| Step | Hyp | Ref | Expression | 
						
							| 1 |  | carsgval.1 | ⊢ ( 𝜑  →  𝑂  ∈  𝑉 ) | 
						
							| 2 |  | carsgval.2 | ⊢ ( 𝜑  →  𝑀 : 𝒫  𝑂 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 3 |  | carsgsiga.1 | ⊢ ( 𝜑  →  ( 𝑀 ‘ ∅ )  =  0 ) | 
						
							| 4 |  | carsgsiga.2 | ⊢ ( ( 𝜑  ∧  𝑥  ≼  ω  ∧  𝑥  ⊆  𝒫  𝑂 )  →  ( 𝑀 ‘ ∪  𝑥 )  ≤  Σ* 𝑦  ∈  𝑥 ( 𝑀 ‘ 𝑦 ) ) | 
						
							| 5 |  | carsgsiga.3 | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  𝑦  ∧  𝑦  ∈  𝒫  𝑂 )  →  ( 𝑀 ‘ 𝑥 )  ≤  ( 𝑀 ‘ 𝑦 ) ) | 
						
							| 6 |  | carsgclctun.1 | ⊢ ( 𝜑  →  𝐴  ≼  ω ) | 
						
							| 7 |  | carsgclctun.2 | ⊢ ( 𝜑  →  𝐴  ⊆  ( toCaraSiga ‘ 𝑀 ) ) | 
						
							| 8 |  | carsgclctunlem3.1 | ⊢ ( 𝜑  →  𝐸  ∈  𝒫  𝑂 ) | 
						
							| 9 |  | iccssxr | ⊢ ( 0 [,] +∞ )  ⊆  ℝ* | 
						
							| 10 | 8 | elpwincl1 | ⊢ ( 𝜑  →  ( 𝐸  ∩  ∪  𝐴 )  ∈  𝒫  𝑂 ) | 
						
							| 11 | 2 10 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝐴 ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 12 | 9 11 | sselid | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝐴 ) )  ∈  ℝ* ) | 
						
							| 13 | 8 | elpwdifcl | ⊢ ( 𝜑  →  ( 𝐸  ∖  ∪  𝐴 )  ∈  𝒫  𝑂 ) | 
						
							| 14 | 2 13 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝐸  ∖  ∪  𝐴 ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 15 | 9 14 | sselid | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝐸  ∖  ∪  𝐴 ) )  ∈  ℝ* ) | 
						
							| 16 | 12 15 | xaddcld | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝐴 ) )  +𝑒  ( 𝑀 ‘ ( 𝐸  ∖  ∪  𝐴 ) ) )  ∈  ℝ* ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐸 )  =  +∞ )  →  ( ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝐴 ) )  +𝑒  ( 𝑀 ‘ ( 𝐸  ∖  ∪  𝐴 ) ) )  ∈  ℝ* ) | 
						
							| 18 |  | pnfge | ⊢ ( ( ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝐴 ) )  +𝑒  ( 𝑀 ‘ ( 𝐸  ∖  ∪  𝐴 ) ) )  ∈  ℝ*  →  ( ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝐴 ) )  +𝑒  ( 𝑀 ‘ ( 𝐸  ∖  ∪  𝐴 ) ) )  ≤  +∞ ) | 
						
							| 19 | 17 18 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐸 )  =  +∞ )  →  ( ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝐴 ) )  +𝑒  ( 𝑀 ‘ ( 𝐸  ∖  ∪  𝐴 ) ) )  ≤  +∞ ) | 
						
							| 20 |  | simpr | ⊢ ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐸 )  =  +∞ )  →  ( 𝑀 ‘ 𝐸 )  =  +∞ ) | 
						
							| 21 | 19 20 | breqtrrd | ⊢ ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐸 )  =  +∞ )  →  ( ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝐴 ) )  +𝑒  ( 𝑀 ‘ ( 𝐸  ∖  ∪  𝐴 ) ) )  ≤  ( 𝑀 ‘ 𝐸 ) ) | 
						
