Step |
Hyp |
Ref |
Expression |
1 |
|
carsgval.1 |
⊢ ( 𝜑 → 𝑂 ∈ 𝑉 ) |
2 |
|
carsgval.2 |
⊢ ( 𝜑 → 𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) ) |
3 |
|
carsgsiga.1 |
⊢ ( 𝜑 → ( 𝑀 ‘ ∅ ) = 0 ) |
4 |
|
carsgsiga.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂 ) → ( 𝑀 ‘ ∪ 𝑥 ) ≤ Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) |
5 |
|
carsgsiga.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂 ) → ( 𝑀 ‘ 𝑥 ) ≤ ( 𝑀 ‘ 𝑦 ) ) |
6 |
|
carsgclctun.1 |
⊢ ( 𝜑 → 𝐴 ≼ ω ) |
7 |
|
carsgclctun.2 |
⊢ ( 𝜑 → 𝐴 ⊆ ( toCaraSiga ‘ 𝑀 ) ) |
8 |
|
carsgclctunlem3.1 |
⊢ ( 𝜑 → 𝐸 ∈ 𝒫 𝑂 ) |
9 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
10 |
8
|
elpwincl1 |
⊢ ( 𝜑 → ( 𝐸 ∩ ∪ 𝐴 ) ∈ 𝒫 𝑂 ) |
11 |
2 10
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝐴 ) ) ∈ ( 0 [,] +∞ ) ) |
12 |
9 11
|
sselid |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝐴 ) ) ∈ ℝ* ) |
13 |
8
|
elpwdifcl |
⊢ ( 𝜑 → ( 𝐸 ∖ ∪ 𝐴 ) ∈ 𝒫 𝑂 ) |
14 |
2 13
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝐴 ) ) ∈ ( 0 [,] +∞ ) ) |
15 |
9 14
|
sselid |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝐴 ) ) ∈ ℝ* ) |
16 |
12 15
|
xaddcld |
⊢ ( 𝜑 → ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝐴 ) ) ) ∈ ℝ* ) |
17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐸 ) = +∞ ) → ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝐴 ) ) ) ∈ ℝ* ) |
18 |
|
pnfge |
⊢ ( ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝐴 ) ) ) ∈ ℝ* → ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝐴 ) ) ) ≤ +∞ ) |
19 |
17 18
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐸 ) = +∞ ) → ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝐴 ) ) ) ≤ +∞ ) |
20 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐸 ) = +∞ ) → ( 𝑀 ‘ 𝐸 ) = +∞ ) |
21 |
19 20
|
breqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐸 ) = +∞ ) → ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝐴 ) ) ) ≤ ( 𝑀 ‘ 𝐸 ) ) |
22 |
|
unieq |
⊢ ( 𝐴 = ∅ → ∪ 𝐴 = ∪ ∅ ) |
23 |
|
uni0 |
⊢ ∪ ∅ = ∅ |
24 |
22 23
|
eqtrdi |
⊢ ( 𝐴 = ∅ → ∪ 𝐴 = ∅ ) |
25 |
24
|
ineq2d |
⊢ ( 𝐴 = ∅ → ( 𝐸 ∩ ∪ 𝐴 ) = ( 𝐸 ∩ ∅ ) ) |
26 |
|
in0 |
⊢ ( 𝐸 ∩ ∅ ) = ∅ |
27 |
25 26
|
eqtrdi |
⊢ ( 𝐴 = ∅ → ( 𝐸 ∩ ∪ 𝐴 ) = ∅ ) |
28 |
27
|
fveq2d |
⊢ ( 𝐴 = ∅ → ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝐴 ) ) = ( 𝑀 ‘ ∅ ) ) |
29 |
24
|
difeq2d |
⊢ ( 𝐴 = ∅ → ( 𝐸 ∖ ∪ 𝐴 ) = ( 𝐸 ∖ ∅ ) ) |
30 |
|
dif0 |
⊢ ( 𝐸 ∖ ∅ ) = 𝐸 |
31 |
29 30
|
eqtrdi |
⊢ ( 𝐴 = ∅ → ( 𝐸 ∖ ∪ 𝐴 ) = 𝐸 ) |
32 |
31
|
fveq2d |
⊢ ( 𝐴 = ∅ → ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝐴 ) ) = ( 𝑀 ‘ 𝐸 ) ) |
33 |
28 32
|
oveq12d |
⊢ ( 𝐴 = ∅ → ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝐴 ) ) ) = ( ( 𝑀 ‘ ∅ ) +𝑒 ( 𝑀 ‘ 𝐸 ) ) ) |
34 |
33
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐴 = ∅ ) → ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝐴 ) ) ) = ( ( 𝑀 ‘ ∅ ) +𝑒 ( 𝑀 ‘ 𝐸 ) ) ) |
35 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = ∅ ) → ( 𝑀 ‘ ∅ ) = 0 ) |
36 |
35
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐴 = ∅ ) → ( ( 𝑀 ‘ ∅ ) +𝑒 ( 𝑀 ‘ 𝐸 ) ) = ( 0 +𝑒 ( 𝑀 ‘ 𝐸 ) ) ) |
