Metamath Proof Explorer


Theorem carsgclctunlem1

Description: Lemma for carsgclctun . (Contributed by Thierry Arnoux, 23-May-2020)

Ref Expression
Hypotheses carsgval.1 ( 𝜑𝑂𝑉 )
carsgval.2 ( 𝜑𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) )
carsgsiga.1 ( 𝜑 → ( 𝑀 ‘ ∅ ) = 0 )
carsgsiga.2 ( ( 𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂 ) → ( 𝑀 𝑥 ) ≤ Σ* 𝑦𝑥 ( 𝑀𝑦 ) )
fiunelcarsg.1 ( 𝜑𝐴 ∈ Fin )
fiunelcarsg.2 ( 𝜑𝐴 ⊆ ( toCaraSiga ‘ 𝑀 ) )
carsgclctunlem1.1 ( 𝜑Disj 𝑦𝐴 𝑦 )
carsgclctunlem1.2 ( 𝜑𝐸 ∈ 𝒫 𝑂 )
Assertion carsgclctunlem1 ( 𝜑 → ( 𝑀 ‘ ( 𝐸 𝐴 ) ) = Σ* 𝑦𝐴 ( 𝑀 ‘ ( 𝐸𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 carsgval.1 ( 𝜑𝑂𝑉 )
2 carsgval.2 ( 𝜑𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) )
3 carsgsiga.1 ( 𝜑 → ( 𝑀 ‘ ∅ ) = 0 )
4 carsgsiga.2 ( ( 𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂 ) → ( 𝑀 𝑥 ) ≤ Σ* 𝑦𝑥 ( 𝑀𝑦 ) )
5 fiunelcarsg.1 ( 𝜑𝐴 ∈ Fin )
6 fiunelcarsg.2 ( 𝜑𝐴 ⊆ ( toCaraSiga ‘ 𝑀 ) )
7 carsgclctunlem1.1 ( 𝜑Disj 𝑦𝐴 𝑦 )
8 carsgclctunlem1.2 ( 𝜑𝐸 ∈ 𝒫 𝑂 )
9 unieq ( 𝑎 = ∅ → 𝑎 = ∅ )
10 9 ineq2d ( 𝑎 = ∅ → ( 𝐸 𝑎 ) = ( 𝐸 ∅ ) )
11 10 fveq2d ( 𝑎 = ∅ → ( 𝑀 ‘ ( 𝐸 𝑎 ) ) = ( 𝑀 ‘ ( 𝐸 ∅ ) ) )
12 esumeq1 ( 𝑎 = ∅ → Σ* 𝑦𝑎 ( 𝑀 ‘ ( 𝐸𝑦 ) ) = Σ* 𝑦 ∈ ∅ ( 𝑀 ‘ ( 𝐸𝑦 ) ) )
13 11 12 eqeq12d ( 𝑎 = ∅ → ( ( 𝑀 ‘ ( 𝐸 𝑎 ) ) = Σ* 𝑦𝑎 ( 𝑀 ‘ ( 𝐸𝑦 ) ) ↔ ( 𝑀 ‘ ( 𝐸 ∅ ) ) = Σ* 𝑦 ∈ ∅ ( 𝑀 ‘ ( 𝐸𝑦 ) ) ) )
14 unieq ( 𝑎 = 𝑏 𝑎 = 𝑏 )
15 14 ineq2d ( 𝑎 = 𝑏 → ( 𝐸 𝑎 ) = ( 𝐸 𝑏 ) )
16 15 fveq2d ( 𝑎 = 𝑏 → ( 𝑀 ‘ ( 𝐸 𝑎 ) ) = ( 𝑀 ‘ ( 𝐸 𝑏 ) ) )
17 esumeq1 ( 𝑎 = 𝑏 → Σ* 𝑦𝑎 ( 𝑀 ‘ ( 𝐸𝑦 ) ) = Σ* 𝑦𝑏 ( 𝑀 ‘ ( 𝐸𝑦 ) ) )
18 16 17 eqeq12d ( 𝑎 = 𝑏 → ( ( 𝑀 ‘ ( 𝐸 𝑎 ) ) = Σ* 𝑦𝑎 ( 𝑀 ‘ ( 𝐸𝑦 ) ) ↔ ( 𝑀 ‘ ( 𝐸 𝑏 ) ) = Σ* 𝑦𝑏 ( 𝑀 ‘ ( 𝐸𝑦 ) ) ) )
19 unieq ( 𝑎 = ( 𝑏 ∪ { 𝑥 } ) → 𝑎 = ( 𝑏 ∪ { 𝑥 } ) )
20 19 ineq2d ( 𝑎 = ( 𝑏 ∪ { 𝑥 } ) → ( 𝐸 𝑎 ) = ( 𝐸 ( 𝑏 ∪ { 𝑥 } ) ) )
21 20 fveq2d ( 𝑎 = ( 𝑏 ∪ { 𝑥 } ) → ( 𝑀 ‘ ( 𝐸 𝑎 ) ) = ( 𝑀 ‘ ( 𝐸 ( 𝑏 ∪ { 𝑥 } ) ) ) )