							| 22 |  | unieq | ⊢ ( 𝐴  =  ∅  →  ∪  𝐴  =  ∪  ∅ ) | 
						
							| 23 |  | uni0 | ⊢ ∪  ∅  =  ∅ | 
						
							| 24 | 22 23 | eqtrdi | ⊢ ( 𝐴  =  ∅  →  ∪  𝐴  =  ∅ ) | 
						
							| 25 | 24 | ineq2d | ⊢ ( 𝐴  =  ∅  →  ( 𝐸  ∩  ∪  𝐴 )  =  ( 𝐸  ∩  ∅ ) ) | 
						
							| 26 |  | in0 | ⊢ ( 𝐸  ∩  ∅ )  =  ∅ | 
						
							| 27 | 25 26 | eqtrdi | ⊢ ( 𝐴  =  ∅  →  ( 𝐸  ∩  ∪  𝐴 )  =  ∅ ) | 
						
							| 28 | 27 | fveq2d | ⊢ ( 𝐴  =  ∅  →  ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝐴 ) )  =  ( 𝑀 ‘ ∅ ) ) | 
						
							| 29 | 24 | difeq2d | ⊢ ( 𝐴  =  ∅  →  ( 𝐸  ∖  ∪  𝐴 )  =  ( 𝐸  ∖  ∅ ) ) | 
						
							| 30 |  | dif0 | ⊢ ( 𝐸  ∖  ∅ )  =  𝐸 | 
						
							| 31 | 29 30 | eqtrdi | ⊢ ( 𝐴  =  ∅  →  ( 𝐸  ∖  ∪  𝐴 )  =  𝐸 ) | 
						
							| 32 | 31 | fveq2d | ⊢ ( 𝐴  =  ∅  →  ( 𝑀 ‘ ( 𝐸  ∖  ∪  𝐴 ) )  =  ( 𝑀 ‘ 𝐸 ) ) | 
						
							| 33 | 28 32 | oveq12d | ⊢ ( 𝐴  =  ∅  →  ( ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝐴 ) )  +𝑒  ( 𝑀 ‘ ( 𝐸  ∖  ∪  𝐴 ) ) )  =  ( ( 𝑀 ‘ ∅ )  +𝑒  ( 𝑀 ‘ 𝐸 ) ) ) | 
						
							| 34 | 33 | adantl | ⊢ ( ( 𝜑  ∧  𝐴  =  ∅ )  →  ( ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝐴 ) )  +𝑒  ( 𝑀 ‘ ( 𝐸  ∖  ∪  𝐴 ) ) )  =  ( ( 𝑀 ‘ ∅ )  +𝑒  ( 𝑀 ‘ 𝐸 ) ) ) | 
						
							| 35 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  =  ∅ )  →  ( 𝑀 ‘ ∅ )  =  0 ) | 
						
							| 36 | 35 | oveq1d | ⊢ ( ( 𝜑  ∧  𝐴  =  ∅ )  →  ( ( 𝑀 ‘ ∅ )  +𝑒  ( 𝑀 ‘ 𝐸 ) )  =  ( 0  +𝑒  ( 𝑀 ‘ 𝐸 ) ) ) | 
						
							| 37 | 2 8 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝐸 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 38 | 9 37 | sselid | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝐸 )  ∈  ℝ* ) | 
						
							| 39 | 38 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  =  ∅ )  →  ( 𝑀 ‘ 𝐸 )  ∈  ℝ* ) | 
						
							| 40 |  | xaddlid | ⊢ ( ( 𝑀 ‘ 𝐸 )  ∈  ℝ*  →  ( 0  +𝑒  ( 𝑀 ‘ 𝐸 ) )  =  ( 𝑀 ‘ 𝐸 ) ) | 
						
							| 41 | 39 40 | syl | ⊢ ( ( 𝜑  ∧  𝐴  =  ∅ )  →  ( 0  +𝑒  ( 𝑀 ‘ 𝐸 ) )  =  ( 𝑀 ‘ 𝐸 ) ) | 
						