37 |
2 8
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐸 ) ∈ ( 0 [,] +∞ ) ) |
38 |
9 37
|
sselid |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐸 ) ∈ ℝ* ) |
39 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = ∅ ) → ( 𝑀 ‘ 𝐸 ) ∈ ℝ* ) |
40 |
|
xaddid2 |
⊢ ( ( 𝑀 ‘ 𝐸 ) ∈ ℝ* → ( 0 +𝑒 ( 𝑀 ‘ 𝐸 ) ) = ( 𝑀 ‘ 𝐸 ) ) |
41 |
39 40
|
syl |
⊢ ( ( 𝜑 ∧ 𝐴 = ∅ ) → ( 0 +𝑒 ( 𝑀 ‘ 𝐸 ) ) = ( 𝑀 ‘ 𝐸 ) ) |
42 |
34 36 41
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝐴 = ∅ ) → ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝐴 ) ) ) = ( 𝑀 ‘ 𝐸 ) ) |
43 |
42 39
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝐴 = ∅ ) → ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝐴 ) ) ) ∈ ℝ* ) |
44 |
|
xeqlelt |
⊢ ( ( ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝐴 ) ) ) ∈ ℝ* ∧ ( 𝑀 ‘ 𝐸 ) ∈ ℝ* ) → ( ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝐴 ) ) ) = ( 𝑀 ‘ 𝐸 ) ↔ ( ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝐴 ) ) ) ≤ ( 𝑀 ‘ 𝐸 ) ∧ ¬ ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝐴 ) ) ) < ( 𝑀 ‘ 𝐸 ) ) ) ) |
45 |
43 39 44
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐴 = ∅ ) → ( ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝐴 ) ) ) = ( 𝑀 ‘ 𝐸 ) ↔ ( ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝐴 ) ) ) ≤ ( 𝑀 ‘ 𝐸 ) ∧ ¬ ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝐴 ) ) ) < ( 𝑀 ‘ 𝐸 ) ) ) ) |
46 |
42 45
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝐴 = ∅ ) → ( ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝐴 ) ) ) ≤ ( 𝑀 ‘ 𝐸 ) ∧ ¬ ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝐴 ) ) ) < ( 𝑀 ‘ 𝐸 ) ) ) |
47 |
46
|
simpld |
⊢ ( ( 𝜑 ∧ 𝐴 = ∅ ) → ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝐴 ) ) ) ≤ ( 𝑀 ‘ 𝐸 ) ) |
48 |
47
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐸 ) ≠ +∞ ) ∧ 𝐴 = ∅ ) → ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝐴 ) ) ) ≤ ( 𝑀 ‘ 𝐸 ) ) |
49 |
|
fvex |
⊢ ( toCaraSiga ‘ 𝑀 ) ∈ V |
50 |
49
|
ssex |
⊢ ( 𝐴 ⊆ ( toCaraSiga ‘ 𝑀 ) → 𝐴 ∈ V ) |
51 |
|
0sdomg |
⊢ ( 𝐴 ∈ V → ( ∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
52 |
7 50 51
|
3syl |
⊢ ( 𝜑 → ( ∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
53 |
52
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) → ∅ ≺ 𝐴 ) |
54 |
53
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐸 ) ≠ +∞ ) ∧ 𝐴 ≠ ∅ ) → ∅ ≺ 𝐴 ) |
55 |
|
nnenom |
⊢ ℕ ≈ ω |
56 |
55
|
ensymi |
⊢ ω ≈ ℕ |
57 |
|
domentr |
⊢ ( ( 𝐴 ≼ ω ∧ ω ≈ ℕ ) → 𝐴 ≼ ℕ ) |
58 |
6 56 57
|
sylancl |
⊢ ( 𝜑 → 𝐴 ≼ ℕ ) |
59 |
58
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐸 ) ≠ +∞ ) ∧ 𝐴 ≠ ∅ ) → 𝐴 ≼ ℕ ) |
60 |
|
fodomr |
⊢ ( ( ∅ ≺ 𝐴 ∧ 𝐴 ≼ ℕ ) → ∃ 𝑓 𝑓 : ℕ –onto→ 𝐴 ) |
61 |
54 59 60
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐸 ) ≠ +∞ ) ∧ 𝐴 ≠ ∅ ) → ∃ 𝑓 𝑓 : ℕ –onto→ 𝐴 ) |
62 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝑓 ‘ 𝑛 ) = ( 𝑓 ‘ 𝑘 ) ) |
63 |
62
|
iundisj |
⊢ ∪ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) = ∪ 𝑛 ∈ ℕ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑘 ) ) |
