| Step | Hyp | Ref | Expression | 
						
							| 1 |  | carsgval.1 | ⊢ ( 𝜑  →  𝑂  ∈  𝑉 ) | 
						
							| 2 |  | carsgval.2 | ⊢ ( 𝜑  →  𝑀 : 𝒫  𝑂 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 3 |  | carsgsiga.1 | ⊢ ( 𝜑  →  ( 𝑀 ‘ ∅ )  =  0 ) | 
						
							| 4 |  | carsgsiga.2 | ⊢ ( ( 𝜑  ∧  𝑥  ≼  ω  ∧  𝑥  ⊆  𝒫  𝑂 )  →  ( 𝑀 ‘ ∪  𝑥 )  ≤  Σ* 𝑦  ∈  𝑥 ( 𝑀 ‘ 𝑦 ) ) | 
						
							| 5 |  | carsgsiga.3 | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  𝑦  ∧  𝑦  ∈  𝒫  𝑂 )  →  ( 𝑀 ‘ 𝑥 )  ≤  ( 𝑀 ‘ 𝑦 ) ) | 
						
							| 6 |  | carsgclctun.1 | ⊢ ( 𝜑  →  𝐴  ≼  ω ) | 
						
							| 7 |  | carsgclctun.2 | ⊢ ( 𝜑  →  𝐴  ⊆  ( toCaraSiga ‘ 𝑀 ) ) | 
						
							| 8 | 7 | unissd | ⊢ ( 𝜑  →  ∪  𝐴  ⊆  ∪  ( toCaraSiga ‘ 𝑀 ) ) | 
						
							| 9 | 1 2 3 | carsguni | ⊢ ( 𝜑  →  ∪  ( toCaraSiga ‘ 𝑀 )  =  𝑂 ) | 
						
							| 10 | 8 9 | sseqtrd | ⊢ ( 𝜑  →  ∪  𝐴  ⊆  𝑂 ) | 
						
							| 11 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  𝑂  ∈  𝑉 ) | 
						
							| 12 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  𝑀 : 𝒫  𝑂 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 13 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  ( 𝑀 ‘ ∅ )  =  0 ) | 
						
							| 14 | 4 | 3adant1r | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  ∧  𝑥  ≼  ω  ∧  𝑥  ⊆  𝒫  𝑂 )  →  ( 𝑀 ‘ ∪  𝑥 )  ≤  Σ* 𝑦  ∈  𝑥 ( 𝑀 ‘ 𝑦 ) ) | 
						
							| 15 | 5 | 3adant1r | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  ∧  𝑥  ⊆  𝑦  ∧  𝑦  ∈  𝒫  𝑂 )  →  ( 𝑀 ‘ 𝑥 )  ≤  ( 𝑀 ‘ 𝑦 ) ) | 
						
							| 16 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  𝐴  ≼  ω ) | 
						
							| 17 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  𝐴  ⊆  ( toCaraSiga ‘ 𝑀 ) ) | 
						
							| 18 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  𝑒  ∈  𝒫  𝑂 ) | 
						
							| 19 | 11 12 13 14 15 16 17 18 | carsgclctunlem3 | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  ( ( 𝑀 ‘ ( 𝑒  ∩  ∪  𝐴 ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  ∪  𝐴 ) ) )  ≤  ( 𝑀 ‘ 𝑒 ) ) | 
						
							| 20 |  | inex1g | ⊢ ( 𝑒  ∈  𝒫  𝑂  →  ( 𝑒  ∩  ∪  𝐴 )  ∈  V ) | 
						
							| 21 | 20 | adantl | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  ( 𝑒  ∩  ∪  𝐴 )  ∈  V ) | 
						
							| 22 |  | difexg | ⊢ ( 𝑒  ∈  𝒫  𝑂  →  ( 𝑒  ∖  ∪  𝐴 )  ∈  V ) | 
						
							| 23 | 22 | adantl | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  ( 𝑒  ∖  ∪  𝐴 )  ∈  V ) | 
						