22 esumeq1 ( 𝑎 = ( 𝑏 ∪ { 𝑥 } ) → Σ* 𝑦𝑎 ( 𝑀 ‘ ( 𝐸𝑦 ) ) = Σ* 𝑦 ∈ ( 𝑏 ∪ { 𝑥 } ) ( 𝑀 ‘ ( 𝐸𝑦 ) ) )
23 21 22 eqeq12d ( 𝑎 = ( 𝑏 ∪ { 𝑥 } ) → ( ( 𝑀 ‘ ( 𝐸 𝑎 ) ) = Σ* 𝑦𝑎 ( 𝑀 ‘ ( 𝐸𝑦 ) ) ↔ ( 𝑀 ‘ ( 𝐸 ( 𝑏 ∪ { 𝑥 } ) ) ) = Σ* 𝑦 ∈ ( 𝑏 ∪ { 𝑥 } ) ( 𝑀 ‘ ( 𝐸𝑦 ) ) ) )
24 unieq ( 𝑎 = 𝐴 𝑎 = 𝐴 )
25 24 ineq2d ( 𝑎 = 𝐴 → ( 𝐸 𝑎 ) = ( 𝐸 𝐴 ) )
26 25 fveq2d ( 𝑎 = 𝐴 → ( 𝑀 ‘ ( 𝐸 𝑎 ) ) = ( 𝑀 ‘ ( 𝐸 𝐴 ) ) )
27 esumeq1 ( 𝑎 = 𝐴 → Σ* 𝑦𝑎 ( 𝑀 ‘ ( 𝐸𝑦 ) ) = Σ* 𝑦𝐴 ( 𝑀 ‘ ( 𝐸𝑦 ) ) )
28 26 27 eqeq12d ( 𝑎 = 𝐴 → ( ( 𝑀 ‘ ( 𝐸 𝑎 ) ) = Σ* 𝑦𝑎 ( 𝑀 ‘ ( 𝐸𝑦 ) ) ↔ ( 𝑀 ‘ ( 𝐸 𝐴 ) ) = Σ* 𝑦𝐴 ( 𝑀 ‘ ( 𝐸𝑦 ) ) ) )
29 uni0 ∅ = ∅
30 29 ineq2i ( 𝐸 ∅ ) = ( 𝐸 ∩ ∅ )
31 in0 ( 𝐸 ∩ ∅ ) = ∅
32 30 31 eqtri ( 𝐸 ∅ ) = ∅
33 32 fveq2i ( 𝑀 ‘ ( 𝐸 ∅ ) ) = ( 𝑀 ‘ ∅ )
34 esumnul Σ* 𝑦 ∈ ∅ ( 𝑀 ‘ ( 𝐸𝑦 ) ) = 0
35 3 33 34 3eqtr4g ( 𝜑 → ( 𝑀 ‘ ( 𝐸 ∅ ) ) = Σ* 𝑦 ∈ ∅ ( 𝑀 ‘ ( 𝐸𝑦 ) ) )
36 simpr ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) ∧ ( 𝑀 ‘ ( 𝐸 𝑏 ) ) = Σ* 𝑦𝑏 ( 𝑀 ‘ ( 𝐸𝑦 ) ) ) → ( 𝑀 ‘ ( 𝐸 𝑏 ) ) = Σ* 𝑦𝑏 ( 𝑀 ‘ ( 𝐸𝑦 ) ) )
37 36 eqcomd ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) ∧ ( 𝑀 ‘ ( 𝐸 𝑏 ) ) = Σ* 𝑦𝑏 ( 𝑀 ‘ ( 𝐸𝑦 ) ) ) → Σ* 𝑦𝑏 ( 𝑀 ‘ ( 𝐸𝑦 ) ) = ( 𝑀 ‘ ( 𝐸 𝑏 ) ) )
38 simpr ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) ∧ 𝑦 = 𝑥 ) → 𝑦 = 𝑥 )
39 38 ineq2d ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) ∧ 𝑦 = 𝑥 ) → ( 𝐸𝑦 ) = ( 𝐸𝑥 ) )
40 39 fveq2d ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) ∧ 𝑦 = 𝑥 ) → ( 𝑀 ‘ ( 𝐸𝑦 ) ) = ( 𝑀 ‘ ( 𝐸𝑥 ) ) )
41 simprr ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) → 𝑥 ∈ ( 𝐴𝑏 ) )
42 2 adantr ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) → 𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) )
43 8 adantr ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) → 𝐸 ∈ 𝒫 𝑂 )
44 43 elpwincl1 ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) → ( 𝐸𝑥 ) ∈ 𝒫 𝑂 )