64 |
|
fofn |
⊢ ( 𝑓 : ℕ –onto→ 𝐴 → 𝑓 Fn ℕ ) |
65 |
|
fniunfv |
⊢ ( 𝑓 Fn ℕ → ∪ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) = ∪ ran 𝑓 ) |
66 |
64 65
|
syl |
⊢ ( 𝑓 : ℕ –onto→ 𝐴 → ∪ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) = ∪ ran 𝑓 ) |
67 |
|
forn |
⊢ ( 𝑓 : ℕ –onto→ 𝐴 → ran 𝑓 = 𝐴 ) |
68 |
67
|
unieqd |
⊢ ( 𝑓 : ℕ –onto→ 𝐴 → ∪ ran 𝑓 = ∪ 𝐴 ) |
69 |
66 68
|
eqtrd |
⊢ ( 𝑓 : ℕ –onto→ 𝐴 → ∪ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) = ∪ 𝐴 ) |
70 |
69
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐸 ) ≠ +∞ ) ∧ 𝐴 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) → ∪ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) = ∪ 𝐴 ) |
71 |
63 70
|
eqtr3id |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐸 ) ≠ +∞ ) ∧ 𝐴 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) → ∪ 𝑛 ∈ ℕ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑘 ) ) = ∪ 𝐴 ) |
72 |
71
|
ineq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐸 ) ≠ +∞ ) ∧ 𝐴 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) → ( 𝐸 ∩ ∪ 𝑛 ∈ ℕ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑘 ) ) ) = ( 𝐸 ∩ ∪ 𝐴 ) ) |
73 |
72
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐸 ) ≠ +∞ ) ∧ 𝐴 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) → ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ℕ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑘 ) ) ) ) = ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝐴 ) ) ) |
74 |
71
|
difeq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐸 ) ≠ +∞ ) ∧ 𝐴 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) → ( 𝐸 ∖ ∪ 𝑛 ∈ ℕ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑘 ) ) ) = ( 𝐸 ∖ ∪ 𝐴 ) ) |
75 |
74
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐸 ) ≠ +∞ ) ∧ 𝐴 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) → ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑛 ∈ ℕ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑘 ) ) ) ) = ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝐴 ) ) ) |
76 |
73 75
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐸 ) ≠ +∞ ) ∧ 𝐴 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) → ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ℕ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑘 ) ) ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑛 ∈ ℕ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑘 ) ) ) ) ) = ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝐴 ) ) ) ) |
77 |
1
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐸 ) ≠ +∞ ) ∧ 𝐴 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) → 𝑂 ∈ 𝑉 ) |
78 |
2
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐸 ) ≠ +∞ ) ∧ 𝐴 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) → 𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) ) |
79 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐸 ) ≠ +∞ ) ∧ 𝐴 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) → ( 𝑀 ‘ ∅ ) = 0 ) |
80 |
4