							| 24 |  | prct | ⊢ ( ( ( 𝑒  ∩  ∪  𝐴 )  ∈  V  ∧  ( 𝑒  ∖  ∪  𝐴 )  ∈  V )  →  { ( 𝑒  ∩  ∪  𝐴 ) ,  ( 𝑒  ∖  ∪  𝐴 ) }  ≼  ω ) | 
						
							| 25 | 21 23 24 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  { ( 𝑒  ∩  ∪  𝐴 ) ,  ( 𝑒  ∖  ∪  𝐴 ) }  ≼  ω ) | 
						
							| 26 | 18 | elpwincl1 | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  ( 𝑒  ∩  ∪  𝐴 )  ∈  𝒫  𝑂 ) | 
						
							| 27 | 18 | elpwdifcl | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  ( 𝑒  ∖  ∪  𝐴 )  ∈  𝒫  𝑂 ) | 
						
							| 28 |  | prssi | ⊢ ( ( ( 𝑒  ∩  ∪  𝐴 )  ∈  𝒫  𝑂  ∧  ( 𝑒  ∖  ∪  𝐴 )  ∈  𝒫  𝑂 )  →  { ( 𝑒  ∩  ∪  𝐴 ) ,  ( 𝑒  ∖  ∪  𝐴 ) }  ⊆  𝒫  𝑂 ) | 
						
							| 29 | 26 27 28 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  { ( 𝑒  ∩  ∪  𝐴 ) ,  ( 𝑒  ∖  ∪  𝐴 ) }  ⊆  𝒫  𝑂 ) | 
						
							| 30 |  | prex | ⊢ { ( 𝑒  ∩  ∪  𝐴 ) ,  ( 𝑒  ∖  ∪  𝐴 ) }  ∈  V | 
						
							| 31 |  | breq1 | ⊢ ( 𝑥  =  { ( 𝑒  ∩  ∪  𝐴 ) ,  ( 𝑒  ∖  ∪  𝐴 ) }  →  ( 𝑥  ≼  ω  ↔  { ( 𝑒  ∩  ∪  𝐴 ) ,  ( 𝑒  ∖  ∪  𝐴 ) }  ≼  ω ) ) | 
						
							| 32 |  | sseq1 | ⊢ ( 𝑥  =  { ( 𝑒  ∩  ∪  𝐴 ) ,  ( 𝑒  ∖  ∪  𝐴 ) }  →  ( 𝑥  ⊆  𝒫  𝑂  ↔  { ( 𝑒  ∩  ∪  𝐴 ) ,  ( 𝑒  ∖  ∪  𝐴 ) }  ⊆  𝒫  𝑂 ) ) | 
						
							| 33 | 31 32 | 3anbi23d | ⊢ ( 𝑥  =  { ( 𝑒  ∩  ∪  𝐴 ) ,  ( 𝑒  ∖  ∪  𝐴 ) }  →  ( ( 𝜑  ∧  𝑥  ≼  ω  ∧  𝑥  ⊆  𝒫  𝑂 )  ↔  ( 𝜑  ∧  { ( 𝑒  ∩  ∪  𝐴 ) ,  ( 𝑒  ∖  ∪  𝐴 ) }  ≼  ω  ∧  { ( 𝑒  ∩  ∪  𝐴 ) ,  ( 𝑒  ∖  ∪  𝐴 ) }  ⊆  𝒫  𝑂 ) ) ) | 
						
							| 34 |  | unieq | ⊢ ( 𝑥  =  { ( 𝑒  ∩  ∪  𝐴 ) ,  ( 𝑒  ∖  ∪  𝐴 ) }  →  ∪  𝑥  =  ∪  { ( 𝑒  ∩  ∪  𝐴 ) ,  ( 𝑒  ∖  ∪  𝐴 ) } ) | 
						
							| 35 | 34 | fveq2d | ⊢ ( 𝑥  =  { ( 𝑒  ∩  ∪  𝐴 ) ,  ( 𝑒  ∖  ∪  𝐴 ) }  →  ( 𝑀 ‘ ∪  𝑥 )  =  ( 𝑀 ‘ ∪  { ( 𝑒  ∩  ∪  𝐴 ) ,  ( 𝑒  ∖  ∪  𝐴 ) } ) ) | 
						
