐸 ∩ ( ∪ 𝑏 ∪ 𝑥 ) ) ∩ ∪ 𝑏 ) ) = ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑏 ) ) ) |
93 |
|
indif2 |
⊢ ( 𝐸 ∩ ( ( ∪ 𝑏 ∪ 𝑥 ) ∖ ∪ 𝑏 ) ) = ( ( 𝐸 ∩ ( ∪ 𝑏 ∪ 𝑥 ) ) ∖ ∪ 𝑏 ) |
94 |
|
uncom |
⊢ ( ∪ 𝑏 ∪ 𝑥 ) = ( 𝑥 ∪ ∪ 𝑏 ) |
95 |
94
|
difeq1i |
⊢ ( ( ∪ 𝑏 ∪ 𝑥 ) ∖ ∪ 𝑏 ) = ( ( 𝑥 ∪ ∪ 𝑏 ) ∖ ∪ 𝑏 ) |
96 |
|
difun2 |
⊢ ( ( 𝑥 ∪ ∪ 𝑏 ) ∖ ∪ 𝑏 ) = ( 𝑥 ∖ ∪ 𝑏 ) |
97 |
|
disj3 |
⊢ ( ( 𝑥 ∩ ∪ 𝑏 ) = ∅ ↔ 𝑥 = ( 𝑥 ∖ ∪ 𝑏 ) ) |
98 |
97
|
biimpi |
⊢ ( ( 𝑥 ∩ ∪ 𝑏 ) = ∅ → 𝑥 = ( 𝑥 ∖ ∪ 𝑏 ) ) |
99 |
96 98
|
eqtr4id |
⊢ ( ( 𝑥 ∩ ∪ 𝑏 ) = ∅ → ( ( 𝑥 ∪ ∪ 𝑏 ) ∖ ∪ 𝑏 ) = 𝑥 ) |
100 |
95 99
|
syl5eq |
⊢ ( ( 𝑥 ∩ ∪ 𝑏 ) = ∅ → ( ( ∪ 𝑏 ∪ 𝑥 ) ∖ ∪ 𝑏 ) = 𝑥 ) |
101 |
85 100
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → ( ( ∪ 𝑏 ∪ 𝑥 ) ∖ ∪ 𝑏 ) = 𝑥 ) |
102 |
101
|
ineq2d |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → ( 𝐸 ∩ ( ( ∪ 𝑏 ∪ 𝑥 ) ∖ ∪ 𝑏 ) ) = ( 𝐸 ∩ 𝑥 ) ) |
103 |
93 102
|
eqtr3id |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → ( ( 𝐸 ∩ ( ∪ 𝑏 ∪ 𝑥 ) ) ∖ ∪ 𝑏 ) = ( 𝐸 ∩ 𝑥 ) ) |
104 |
103
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → ( 𝑀 ‘ ( ( 𝐸 ∩ ( ∪ 𝑏 ∪ 𝑥 ) ) ∖ ∪ 𝑏 ) ) = ( 𝑀 ‘ ( 𝐸 ∩ 𝑥 ) ) ) |
105 |
92 104
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → ( ( 𝑀 ‘ ( ( 𝐸 ∩ ( ∪ 𝑏 ∪ 𝑥 ) ) ∩ ∪ 𝑏 ) ) +𝑒 ( 𝑀 ‘ ( ( 𝐸 ∩ ( ∪ 𝑏 ∪ 𝑥 ) ) ∖ ∪ 𝑏 ) ) ) = ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑏 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∩ 𝑥 ) ) ) ) |
106 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) → 𝑂 ∈ 𝑉 ) |
107 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) → 𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) ) |
108 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) → ( 𝑀 ‘ ∅ ) = 0 ) |
109 |
4
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂 ) → ( 𝑀 ‘ ∪ 𝑥 ) ≤ Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) |
110 |
|
ssfi |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝑏 ⊆ 𝐴 ) → 𝑏 ∈ Fin ) |
111 |
5 110
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) → 𝑏 ∈ Fin ) |
112 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) → 𝐴 ⊆ ( toCaraSiga ‘ 𝑀 ) ) |
113 |
82 112
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) → 𝑏 ⊆ ( toCaraSiga ‘ 𝑀 ) ) |
114 |
106 107 108 109 111 113