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐸 ) ≠ +∞ ) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂 ) → ( 𝑀 ‘ ∪ 𝑥 ) ≤ Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) |
81 |
80
|
3adant1r |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐸 ) ≠ +∞ ) ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂 ) → ( 𝑀 ‘ ∪ 𝑥 ) ≤ Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) |
82 |
81
|
3adant1r |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐸 ) ≠ +∞ ) ∧ 𝐴 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂 ) → ( 𝑀 ‘ ∪ 𝑥 ) ≤ Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) |
83 |
5
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐸 ) ≠ +∞ ) ∧ 𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂 ) → ( 𝑀 ‘ 𝑥 ) ≤ ( 𝑀 ‘ 𝑦 ) ) |
84 |
83
|
3adant1r |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐸 ) ≠ +∞ ) ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂 ) → ( 𝑀 ‘ 𝑥 ) ≤ ( 𝑀 ‘ 𝑦 ) ) |
85 |
84
|
3adant1r |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐸 ) ≠ +∞ ) ∧ 𝐴 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) ∧ 𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂 ) → ( 𝑀 ‘ 𝑥 ) ≤ ( 𝑀 ‘ 𝑦 ) ) |
86 |
62
|
iundisj2 |
⊢ Disj 𝑛 ∈ ℕ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑘 ) ) |
87 |
86
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐸 ) ≠ +∞ ) ∧ 𝐴 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) → Disj 𝑛 ∈ ℕ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑘 ) ) ) |
88 |
77
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐸 ) ≠ +∞ ) ∧ 𝐴 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) ∧ 𝑛 ∈ ℕ ) → 𝑂 ∈ 𝑉 ) |
89 |
78
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐸 ) ≠ +∞ ) ∧ 𝐴 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) ∧ 𝑛 ∈ ℕ ) → 𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) ) |
90 |
7
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐸 ) ≠ +∞ ) ∧ 𝐴 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) ∧ 𝑛 ∈ ℕ ) → 𝐴 ⊆ ( toCaraSiga ‘ 𝑀 ) ) |
91 |
|
fof |
⊢ ( 𝑓 : ℕ –onto→ 𝐴 → 𝑓 : ℕ ⟶ 𝐴 ) |
92 |
91
|
ad2antlr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐸 ) ≠ +∞ ) ∧ 𝐴 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) ∧ 𝑛 ∈ ℕ ) → 𝑓 : ℕ ⟶ 𝐴 ) |
93 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐸 ) ≠ +∞ ) ∧ 𝐴 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ ) |
94 |
92 93
|
ffvelrnd |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐸 ) ≠ +∞ ) ∧ 𝐴 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑓 ‘ 𝑛 ) ∈ 𝐴 ) |
95 |
90 94
|
sseldd |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐸 ) ≠ +∞ ) ∧ 𝐴 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑓 ‘ 𝑛 ) ∈ ( toCaraSiga ‘ 𝑀 ) ) |
96 |
79
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐸 ) ≠ +∞ ) ∧ 𝐴 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ‘ ∅ ) = 0 ) |
97 |
82
|
3adant1r |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐸 ) ≠ +∞ ) ∧ 𝐴 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂 ) → ( 𝑀 ‘ ∪ 𝑥 ) ≤ Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) |
98 |
88 89 96 97
|