							| 42 | 34 36 41 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝐴  =  ∅ )  →  ( ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝐴 ) )  +𝑒  ( 𝑀 ‘ ( 𝐸  ∖  ∪  𝐴 ) ) )  =  ( 𝑀 ‘ 𝐸 ) ) | 
						
							| 43 | 42 39 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝐴  =  ∅ )  →  ( ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝐴 ) )  +𝑒  ( 𝑀 ‘ ( 𝐸  ∖  ∪  𝐴 ) ) )  ∈  ℝ* ) | 
						
							| 44 |  | xeqlelt | ⊢ ( ( ( ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝐴 ) )  +𝑒  ( 𝑀 ‘ ( 𝐸  ∖  ∪  𝐴 ) ) )  ∈  ℝ*  ∧  ( 𝑀 ‘ 𝐸 )  ∈  ℝ* )  →  ( ( ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝐴 ) )  +𝑒  ( 𝑀 ‘ ( 𝐸  ∖  ∪  𝐴 ) ) )  =  ( 𝑀 ‘ 𝐸 )  ↔  ( ( ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝐴 ) )  +𝑒  ( 𝑀 ‘ ( 𝐸  ∖  ∪  𝐴 ) ) )  ≤  ( 𝑀 ‘ 𝐸 )  ∧  ¬  ( ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝐴 ) )  +𝑒  ( 𝑀 ‘ ( 𝐸  ∖  ∪  𝐴 ) ) )  <  ( 𝑀 ‘ 𝐸 ) ) ) ) | 
						
							| 45 | 43 39 44 | syl2anc | ⊢ ( ( 𝜑  ∧  𝐴  =  ∅ )  →  ( ( ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝐴 ) )  +𝑒  ( 𝑀 ‘ ( 𝐸  ∖  ∪  𝐴 ) ) )  =  ( 𝑀 ‘ 𝐸 )  ↔  ( ( ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝐴 ) )  +𝑒  ( 𝑀 ‘ ( 𝐸  ∖  ∪  𝐴 ) ) )  ≤  ( 𝑀 ‘ 𝐸 )  ∧  ¬  ( ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝐴 ) )  +𝑒  ( 𝑀 ‘ ( 𝐸  ∖  ∪  𝐴 ) ) )  <  ( 𝑀 ‘ 𝐸 ) ) ) ) | 
						
							| 46 | 42 45 | mpbid | ⊢ ( ( 𝜑  ∧  𝐴  =  ∅ )  →  ( ( ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝐴 ) )  +𝑒  ( 𝑀 ‘ ( 𝐸  ∖  ∪  𝐴 ) ) )  ≤  ( 𝑀 ‘ 𝐸 )  ∧  ¬  ( ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝐴 ) )  +𝑒  ( 𝑀 ‘ ( 𝐸  ∖  ∪  𝐴 ) ) )  <  ( 𝑀 ‘ 𝐸 ) ) ) | 
						
							| 47 | 46 | simpld | ⊢ ( ( 𝜑  ∧  𝐴  =  ∅ )  →  ( ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝐴 ) )  +𝑒  ( 𝑀 ‘ ( 𝐸  ∖  ∪  𝐴 ) ) )  ≤  ( 𝑀 ‘ 𝐸 ) ) | 
						
							| 48 | 47 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐸 )  ≠  +∞ )  ∧  𝐴  =  ∅ )  →  ( ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝐴 ) )  +𝑒  ( 𝑀 ‘ ( 𝐸  ∖  ∪  𝐴 ) ) )  ≤  ( 𝑀 ‘ 𝐸 ) ) | 
						