|
fiunelcarsg |
⊢ ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) → ∪ 𝑏 ∈ ( toCaraSiga ‘ 𝑀 ) ) |
115 |
1 2
|
elcarsg |
⊢ ( 𝜑 → ( ∪ 𝑏 ∈ ( toCaraSiga ‘ 𝑀 ) ↔ ( ∪ 𝑏 ⊆ 𝑂 ∧ ∀ 𝑒 ∈ 𝒫 𝑂 ( ( 𝑀 ‘ ( 𝑒 ∩ ∪ 𝑏 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ ∪ 𝑏 ) ) ) = ( 𝑀 ‘ 𝑒 ) ) ) ) |
116 |
115
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) → ( ∪ 𝑏 ∈ ( toCaraSiga ‘ 𝑀 ) ↔ ( ∪ 𝑏 ⊆ 𝑂 ∧ ∀ 𝑒 ∈ 𝒫 𝑂 ( ( 𝑀 ‘ ( 𝑒 ∩ ∪ 𝑏 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ ∪ 𝑏 ) ) ) = ( 𝑀 ‘ 𝑒 ) ) ) ) |
117 |
114 116
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) → ( ∪ 𝑏 ⊆ 𝑂 ∧ ∀ 𝑒 ∈ 𝒫 𝑂 ( ( 𝑀 ‘ ( 𝑒 ∩ ∪ 𝑏 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ ∪ 𝑏 ) ) ) = ( 𝑀 ‘ 𝑒 ) ) ) |
118 |
117
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) → ∀ 𝑒 ∈ 𝒫 𝑂 ( ( 𝑀 ‘ ( 𝑒 ∩ ∪ 𝑏 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ ∪ 𝑏 ) ) ) = ( 𝑀 ‘ 𝑒 ) ) |
119 |
118
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → ∀ 𝑒 ∈ 𝒫 𝑂 ( ( 𝑀 ‘ ( 𝑒 ∩ ∪ 𝑏 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ ∪ 𝑏 ) ) ) = ( 𝑀 ‘ 𝑒 ) ) |
120 |
43
|
elpwincl1 |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → ( 𝐸 ∩ ( ∪ 𝑏 ∪ 𝑥 ) ) ∈ 𝒫 𝑂 ) |
121 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ 𝑒 = ( 𝐸 ∩ ( ∪ 𝑏 ∪ 𝑥 ) ) ) → 𝑒 = ( 𝐸 ∩ ( ∪ 𝑏 ∪ 𝑥 ) ) ) |
122 |
121
|
ineq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ 𝑒 = ( 𝐸 ∩ ( ∪ 𝑏 ∪ 𝑥 ) ) ) → ( 𝑒 ∩ ∪ 𝑏 ) = ( ( 𝐸 ∩ ( ∪ 𝑏 ∪ 𝑥 ) ) ∩ ∪ 𝑏 ) ) |
123 |
122
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ 𝑒 = ( 𝐸 ∩ ( ∪ 𝑏 ∪ 𝑥 ) ) ) → ( 𝑀 ‘ ( 𝑒 ∩ ∪ 𝑏 ) ) = ( 𝑀 ‘ ( ( 𝐸 ∩ ( ∪ 𝑏 ∪ 𝑥 ) ) ∩ ∪ 𝑏 ) ) ) |
124 |
121
|
difeq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ 𝑒 = ( 𝐸 ∩ ( ∪ 𝑏 ∪ 𝑥 ) ) ) → ( 𝑒 ∖ ∪ 𝑏 ) = ( ( 𝐸 ∩ ( ∪ 𝑏 ∪ 𝑥 ) ) ∖ ∪ 𝑏 ) ) |
125 |
124
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ 𝑒 = ( 𝐸 ∩ ( ∪ 𝑏 ∪ 𝑥 ) ) ) → ( 𝑀 ‘ ( 𝑒 ∖ ∪ 𝑏 ) ) = ( 𝑀 ‘ ( ( 𝐸 ∩ ( ∪ 𝑏 ∪ 𝑥 ) ) ∖ ∪ 𝑏 ) ) ) |
126 |
123 125
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ 𝑒 = ( 𝐸 ∩ ( ∪ 𝑏 ∪ 𝑥 ) ) ) → ( ( 𝑀 ‘ ( 𝑒 ∩ ∪ 𝑏 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ ∪ 𝑏 ) ) ) = ( ( 𝑀 ‘ ( ( 𝐸 ∩ ( ∪ 𝑏 ∪ 𝑥 ) ) ∩ ∪ 𝑏 ) ) +𝑒 ( 𝑀 ‘ ( ( 𝐸 ∩ ( ∪ 𝑏 ∪ 𝑥 ) ) ∖ ∪ 𝑏 ) ) ) ) |
127 |