carsgsigalem |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐸 ) ≠ +∞ ) ∧ 𝐴 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑔 ∈ 𝒫 𝑂 ) → ( 𝑀 ‘ ( 𝑒 ∪ 𝑔 ) ) ≤ ( ( 𝑀 ‘ 𝑒 ) +𝑒 ( 𝑀 ‘ 𝑔 ) ) ) |
99 |
91
|
ad3antlr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐸 ) ≠ +∞ ) ∧ 𝐴 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ..^ 𝑛 ) ) → 𝑓 : ℕ ⟶ 𝐴 ) |
100 |
|
fzossnn |
⊢ ( 1 ..^ 𝑛 ) ⊆ ℕ |
101 |
100
|
a1i |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐸 ) ≠ +∞ ) ∧ 𝐴 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) ∧ 𝑛 ∈ ℕ ) → ( 1 ..^ 𝑛 ) ⊆ ℕ ) |
102 |
101
|
sselda |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐸 ) ≠ +∞ ) ∧ 𝐴 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ..^ 𝑛 ) ) → 𝑘 ∈ ℕ ) |
103 |
99 102
|
ffvelrnd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐸 ) ≠ +∞ ) ∧ 𝐴 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ..^ 𝑛 ) ) → ( 𝑓 ‘ 𝑘 ) ∈ 𝐴 ) |
104 |
103
|
ralrimiva |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐸 ) ≠ +∞ ) ∧ 𝐴 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) ∧ 𝑛 ∈ ℕ ) → ∀ 𝑘 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑘 ) ∈ 𝐴 ) |
105 |
|
dfiun2g |
⊢ ( ∀ 𝑘 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑘 ) ∈ 𝐴 → ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑘 ) = ∪ { 𝑧 ∣ ∃ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝑧 = ( 𝑓 ‘ 𝑘 ) } ) |
106 |
104 105
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐸 ) ≠ +∞ ) ∧ 𝐴 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) ∧ 𝑛 ∈ ℕ ) → ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑘 ) = ∪ { 𝑧 ∣ ∃ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝑧 = ( 𝑓 ‘ 𝑘 ) } ) |
107 |
|
eqid |
⊢ ( 𝑘 ∈ ( 1 ..^ 𝑛 ) ↦ ( 𝑓 ‘ 𝑘 ) ) = ( 𝑘 ∈ ( 1 ..^ 𝑛 ) ↦ ( 𝑓 ‘ 𝑘 ) ) |
108 |
107
|
rnmpt |
⊢ ran ( 𝑘 ∈ ( 1 ..^ 𝑛 ) ↦ ( 𝑓 ‘ 𝑘 ) ) = { 𝑧 ∣ ∃ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝑧 = ( 𝑓 ‘ 𝑘 ) } |
109 |
|
fzofi |
⊢ ( 1 ..^ 𝑛 ) ∈ Fin |
110 |
|
mptfi |
⊢ ( ( 1 ..^ 𝑛 ) ∈ Fin → ( 𝑘 ∈ ( 1 ..^ 𝑛 ) ↦ ( 𝑓 ‘ 𝑘 ) ) ∈ Fin ) |
111 |
|
rnfi |
⊢ ( ( 𝑘 ∈ ( 1 ..^ 𝑛 ) ↦ ( 𝑓 ‘ 𝑘 ) ) ∈ Fin → ran ( 𝑘 ∈ ( 1 ..^ 𝑛 ) ↦ ( 𝑓 ‘ 𝑘 ) ) ∈ Fin ) |
112 |
109 110 111
|
mp2b |
⊢ ran ( 𝑘 ∈ ( 1 ..^ 𝑛 ) ↦ ( 𝑓 ‘ 𝑘 ) ) ∈ Fin |
113 |
108 112
|
eqeltrri |
⊢ { 𝑧 ∣ ∃ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝑧 = ( 𝑓 ‘ 𝑘 ) } ∈ Fin |
114 |
113
|
a1i |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐸 ) ≠ +∞ ) ∧ 𝐴 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) ∧ 𝑛 ∈ ℕ ) → { 𝑧 ∣ ∃ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝑧 = ( 𝑓 ‘ 𝑘 ) } ∈ Fin ) |
115 |
90
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐸 ) ≠ +∞ ) ∧ 𝐴 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ..^ 𝑛 ) ) → 𝐴 ⊆ ( toCaraSiga ‘ 𝑀 ) ) |
116 |
115 103
|
sseldd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐸 ) ≠ +∞ ) ∧ 𝐴 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ..^ 𝑛 ) ) → ( 𝑓 ‘ 𝑘 ) ∈ ( toCaraSiga ‘ 𝑀 ) ) |
117 |
116
|