							| 49 |  | fvex | ⊢ ( toCaraSiga ‘ 𝑀 )  ∈  V | 
						
							| 50 | 49 | ssex | ⊢ ( 𝐴  ⊆  ( toCaraSiga ‘ 𝑀 )  →  𝐴  ∈  V ) | 
						
							| 51 |  | 0sdomg | ⊢ ( 𝐴  ∈  V  →  ( ∅  ≺  𝐴  ↔  𝐴  ≠  ∅ ) ) | 
						
							| 52 | 7 50 51 | 3syl | ⊢ ( 𝜑  →  ( ∅  ≺  𝐴  ↔  𝐴  ≠  ∅ ) ) | 
						
							| 53 | 52 | biimpar | ⊢ ( ( 𝜑  ∧  𝐴  ≠  ∅ )  →  ∅  ≺  𝐴 ) | 
						
							| 54 | 53 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐸 )  ≠  +∞ )  ∧  𝐴  ≠  ∅ )  →  ∅  ≺  𝐴 ) | 
						
							| 55 |  | nnenom | ⊢ ℕ  ≈  ω | 
						
							| 56 | 55 | ensymi | ⊢ ω  ≈  ℕ | 
						
							| 57 |  | domentr | ⊢ ( ( 𝐴  ≼  ω  ∧  ω  ≈  ℕ )  →  𝐴  ≼  ℕ ) | 
						
							| 58 | 6 56 57 | sylancl | ⊢ ( 𝜑  →  𝐴  ≼  ℕ ) | 
						
							| 59 | 58 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐸 )  ≠  +∞ )  ∧  𝐴  ≠  ∅ )  →  𝐴  ≼  ℕ ) | 
						
							| 60 |  | fodomr | ⊢ ( ( ∅  ≺  𝐴  ∧  𝐴  ≼  ℕ )  →  ∃ 𝑓 𝑓 : ℕ –onto→ 𝐴 ) | 
						
							| 61 | 54 59 60 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐸 )  ≠  +∞ )  ∧  𝐴  ≠  ∅ )  →  ∃ 𝑓 𝑓 : ℕ –onto→ 𝐴 ) | 
						
							| 62 |  | fveq2 | ⊢ ( 𝑛  =  𝑘  →  ( 𝑓 ‘ 𝑛 )  =  ( 𝑓 ‘ 𝑘 ) ) | 
						
							| 63 | 62 | iundisj | ⊢ ∪  𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 )  =  ∪  𝑛  ∈  ℕ ( ( 𝑓 ‘ 𝑛 )  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑘 ) ) | 
						
							| 64 |  | fofn | ⊢ ( 𝑓 : ℕ –onto→ 𝐴  →  𝑓  Fn  ℕ ) | 
						
							| 65 |  | fniunfv | ⊢ ( 𝑓  Fn  ℕ  →  ∪  𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 )  =  ∪  ran  𝑓 ) | 
						
							| 66 | 64 65 | syl | ⊢ ( 𝑓 : ℕ –onto→ 𝐴  →  ∪  𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 )  =  ∪  ran  𝑓 ) | 
						
							| 67 |  | forn | ⊢ ( 𝑓 : ℕ –onto→ 𝐴  →  ran  𝑓  =  𝐴 ) | 
						
							| 68 | 67 | unieqd | ⊢ ( 𝑓 : ℕ –onto→ 𝐴  →  ∪  ran  𝑓  =  ∪  𝐴 ) | 
						
							| 69 | 66 68 | eqtrd | ⊢ ( 𝑓 : ℕ –onto→ 𝐴  →  ∪  𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 )  =  ∪  𝐴 ) | 
						
							| 70 | 69 | adantl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐸 )  ≠  +∞ )  ∧  𝐴  ≠  ∅ )  ∧  𝑓 : ℕ –onto→ 𝐴 )  →  ∪  𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 )  =  ∪  𝐴 ) | 
						
							| 71 | 63 70 | eqtr3id | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐸 )  ≠  +∞ )  ∧  𝐴  ≠  ∅ )  ∧  𝑓 : ℕ –onto→ 𝐴 )  →  ∪  𝑛  ∈  ℕ ( ( 𝑓 ‘ 𝑛 )  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑘 ) )  =  ∪  𝐴 ) | 
						