							| 36 |  | esumeq1 | ⊢ ( 𝑥  =  { ( 𝑒  ∩  ∪  𝐴 ) ,  ( 𝑒  ∖  ∪  𝐴 ) }  →  Σ* 𝑦  ∈  𝑥 ( 𝑀 ‘ 𝑦 )  =  Σ* 𝑦  ∈  { ( 𝑒  ∩  ∪  𝐴 ) ,  ( 𝑒  ∖  ∪  𝐴 ) } ( 𝑀 ‘ 𝑦 ) ) | 
						
							| 37 | 35 36 | breq12d | ⊢ ( 𝑥  =  { ( 𝑒  ∩  ∪  𝐴 ) ,  ( 𝑒  ∖  ∪  𝐴 ) }  →  ( ( 𝑀 ‘ ∪  𝑥 )  ≤  Σ* 𝑦  ∈  𝑥 ( 𝑀 ‘ 𝑦 )  ↔  ( 𝑀 ‘ ∪  { ( 𝑒  ∩  ∪  𝐴 ) ,  ( 𝑒  ∖  ∪  𝐴 ) } )  ≤  Σ* 𝑦  ∈  { ( 𝑒  ∩  ∪  𝐴 ) ,  ( 𝑒  ∖  ∪  𝐴 ) } ( 𝑀 ‘ 𝑦 ) ) ) | 
						
							| 38 | 33 37 | imbi12d | ⊢ ( 𝑥  =  { ( 𝑒  ∩  ∪  𝐴 ) ,  ( 𝑒  ∖  ∪  𝐴 ) }  →  ( ( ( 𝜑  ∧  𝑥  ≼  ω  ∧  𝑥  ⊆  𝒫  𝑂 )  →  ( 𝑀 ‘ ∪  𝑥 )  ≤  Σ* 𝑦  ∈  𝑥 ( 𝑀 ‘ 𝑦 ) )  ↔  ( ( 𝜑  ∧  { ( 𝑒  ∩  ∪  𝐴 ) ,  ( 𝑒  ∖  ∪  𝐴 ) }  ≼  ω  ∧  { ( 𝑒  ∩  ∪  𝐴 ) ,  ( 𝑒  ∖  ∪  𝐴 ) }  ⊆  𝒫  𝑂 )  →  ( 𝑀 ‘ ∪  { ( 𝑒  ∩  ∪  𝐴 ) ,  ( 𝑒  ∖  ∪  𝐴 ) } )  ≤  Σ* 𝑦  ∈  { ( 𝑒  ∩  ∪  𝐴 ) ,  ( 𝑒  ∖  ∪  𝐴 ) } ( 𝑀 ‘ 𝑦 ) ) ) ) | 
						
							| 39 | 38 4 | vtoclg | ⊢ ( { ( 𝑒  ∩  ∪  𝐴 ) ,  ( 𝑒  ∖  ∪  𝐴 ) }  ∈  V  →  ( ( 𝜑  ∧  { ( 𝑒  ∩  ∪  𝐴 ) ,  ( 𝑒  ∖  ∪  𝐴 ) }  ≼  ω  ∧  { ( 𝑒  ∩  ∪  𝐴 ) ,  ( 𝑒  ∖  ∪  𝐴 ) }  ⊆  𝒫  𝑂 )  →  ( 𝑀 ‘ ∪  { ( 𝑒  ∩  ∪  𝐴 ) ,  ( 𝑒  ∖  ∪  𝐴 ) } )  ≤  Σ* 𝑦  ∈  { ( 𝑒  ∩  ∪  𝐴 ) ,  ( 𝑒  ∖  ∪  𝐴 ) } ( 𝑀 ‘ 𝑦 ) ) ) | 
						
							| 40 | 30 39 | ax-mp | ⊢ ( ( 𝜑  ∧  { ( 𝑒  ∩  ∪  𝐴 ) ,  ( 𝑒  ∖  ∪  𝐴 ) }  ≼  ω  ∧  { ( 𝑒  ∩  ∪  𝐴 ) ,  ( 𝑒  ∖  ∪  𝐴 ) }  ⊆  𝒫  𝑂 )  →  ( 𝑀 ‘ ∪  { ( 𝑒  ∩  ∪  𝐴 ) ,  ( 𝑒  ∖  ∪  𝐴 ) } )  ≤  Σ* 𝑦  ∈  { ( 𝑒  ∩  ∪  𝐴 ) ,  ( 𝑒  ∖  ∪  𝐴 ) } ( 𝑀 ‘ 𝑦 ) ) | 
						