45 42 44 ffvelcdmd ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) → ( 𝑀 ‘ ( 𝐸𝑥 ) ) ∈ ( 0 [,] +∞ ) )
46 40 41 45 esumsn ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) → Σ* 𝑦 ∈ { 𝑥 } ( 𝑀 ‘ ( 𝐸𝑦 ) ) = ( 𝑀 ‘ ( 𝐸𝑥 ) ) )
47 46 adantr ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) ∧ ( 𝑀 ‘ ( 𝐸 𝑏 ) ) = Σ* 𝑦𝑏 ( 𝑀 ‘ ( 𝐸𝑦 ) ) ) → Σ* 𝑦 ∈ { 𝑥 } ( 𝑀 ‘ ( 𝐸𝑦 ) ) = ( 𝑀 ‘ ( 𝐸𝑥 ) ) )
48 37 47 oveq12d ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) ∧ ( 𝑀 ‘ ( 𝐸 𝑏 ) ) = Σ* 𝑦𝑏 ( 𝑀 ‘ ( 𝐸𝑦 ) ) ) → ( Σ* 𝑦𝑏 ( 𝑀 ‘ ( 𝐸𝑦 ) ) +𝑒 Σ* 𝑦 ∈ { 𝑥 } ( 𝑀 ‘ ( 𝐸𝑦 ) ) ) = ( ( 𝑀 ‘ ( 𝐸 𝑏 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸𝑥 ) ) ) )
49 nfv 𝑦 ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) )
50 nfcv 𝑦 𝑏
51 nfcv 𝑦 { 𝑥 }
52 vex 𝑏 ∈ V
53 52 a1i ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) → 𝑏 ∈ V )
54 vsnex { 𝑥 } ∈ V
55 54 a1i ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) → { 𝑥 } ∈ V )
56 41 eldifbd ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) → ¬ 𝑥𝑏 )
57 disjsn ( ( 𝑏 ∩ { 𝑥 } ) = ∅ ↔ ¬ 𝑥𝑏 )
58 56 57 sylibr ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) → ( 𝑏 ∩ { 𝑥 } ) = ∅ )
59 2 ad2antrr ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) ∧ 𝑦𝑏 ) → 𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) )
60 8 ad2antrr ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) ∧ 𝑦𝑏 ) → 𝐸 ∈ 𝒫 𝑂 )
61 60 elpwincl1 ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) ∧ 𝑦𝑏 ) → ( 𝐸𝑦 ) ∈ 𝒫 𝑂 )
62 59 61 ffvelcdmd ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) ∧ 𝑦𝑏 ) → ( 𝑀 ‘ ( 𝐸𝑦 ) ) ∈ ( 0 [,] +∞ ) )
63 2 ad2antrr ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) ∧ 𝑦 ∈ { 𝑥 } ) → 𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) )
64 8 ad2antrr ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) ∧ 𝑦 ∈ { 𝑥 } ) → 𝐸 ∈ 𝒫 𝑂 )