							| 72 | 71 | ineq2d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐸 )  ≠  +∞ )  ∧  𝐴  ≠  ∅ )  ∧  𝑓 : ℕ –onto→ 𝐴 )  →  ( 𝐸  ∩  ∪  𝑛  ∈  ℕ ( ( 𝑓 ‘ 𝑛 )  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑘 ) ) )  =  ( 𝐸  ∩  ∪  𝐴 ) ) | 
						
							| 73 | 72 | fveq2d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐸 )  ≠  +∞ )  ∧  𝐴  ≠  ∅ )  ∧  𝑓 : ℕ –onto→ 𝐴 )  →  ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝑛  ∈  ℕ ( ( 𝑓 ‘ 𝑛 )  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑘 ) ) ) )  =  ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝐴 ) ) ) | 
						
							| 74 | 71 | difeq2d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐸 )  ≠  +∞ )  ∧  𝐴  ≠  ∅ )  ∧  𝑓 : ℕ –onto→ 𝐴 )  →  ( 𝐸  ∖  ∪  𝑛  ∈  ℕ ( ( 𝑓 ‘ 𝑛 )  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑘 ) ) )  =  ( 𝐸  ∖  ∪  𝐴 ) ) | 
						
							| 75 | 74 | fveq2d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐸 )  ≠  +∞ )  ∧  𝐴  ≠  ∅ )  ∧  𝑓 : ℕ –onto→ 𝐴 )  →  ( 𝑀 ‘ ( 𝐸  ∖  ∪  𝑛  ∈  ℕ ( ( 𝑓 ‘ 𝑛 )  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑘 ) ) ) )  =  ( 𝑀 ‘ ( 𝐸  ∖  ∪  𝐴 ) ) ) | 
						
							| 76 | 73 75 | oveq12d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐸 )  ≠  +∞ )  ∧  𝐴  ≠  ∅ )  ∧  𝑓 : ℕ –onto→ 𝐴 )  →  ( ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝑛  ∈  ℕ ( ( 𝑓 ‘ 𝑛 )  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑘 ) ) ) )  +𝑒  ( 𝑀 ‘ ( 𝐸  ∖  ∪  𝑛  ∈  ℕ ( ( 𝑓 ‘ 𝑛 )  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑘 ) ) ) ) )  =  ( ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝐴 ) )  +𝑒  ( 𝑀 ‘ ( 𝐸  ∖  ∪  𝐴 ) ) ) ) | 
						
							| 77 | 1 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐸 )  ≠  +∞ )  ∧  𝐴  ≠  ∅ )  ∧  𝑓 : ℕ –onto→ 𝐴 )  →  𝑂  ∈  𝑉 ) | 
						
							| 78 | 2 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐸 )  ≠  +∞ )  ∧  𝐴  ≠  ∅ )  ∧  𝑓 : ℕ –onto→ 𝐴 )  →  𝑀 : 𝒫  𝑂 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 79 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐸 )  ≠  +∞ )  ∧  𝐴  ≠  ∅ )  ∧  𝑓 : ℕ –onto→ 𝐴 )  →  ( 𝑀 ‘ ∅ )  =  0 ) | 
						
							| 80 | 4 | 3adant1r | ⊢ ( ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐸 )  ≠  +∞ )  ∧  𝑥  ≼  ω  ∧  𝑥  ⊆  𝒫  𝑂 )  →  ( 𝑀 ‘ ∪  𝑥 )  ≤  Σ* 𝑦  ∈  𝑥 ( 𝑀 ‘ 𝑦 ) ) | 
						
							| 81 | 80 | 3adant1r | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐸 )  ≠  +∞ )  ∧  𝐴  ≠  ∅ )  ∧  𝑥  ≼  ω  ∧  𝑥  ⊆  𝒫  𝑂 )  →  ( 𝑀 ‘ ∪  𝑥 )  ≤  Σ* 𝑦  ∈  𝑥 ( 𝑀 ‘ 𝑦 ) ) | 
						
							| 82 | 81 | 3adant1r | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐸 )  ≠  +∞ )  ∧  𝐴  ≠  ∅ )  ∧  𝑓 : ℕ –onto→ 𝐴 )  ∧  𝑥  ≼  ω  ∧  𝑥  ⊆  𝒫  𝑂 )  →  ( 𝑀 ‘ ∪  𝑥 )  ≤  Σ* 𝑦  ∈  𝑥 ( 𝑀 ‘ 𝑦 ) ) | 
						