121
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ 𝑒 = ( 𝐸 ∩ ( ∪ 𝑏 ∪ 𝑥 ) ) ) → ( 𝑀 ‘ 𝑒 ) = ( 𝑀 ‘ ( 𝐸 ∩ ( ∪ 𝑏 ∪ 𝑥 ) ) ) ) |
128 |
126 127
|
eqeq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ 𝑒 = ( 𝐸 ∩ ( ∪ 𝑏 ∪ 𝑥 ) ) ) → ( ( ( 𝑀 ‘ ( 𝑒 ∩ ∪ 𝑏 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ ∪ 𝑏 ) ) ) = ( 𝑀 ‘ 𝑒 ) ↔ ( ( 𝑀 ‘ ( ( 𝐸 ∩ ( ∪ 𝑏 ∪ 𝑥 ) ) ∩ ∪ 𝑏 ) ) +𝑒 ( 𝑀 ‘ ( ( 𝐸 ∩ ( ∪ 𝑏 ∪ 𝑥 ) ) ∖ ∪ 𝑏 ) ) ) = ( 𝑀 ‘ ( 𝐸 ∩ ( ∪ 𝑏 ∪ 𝑥 ) ) ) ) ) |
129 |
120 128
|
rspcdv |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → ( ∀ 𝑒 ∈ 𝒫 𝑂 ( ( 𝑀 ‘ ( 𝑒 ∩ ∪ 𝑏 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ ∪ 𝑏 ) ) ) = ( 𝑀 ‘ 𝑒 ) → ( ( 𝑀 ‘ ( ( 𝐸 ∩ ( ∪ 𝑏 ∪ 𝑥 ) ) ∩ ∪ 𝑏 ) ) +𝑒 ( 𝑀 ‘ ( ( 𝐸 ∩ ( ∪ 𝑏 ∪ 𝑥 ) ) ∖ ∪ 𝑏 ) ) ) = ( 𝑀 ‘ ( 𝐸 ∩ ( ∪ 𝑏 ∪ 𝑥 ) ) ) ) ) |
130 |
119 129
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → ( ( 𝑀 ‘ ( ( 𝐸 ∩ ( ∪ 𝑏 ∪ 𝑥 ) ) ∩ ∪ 𝑏 ) ) +𝑒 ( 𝑀 ‘ ( ( 𝐸 ∩ ( ∪ 𝑏 ∪ 𝑥 ) ) ∖ ∪ 𝑏 ) ) ) = ( 𝑀 ‘ ( 𝐸 ∩ ( ∪ 𝑏 ∪ 𝑥 ) ) ) ) |
131 |
105 130
|
eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑏 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∩ 𝑥 ) ) ) = ( 𝑀 ‘ ( 𝐸 ∩ ( ∪ 𝑏 ∪ 𝑥 ) ) ) ) |
132 |
131
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑏 ) ) = Σ* 𝑦 ∈ 𝑏 ( 𝑀 ‘ ( 𝐸 ∩ 𝑦 ) ) ) → ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑏 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∩ 𝑥 ) ) ) = ( 𝑀 ‘ ( 𝐸 ∩ ( ∪ 𝑏 ∪ 𝑥 ) ) ) ) |
133 |
75 132
|
eqtr4id |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑏 ) ) = Σ* 𝑦 ∈ 𝑏 ( 𝑀 ‘ ( 𝐸 ∩ 𝑦 ) ) ) → ( 𝑀 ‘ ( 𝐸 ∩ ∪ ( 𝑏 ∪ { 𝑥 } ) ) ) = ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑏 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∩ 𝑥 ) ) ) ) |
134 |
48 68 133
|
3eqtr4rd |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑏 ) ) = Σ* 𝑦 ∈ 𝑏 ( 𝑀 ‘ ( 𝐸 ∩ 𝑦 ) ) ) → ( 𝑀 ‘ ( 𝐸 ∩ ∪ ( 𝑏 ∪ { 𝑥 } ) ) ) = Σ* 𝑦 ∈ ( 𝑏 ∪ { 𝑥 } ) ( 𝑀 ‘ ( 𝐸 ∩ 𝑦 ) ) ) |
135 |
134
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑏 ) ) = Σ* 𝑦 ∈ 𝑏 ( 𝑀 ‘ ( 𝐸 ∩ 𝑦 ) ) → ( 𝑀 ‘ ( 𝐸 ∩ ∪ ( 𝑏 ∪ { 𝑥 } ) ) ) = Σ* 𝑦 ∈ ( 𝑏 ∪ { 𝑥 } ) ( 𝑀 ‘ ( 𝐸 ∩ 𝑦 ) ) ) ) |
136 |
13 18 23 28 35 135 5
|
findcard2d |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝐴 ) ) = Σ* 𝑦 ∈ 𝐴 ( 𝑀 ‘ ( 𝐸 ∩ 𝑦 ) ) ) |