65 64 elpwincl1 ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) ∧ 𝑦 ∈ { 𝑥 } ) → ( 𝐸𝑦 ) ∈ 𝒫 𝑂 )
66 63 65 ffvelcdmd ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) ∧ 𝑦 ∈ { 𝑥 } ) → ( 𝑀 ‘ ( 𝐸𝑦 ) ) ∈ ( 0 [,] +∞ ) )
67 49 50 51 53 55 58 62 66 esumsplit ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) → Σ* 𝑦 ∈ ( 𝑏 ∪ { 𝑥 } ) ( 𝑀 ‘ ( 𝐸𝑦 ) ) = ( Σ* 𝑦𝑏 ( 𝑀 ‘ ( 𝐸𝑦 ) ) +𝑒 Σ* 𝑦 ∈ { 𝑥 } ( 𝑀 ‘ ( 𝐸𝑦 ) ) ) )
68 67 adantr ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) ∧ ( 𝑀 ‘ ( 𝐸 𝑏 ) ) = Σ* 𝑦𝑏 ( 𝑀 ‘ ( 𝐸𝑦 ) ) ) → Σ* 𝑦 ∈ ( 𝑏 ∪ { 𝑥 } ) ( 𝑀 ‘ ( 𝐸𝑦 ) ) = ( Σ* 𝑦𝑏 ( 𝑀 ‘ ( 𝐸𝑦 ) ) +𝑒 Σ* 𝑦 ∈ { 𝑥 } ( 𝑀 ‘ ( 𝐸𝑦 ) ) ) )
69 uniun ( 𝑏 ∪ { 𝑥 } ) = ( 𝑏 { 𝑥 } )
70 unisnv { 𝑥 } = 𝑥
71 70 uneq2i ( 𝑏 { 𝑥 } ) = ( 𝑏𝑥 )
72 69 71 eqtri ( 𝑏 ∪ { 𝑥 } ) = ( 𝑏𝑥 )
73 72 ineq2i ( 𝐸 ( 𝑏 ∪ { 𝑥 } ) ) = ( 𝐸 ∩ ( 𝑏𝑥 ) )
74 73 fveq2i ( 𝑀 ‘ ( 𝐸 ( 𝑏 ∪ { 𝑥 } ) ) ) = ( 𝑀 ‘ ( 𝐸 ∩ ( 𝑏𝑥 ) ) )
75 inass ( ( 𝐸 ∩ ( 𝑏𝑥 ) ) ∩ 𝑏 ) = ( 𝐸 ∩ ( ( 𝑏𝑥 ) ∩ 𝑏 ) )
76 indir ( ( 𝑏𝑥 ) ∩ 𝑏 ) = ( ( 𝑏 𝑏 ) ∪ ( 𝑥 𝑏 ) )
77 inidm ( 𝑏 𝑏 ) = 𝑏
78 77 a1i ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) → ( 𝑏 𝑏 ) = 𝑏 )
79 incom ( 𝑏𝑥 ) = ( 𝑥 𝑏 )
80 7 adantr ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) → Disj 𝑦𝐴 𝑦 )
81 simpr ( ( 𝜑𝑏𝐴 ) → 𝑏𝐴 )
82 81 adantrr ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) → 𝑏𝐴 )
83 80 82 41 disjuniel ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) → ( 𝑏𝑥 ) = ∅ )
84 79 83 eqtr3id ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) → ( 𝑥 𝑏 ) = ∅ )
85 78 84 uneq12d ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) → ( ( 𝑏 𝑏 ) ∪ ( 𝑥 𝑏 ) ) = ( 𝑏 ∪ ∅ ) )
86 un0 ( 𝑏 ∪ ∅ ) = 𝑏
87 85 86 eqtrdi ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) → ( ( 𝑏 𝑏 ) ∪ ( 𝑥 𝑏 ) ) = 𝑏 )
88 76 87 eqtrid ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) → ( ( 𝑏𝑥 ) ∩ 𝑏 ) = 𝑏 )
89 88 ineq2d ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) → ( 𝐸 ∩ ( ( 𝑏𝑥 ) ∩ 𝑏 ) ) = ( 𝐸 𝑏 ) )