							| 41 | 40 | 3adant1r | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  ∧  { ( 𝑒  ∩  ∪  𝐴 ) ,  ( 𝑒  ∖  ∪  𝐴 ) }  ≼  ω  ∧  { ( 𝑒  ∩  ∪  𝐴 ) ,  ( 𝑒  ∖  ∪  𝐴 ) }  ⊆  𝒫  𝑂 )  →  ( 𝑀 ‘ ∪  { ( 𝑒  ∩  ∪  𝐴 ) ,  ( 𝑒  ∖  ∪  𝐴 ) } )  ≤  Σ* 𝑦  ∈  { ( 𝑒  ∩  ∪  𝐴 ) ,  ( 𝑒  ∖  ∪  𝐴 ) } ( 𝑀 ‘ 𝑦 ) ) | 
						
							| 42 | 25 29 41 | mpd3an23 | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  ( 𝑀 ‘ ∪  { ( 𝑒  ∩  ∪  𝐴 ) ,  ( 𝑒  ∖  ∪  𝐴 ) } )  ≤  Σ* 𝑦  ∈  { ( 𝑒  ∩  ∪  𝐴 ) ,  ( 𝑒  ∖  ∪  𝐴 ) } ( 𝑀 ‘ 𝑦 ) ) | 
						
							| 43 |  | uniprg | ⊢ ( ( ( 𝑒  ∩  ∪  𝐴 )  ∈  𝒫  𝑂  ∧  ( 𝑒  ∖  ∪  𝐴 )  ∈  𝒫  𝑂 )  →  ∪  { ( 𝑒  ∩  ∪  𝐴 ) ,  ( 𝑒  ∖  ∪  𝐴 ) }  =  ( ( 𝑒  ∩  ∪  𝐴 )  ∪  ( 𝑒  ∖  ∪  𝐴 ) ) ) | 
						
							| 44 | 26 27 43 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  ∪  { ( 𝑒  ∩  ∪  𝐴 ) ,  ( 𝑒  ∖  ∪  𝐴 ) }  =  ( ( 𝑒  ∩  ∪  𝐴 )  ∪  ( 𝑒  ∖  ∪  𝐴 ) ) ) | 
						
							| 45 |  | inundif | ⊢ ( ( 𝑒  ∩  ∪  𝐴 )  ∪  ( 𝑒  ∖  ∪  𝐴 ) )  =  𝑒 | 
						
							| 46 | 44 45 | eqtrdi | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  ∪  { ( 𝑒  ∩  ∪  𝐴 ) ,  ( 𝑒  ∖  ∪  𝐴 ) }  =  𝑒 ) | 
						
							| 47 | 46 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  ( 𝑀 ‘ ∪  { ( 𝑒  ∩  ∪  𝐴 ) ,  ( 𝑒  ∖  ∪  𝐴 ) } )  =  ( 𝑀 ‘ 𝑒 ) ) | 
						
							| 48 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  ∧  𝑦  =  ( 𝑒  ∩  ∪  𝐴 ) )  →  𝑦  =  ( 𝑒  ∩  ∪  𝐴 ) ) | 
						
							| 49 | 48 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  ∧  𝑦  =  ( 𝑒  ∩  ∪  𝐴 ) )  →  ( 𝑀 ‘ 𝑦 )  =  ( 𝑀 ‘ ( 𝑒  ∩  ∪  𝐴 ) ) ) | 
						
							| 50 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  ∧  𝑦  =  ( 𝑒  ∖  ∪  𝐴 ) )  →  𝑦  =  ( 𝑒  ∖  ∪  𝐴 ) ) | 
						
							| 51 | 50 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  ∧  𝑦  =  ( 𝑒  ∖  ∪  𝐴 ) )  →  ( 𝑀 ‘ 𝑦 )  =  ( 𝑀 ‘ ( 𝑒  ∖  ∪  𝐴 ) ) ) | 
						