ralrimiva |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐸 ) ≠ +∞ ) ∧ 𝐴 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) ∧ 𝑛 ∈ ℕ ) → ∀ 𝑘 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑘 ) ∈ ( toCaraSiga ‘ 𝑀 ) ) |
118 |
107
|
rnmptss |
⊢ ( ∀ 𝑘 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑘 ) ∈ ( toCaraSiga ‘ 𝑀 ) → ran ( 𝑘 ∈ ( 1 ..^ 𝑛 ) ↦ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( toCaraSiga ‘ 𝑀 ) ) |
119 |
117 118
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐸 ) ≠ +∞ ) ∧ 𝐴 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) ∧ 𝑛 ∈ ℕ ) → ran ( 𝑘 ∈ ( 1 ..^ 𝑛 ) ↦ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( toCaraSiga ‘ 𝑀 ) ) |
120 |
108 119
|
eqsstrrid |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐸 ) ≠ +∞ ) ∧ 𝐴 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) ∧ 𝑛 ∈ ℕ ) → { 𝑧 ∣ ∃ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝑧 = ( 𝑓 ‘ 𝑘 ) } ⊆ ( toCaraSiga ‘ 𝑀 ) ) |
121 |
88 89 96 97 114 120
|
fiunelcarsg |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐸 ) ≠ +∞ ) ∧ 𝐴 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) ∧ 𝑛 ∈ ℕ ) → ∪ { 𝑧 ∣ ∃ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝑧 = ( 𝑓 ‘ 𝑘 ) } ∈ ( toCaraSiga ‘ 𝑀 ) ) |
122 |
106 121
|
eqeltrd |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐸 ) ≠ +∞ ) ∧ 𝐴 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) ∧ 𝑛 ∈ ℕ ) → ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑘 ) ∈ ( toCaraSiga ‘ 𝑀 ) ) |
123 |
88 89 95 98 122
|
difelcarsg2 |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐸 ) ≠ +∞ ) ∧ 𝐴 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑘 ) ) ∈ ( toCaraSiga ‘ 𝑀 ) ) |
124 |
8
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐸 ) ≠ +∞ ) ∧ 𝐴 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) → 𝐸 ∈ 𝒫 𝑂 ) |
125 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐸 ) ≠ +∞ ) ∧ 𝐴 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) → ( 𝑀 ‘ 𝐸 ) ≠ +∞ ) |
126 |
77 78 79 82 85 87 123 124 125
|
carsgclctunlem2 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐸 ) ≠ +∞ ) ∧ 𝐴 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) → ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ℕ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑘 ) ) ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑛 ∈ ℕ ( ( 𝑓 ‘ 𝑛 ) ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑘 ) ) ) ) ) ≤ ( 𝑀 ‘ 𝐸 ) ) |
127 |
76 126
|
eqbrtrrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐸 ) ≠ +∞ ) ∧ 𝐴 ≠ ∅ ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) → ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝐴 ) ) ) ≤ ( 𝑀 ‘ 𝐸 ) ) |
128 |
61 127
|
exlimddv |
⊢ ( ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐸 ) ≠ +∞ ) ∧ 𝐴 ≠ ∅ ) → ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝐴 ) ) ) ≤ ( 𝑀 ‘ 𝐸 ) ) |
129 |
48 128
|
pm2.61dane |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐸 ) ≠ +∞ ) → ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝐴 ) ) ) ≤ ( 𝑀 ‘ 𝐸 ) ) |
130 |
21 129
|
pm2.61dane |
⊢ ( 𝜑 → ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝐴 ) ) ) ≤ ( 𝑀 ‘ 𝐸 ) ) |