90 75 89 eqtrid ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) → ( ( 𝐸 ∩ ( 𝑏𝑥 ) ) ∩ 𝑏 ) = ( 𝐸 𝑏 ) )
91 90 fveq2d ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) → ( 𝑀 ‘ ( ( 𝐸 ∩ ( 𝑏𝑥 ) ) ∩ 𝑏 ) ) = ( 𝑀 ‘ ( 𝐸 𝑏 ) ) )
92 indif2 ( 𝐸 ∩ ( ( 𝑏𝑥 ) ∖ 𝑏 ) ) = ( ( 𝐸 ∩ ( 𝑏𝑥 ) ) ∖ 𝑏 )
93 uncom ( 𝑏𝑥 ) = ( 𝑥 𝑏 )
94 93 difeq1i ( ( 𝑏𝑥 ) ∖ 𝑏 ) = ( ( 𝑥 𝑏 ) ∖ 𝑏 )
95 difun2 ( ( 𝑥 𝑏 ) ∖ 𝑏 ) = ( 𝑥 𝑏 )
96 disj3 ( ( 𝑥 𝑏 ) = ∅ ↔ 𝑥 = ( 𝑥 𝑏 ) )
97 96 biimpi ( ( 𝑥 𝑏 ) = ∅ → 𝑥 = ( 𝑥 𝑏 ) )
98 95 97 eqtr4id ( ( 𝑥 𝑏 ) = ∅ → ( ( 𝑥 𝑏 ) ∖ 𝑏 ) = 𝑥 )
99 94 98 eqtrid ( ( 𝑥 𝑏 ) = ∅ → ( ( 𝑏𝑥 ) ∖ 𝑏 ) = 𝑥 )
100 84 99 syl ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) → ( ( 𝑏𝑥 ) ∖ 𝑏 ) = 𝑥 )
101 100 ineq2d ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) → ( 𝐸 ∩ ( ( 𝑏𝑥 ) ∖ 𝑏 ) ) = ( 𝐸𝑥 ) )
102 92 101 eqtr3id ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) → ( ( 𝐸 ∩ ( 𝑏𝑥 ) ) ∖ 𝑏 ) = ( 𝐸𝑥 ) )
103 102 fveq2d ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) → ( 𝑀 ‘ ( ( 𝐸 ∩ ( 𝑏𝑥 ) ) ∖ 𝑏 ) ) = ( 𝑀 ‘ ( 𝐸𝑥 ) ) )
104 91 103 oveq12d ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) → ( ( 𝑀 ‘ ( ( 𝐸 ∩ ( 𝑏𝑥 ) ) ∩ 𝑏 ) ) +𝑒 ( 𝑀 ‘ ( ( 𝐸 ∩ ( 𝑏𝑥 ) ) ∖ 𝑏 ) ) ) = ( ( 𝑀 ‘ ( 𝐸 𝑏 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸𝑥 ) ) ) )
105 1 adantr ( ( 𝜑𝑏𝐴 ) → 𝑂𝑉 )
106 2 adantr ( ( 𝜑𝑏𝐴 ) → 𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) )
107 3 adantr ( ( 𝜑𝑏𝐴 ) → ( 𝑀 ‘ ∅ ) = 0 )
108 4 3adant1r ( ( ( 𝜑𝑏𝐴 ) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂 ) → ( 𝑀 𝑥 ) ≤ Σ* 𝑦𝑥 ( 𝑀𝑦 ) )
109 ssfi ( ( 𝐴 ∈ Fin ∧ 𝑏𝐴 ) → 𝑏 ∈ Fin )
110 5 109 sylan ( ( 𝜑𝑏𝐴 ) → 𝑏 ∈ Fin )
111 6 adantr ( ( 𝜑𝑏𝐴 ) → 𝐴 ⊆ ( toCaraSiga ‘ 𝑀 ) )
112 81 111 sstrd ( ( 𝜑𝑏𝐴 ) → 𝑏 ⊆ ( toCaraSiga ‘ 𝑀 ) )
113 105 106 107 108 110 112 fiunelcarsg ( ( 𝜑𝑏𝐴 ) → 𝑏 ∈ ( toCaraSiga ‘ 𝑀 ) )