							| 52 | 12 26 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  ( 𝑀 ‘ ( 𝑒  ∩  ∪  𝐴 ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 53 | 12 27 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  ( 𝑀 ‘ ( 𝑒  ∖  ∪  𝐴 ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 54 |  | ineq2 | ⊢ ( ( 𝑒  ∩  ∪  𝐴 )  =  ( 𝑒  ∖  ∪  𝐴 )  →  ( ( 𝑒  ∩  ∪  𝐴 )  ∩  ( 𝑒  ∩  ∪  𝐴 ) )  =  ( ( 𝑒  ∩  ∪  𝐴 )  ∩  ( 𝑒  ∖  ∪  𝐴 ) ) ) | 
						
							| 55 |  | inidm | ⊢ ( ( 𝑒  ∩  ∪  𝐴 )  ∩  ( 𝑒  ∩  ∪  𝐴 ) )  =  ( 𝑒  ∩  ∪  𝐴 ) | 
						
							| 56 |  | inindif | ⊢ ( ( 𝑒  ∩  ∪  𝐴 )  ∩  ( 𝑒  ∖  ∪  𝐴 ) )  =  ∅ | 
						
							| 57 | 54 55 56 | 3eqtr3g | ⊢ ( ( 𝑒  ∩  ∪  𝐴 )  =  ( 𝑒  ∖  ∪  𝐴 )  →  ( 𝑒  ∩  ∪  𝐴 )  =  ∅ ) | 
						
							| 58 | 57 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  ∧  ( 𝑒  ∩  ∪  𝐴 )  =  ( 𝑒  ∖  ∪  𝐴 ) )  →  ( 𝑒  ∩  ∪  𝐴 )  =  ∅ ) | 
						
							| 59 | 58 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  ∧  ( 𝑒  ∩  ∪  𝐴 )  =  ( 𝑒  ∖  ∪  𝐴 ) )  →  ( 𝑀 ‘ ( 𝑒  ∩  ∪  𝐴 ) )  =  ( 𝑀 ‘ ∅ ) ) | 
						
							| 60 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  ∧  ( 𝑒  ∩  ∪  𝐴 )  =  ( 𝑒  ∖  ∪  𝐴 ) )  →  ( 𝑀 ‘ ∅ )  =  0 ) | 
						
							| 61 | 59 60 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  ∧  ( 𝑒  ∩  ∪  𝐴 )  =  ( 𝑒  ∖  ∪  𝐴 ) )  →  ( 𝑀 ‘ ( 𝑒  ∩  ∪  𝐴 ) )  =  0 ) | 
						
							| 62 | 61 | orcd | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  ∧  ( 𝑒  ∩  ∪  𝐴 )  =  ( 𝑒  ∖  ∪  𝐴 ) )  →  ( ( 𝑀 ‘ ( 𝑒  ∩  ∪  𝐴 ) )  =  0  ∨  ( 𝑀 ‘ ( 𝑒  ∩  ∪  𝐴 ) )  =  +∞ ) ) | 
						
							| 63 | 62 | ex | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  ( ( 𝑒  ∩  ∪  𝐴 )  =  ( 𝑒  ∖  ∪  𝐴 )  →  ( ( 𝑀 ‘ ( 𝑒  ∩  ∪  𝐴 ) )  =  0  ∨  ( 𝑀 ‘ ( 𝑒  ∩  ∪  𝐴 ) )  =  +∞ ) ) ) | 
						
							| 64 | 49 51 26 27 52 53 63 | esumpr2 | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  Σ* 𝑦  ∈  { ( 𝑒  ∩  ∪  𝐴 ) ,  ( 𝑒  ∖  ∪  𝐴 ) } ( 𝑀 ‘ 𝑦 )  =  ( ( 𝑀 ‘ ( 𝑒  ∩  ∪  𝐴 ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  ∪  𝐴 ) ) ) ) | 
						
							| 65 | 42 47 64 | 3brtr3d | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  ( 𝑀 ‘ 𝑒 )  ≤  ( ( 𝑀 ‘ ( 𝑒  ∩  ∪  𝐴 ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  ∪  𝐴 ) ) ) ) | 
						