114 1 2 elcarsg ( 𝜑 → ( 𝑏 ∈ ( toCaraSiga ‘ 𝑀 ) ↔ ( 𝑏𝑂 ∧ ∀ 𝑒 ∈ 𝒫 𝑂 ( ( 𝑀 ‘ ( 𝑒 𝑏 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 𝑏 ) ) ) = ( 𝑀𝑒 ) ) ) )
115 114 adantr ( ( 𝜑𝑏𝐴 ) → ( 𝑏 ∈ ( toCaraSiga ‘ 𝑀 ) ↔ ( 𝑏𝑂 ∧ ∀ 𝑒 ∈ 𝒫 𝑂 ( ( 𝑀 ‘ ( 𝑒 𝑏 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 𝑏 ) ) ) = ( 𝑀𝑒 ) ) ) )
116 113 115 mpbid ( ( 𝜑𝑏𝐴 ) → ( 𝑏𝑂 ∧ ∀ 𝑒 ∈ 𝒫 𝑂 ( ( 𝑀 ‘ ( 𝑒 𝑏 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 𝑏 ) ) ) = ( 𝑀𝑒 ) ) )
117 116 simprd ( ( 𝜑𝑏𝐴 ) → ∀ 𝑒 ∈ 𝒫 𝑂 ( ( 𝑀 ‘ ( 𝑒 𝑏 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 𝑏 ) ) ) = ( 𝑀𝑒 ) )
118 117 adantrr ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) → ∀ 𝑒 ∈ 𝒫 𝑂 ( ( 𝑀 ‘ ( 𝑒 𝑏 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 𝑏 ) ) ) = ( 𝑀𝑒 ) )
119 43 elpwincl1 ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) → ( 𝐸 ∩ ( 𝑏𝑥 ) ) ∈ 𝒫 𝑂 )
120 simpr ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) ∧ 𝑒 = ( 𝐸 ∩ ( 𝑏𝑥 ) ) ) → 𝑒 = ( 𝐸 ∩ ( 𝑏𝑥 ) ) )
121 120 ineq1d ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) ∧ 𝑒 = ( 𝐸 ∩ ( 𝑏𝑥 ) ) ) → ( 𝑒 𝑏 ) = ( ( 𝐸 ∩ ( 𝑏𝑥 ) ) ∩ 𝑏 ) )
122 121 fveq2d ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) ∧ 𝑒 = ( 𝐸 ∩ ( 𝑏𝑥 ) ) ) → ( 𝑀 ‘ ( 𝑒 𝑏 ) ) = ( 𝑀 ‘ ( ( 𝐸 ∩ ( 𝑏𝑥 ) ) ∩ 𝑏 ) ) )
123 120 difeq1d ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) ∧ 𝑒 = ( 𝐸 ∩ ( 𝑏𝑥 ) ) ) → ( 𝑒 𝑏 ) = ( ( 𝐸 ∩ ( 𝑏𝑥 ) ) ∖ 𝑏 ) )
124 123 fveq2d ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) ∧ 𝑒 = ( 𝐸 ∩ ( 𝑏𝑥 ) ) ) → ( 𝑀 ‘ ( 𝑒 𝑏 ) ) = ( 𝑀 ‘ ( ( 𝐸 ∩ ( 𝑏𝑥 ) ) ∖ 𝑏 ) ) )
125 122 124 oveq12d ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) ∧ 𝑒 = ( 𝐸 ∩ ( 𝑏𝑥 ) ) ) → ( ( 𝑀 ‘ ( 𝑒 𝑏 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 𝑏 ) ) ) = ( ( 𝑀 ‘ ( ( 𝐸 ∩ ( 𝑏𝑥 ) ) ∩ 𝑏 ) ) +𝑒 ( 𝑀 ‘ ( ( 𝐸 ∩ ( 𝑏𝑥 ) ) ∖ 𝑏 ) ) ) )
126 120 fveq2d ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) ∧ 𝑒 = ( 𝐸 ∩ ( 𝑏𝑥 ) ) ) → ( 𝑀𝑒 ) = ( 𝑀 ‘ ( 𝐸 ∩ ( 𝑏𝑥 ) ) ) )