							| 66 | 19 65 | jca | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  ( ( ( 𝑀 ‘ ( 𝑒  ∩  ∪  𝐴 ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  ∪  𝐴 ) ) )  ≤  ( 𝑀 ‘ 𝑒 )  ∧  ( 𝑀 ‘ 𝑒 )  ≤  ( ( 𝑀 ‘ ( 𝑒  ∩  ∪  𝐴 ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  ∪  𝐴 ) ) ) ) ) | 
						
							| 67 |  | iccssxr | ⊢ ( 0 [,] +∞ )  ⊆  ℝ* | 
						
							| 68 | 67 52 | sselid | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  ( 𝑀 ‘ ( 𝑒  ∩  ∪  𝐴 ) )  ∈  ℝ* ) | 
						
							| 69 | 67 53 | sselid | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  ( 𝑀 ‘ ( 𝑒  ∖  ∪  𝐴 ) )  ∈  ℝ* ) | 
						
							| 70 | 68 69 | xaddcld | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  ( ( 𝑀 ‘ ( 𝑒  ∩  ∪  𝐴 ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  ∪  𝐴 ) ) )  ∈  ℝ* ) | 
						
							| 71 | 2 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  ( 𝑀 ‘ 𝑒 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 72 | 67 71 | sselid | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  ( 𝑀 ‘ 𝑒 )  ∈  ℝ* ) | 
						
							| 73 |  | xrletri3 | ⊢ ( ( ( ( 𝑀 ‘ ( 𝑒  ∩  ∪  𝐴 ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  ∪  𝐴 ) ) )  ∈  ℝ*  ∧  ( 𝑀 ‘ 𝑒 )  ∈  ℝ* )  →  ( ( ( 𝑀 ‘ ( 𝑒  ∩  ∪  𝐴 ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  ∪  𝐴 ) ) )  =  ( 𝑀 ‘ 𝑒 )  ↔  ( ( ( 𝑀 ‘ ( 𝑒  ∩  ∪  𝐴 ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  ∪  𝐴 ) ) )  ≤  ( 𝑀 ‘ 𝑒 )  ∧  ( 𝑀 ‘ 𝑒 )  ≤  ( ( 𝑀 ‘ ( 𝑒  ∩  ∪  𝐴 ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  ∪  𝐴 ) ) ) ) ) ) | 
						
							| 74 | 70 72 73 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  ( ( ( 𝑀 ‘ ( 𝑒  ∩  ∪  𝐴 ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  ∪  𝐴 ) ) )  =  ( 𝑀 ‘ 𝑒 )  ↔  ( ( ( 𝑀 ‘ ( 𝑒  ∩  ∪  𝐴 ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  ∪  𝐴 ) ) )  ≤  ( 𝑀 ‘ 𝑒 )  ∧  ( 𝑀 ‘ 𝑒 )  ≤  ( ( 𝑀 ‘ ( 𝑒  ∩  ∪  𝐴 ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  ∪  𝐴 ) ) ) ) ) ) | 
						
							| 75 | 66 74 | mpbird | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  ( ( 𝑀 ‘ ( 𝑒  ∩  ∪  𝐴 ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  ∪  𝐴 ) ) )  =  ( 𝑀 ‘ 𝑒 ) ) | 
						
							| 76 | 75 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑒  ∈  𝒫  𝑂 ( ( 𝑀 ‘ ( 𝑒  ∩  ∪  𝐴 ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  ∪  𝐴 ) ) )  =  ( 𝑀 ‘ 𝑒 ) ) | 
						
							| 77 | 1 2 | elcarsg | ⊢ ( 𝜑  →  ( ∪  𝐴  ∈  ( toCaraSiga ‘ 𝑀 )  ↔  ( ∪  𝐴  ⊆  𝑂  ∧  ∀ 𝑒  ∈  𝒫  𝑂 ( ( 𝑀 ‘ ( 𝑒  ∩  ∪  𝐴 ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  ∪  𝐴 ) ) )  =  ( 𝑀 ‘ 𝑒 ) ) ) ) | 
						
							| 78 | 10 76 77 | mpbir2and | ⊢ ( 𝜑  →  ∪  𝐴  ∈  ( toCaraSiga ‘ 𝑀 ) ) |