127 125 126 eqeq12d ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) ∧ 𝑒 = ( 𝐸 ∩ ( 𝑏𝑥 ) ) ) → ( ( ( 𝑀 ‘ ( 𝑒 𝑏 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 𝑏 ) ) ) = ( 𝑀𝑒 ) ↔ ( ( 𝑀 ‘ ( ( 𝐸 ∩ ( 𝑏𝑥 ) ) ∩ 𝑏 ) ) +𝑒 ( 𝑀 ‘ ( ( 𝐸 ∩ ( 𝑏𝑥 ) ) ∖ 𝑏 ) ) ) = ( 𝑀 ‘ ( 𝐸 ∩ ( 𝑏𝑥 ) ) ) ) )
128 119 127 rspcdv ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) → ( ∀ 𝑒 ∈ 𝒫 𝑂 ( ( 𝑀 ‘ ( 𝑒 𝑏 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 𝑏 ) ) ) = ( 𝑀𝑒 ) → ( ( 𝑀 ‘ ( ( 𝐸 ∩ ( 𝑏𝑥 ) ) ∩ 𝑏 ) ) +𝑒 ( 𝑀 ‘ ( ( 𝐸 ∩ ( 𝑏𝑥 ) ) ∖ 𝑏 ) ) ) = ( 𝑀 ‘ ( 𝐸 ∩ ( 𝑏𝑥 ) ) ) ) )
129 118 128 mpd ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) → ( ( 𝑀 ‘ ( ( 𝐸 ∩ ( 𝑏𝑥 ) ) ∩ 𝑏 ) ) +𝑒 ( 𝑀 ‘ ( ( 𝐸 ∩ ( 𝑏𝑥 ) ) ∖ 𝑏 ) ) ) = ( 𝑀 ‘ ( 𝐸 ∩ ( 𝑏𝑥 ) ) ) )
130 104 129 eqtr3d ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) → ( ( 𝑀 ‘ ( 𝐸 𝑏 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸𝑥 ) ) ) = ( 𝑀 ‘ ( 𝐸 ∩ ( 𝑏𝑥 ) ) ) )
131 130 adantr ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) ∧ ( 𝑀 ‘ ( 𝐸 𝑏 ) ) = Σ* 𝑦𝑏 ( 𝑀 ‘ ( 𝐸𝑦 ) ) ) → ( ( 𝑀 ‘ ( 𝐸 𝑏 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸𝑥 ) ) ) = ( 𝑀 ‘ ( 𝐸 ∩ ( 𝑏𝑥 ) ) ) )
132 74 131 eqtr4id ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) ∧ ( 𝑀 ‘ ( 𝐸 𝑏 ) ) = Σ* 𝑦𝑏 ( 𝑀 ‘ ( 𝐸𝑦 ) ) ) → ( 𝑀 ‘ ( 𝐸 ( 𝑏 ∪ { 𝑥 } ) ) ) = ( ( 𝑀 ‘ ( 𝐸 𝑏 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸𝑥 ) ) ) )
133 48 68 132 3eqtr4rd ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) ∧ ( 𝑀 ‘ ( 𝐸 𝑏 ) ) = Σ* 𝑦𝑏 ( 𝑀 ‘ ( 𝐸𝑦 ) ) ) → ( 𝑀 ‘ ( 𝐸 ( 𝑏 ∪ { 𝑥 } ) ) ) = Σ* 𝑦 ∈ ( 𝑏 ∪ { 𝑥 } ) ( 𝑀 ‘ ( 𝐸𝑦 ) ) )
134 133 ex ( ( 𝜑 ∧ ( 𝑏𝐴𝑥 ∈ ( 𝐴𝑏 ) ) ) → ( ( 𝑀 ‘ ( 𝐸 𝑏 ) ) = Σ* 𝑦𝑏 ( 𝑀 ‘ ( 𝐸𝑦 ) ) → ( 𝑀 ‘ ( 𝐸 ( 𝑏 ∪ { 𝑥 } ) ) ) = Σ* 𝑦 ∈ ( 𝑏 ∪ { 𝑥 } ) ( 𝑀 ‘ ( 𝐸𝑦 ) ) ) )
135 13 18 23 28 35 134 5 findcard2d ( 𝜑 → ( 𝑀 ‘ ( 𝐸 𝐴 ) ) = Σ* 𝑦𝐴 ( 𝑀 ‘ ( 𝐸𝑦 ) ) )