							| 83 | 5 | 3adant1r | ⊢ ( ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐸 )  ≠  +∞ )  ∧  𝑥  ⊆  𝑦  ∧  𝑦  ∈  𝒫  𝑂 )  →  ( 𝑀 ‘ 𝑥 )  ≤  ( 𝑀 ‘ 𝑦 ) ) | 
						
							| 84 | 83 | 3adant1r | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐸 )  ≠  +∞ )  ∧  𝐴  ≠  ∅ )  ∧  𝑥  ⊆  𝑦  ∧  𝑦  ∈  𝒫  𝑂 )  →  ( 𝑀 ‘ 𝑥 )  ≤  ( 𝑀 ‘ 𝑦 ) ) | 
						
							| 85 | 84 | 3adant1r | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐸 )  ≠  +∞ )  ∧  𝐴  ≠  ∅ )  ∧  𝑓 : ℕ –onto→ 𝐴 )  ∧  𝑥  ⊆  𝑦  ∧  𝑦  ∈  𝒫  𝑂 )  →  ( 𝑀 ‘ 𝑥 )  ≤  ( 𝑀 ‘ 𝑦 ) ) | 
						
							| 86 | 62 | iundisj2 | ⊢ Disj  𝑛  ∈  ℕ ( ( 𝑓 ‘ 𝑛 )  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑘 ) ) | 
						
							| 87 | 86 | a1i | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐸 )  ≠  +∞ )  ∧  𝐴  ≠  ∅ )  ∧  𝑓 : ℕ –onto→ 𝐴 )  →  Disj  𝑛  ∈  ℕ ( ( 𝑓 ‘ 𝑛 )  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑘 ) ) ) | 
						
							| 88 | 77 | adantr | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐸 )  ≠  +∞ )  ∧  𝐴  ≠  ∅ )  ∧  𝑓 : ℕ –onto→ 𝐴 )  ∧  𝑛  ∈  ℕ )  →  𝑂  ∈  𝑉 ) | 
						
							| 89 | 78 | adantr | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐸 )  ≠  +∞ )  ∧  𝐴  ≠  ∅ )  ∧  𝑓 : ℕ –onto→ 𝐴 )  ∧  𝑛  ∈  ℕ )  →  𝑀 : 𝒫  𝑂 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 90 | 7 | ad4antr | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐸 )  ≠  +∞ )  ∧  𝐴  ≠  ∅ )  ∧  𝑓 : ℕ –onto→ 𝐴 )  ∧  𝑛  ∈  ℕ )  →  𝐴  ⊆  ( toCaraSiga ‘ 𝑀 ) ) | 
						
							| 91 |  | fof | ⊢ ( 𝑓 : ℕ –onto→ 𝐴  →  𝑓 : ℕ ⟶ 𝐴 ) | 
						
							| 92 | 91 | ad2antlr | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐸 )  ≠  +∞ )  ∧  𝐴  ≠  ∅ )  ∧  𝑓 : ℕ –onto→ 𝐴 )  ∧  𝑛  ∈  ℕ )  →  𝑓 : ℕ ⟶ 𝐴 ) | 
						
							| 93 |  | simpr | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐸 )  ≠  +∞ )  ∧  𝐴  ≠  ∅ )  ∧  𝑓 : ℕ –onto→ 𝐴 )  ∧  𝑛  ∈  ℕ )  →  𝑛  ∈  ℕ ) | 
						
							| 94 | 92 93 | ffvelcdmd | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐸 )  ≠  +∞ )  ∧  𝐴  ≠  ∅ )  ∧  𝑓 : ℕ –onto→ 𝐴 )  ∧  𝑛  ∈  ℕ )  →  ( 𝑓 ‘ 𝑛 )  ∈  𝐴 ) | 
						
							| 95 | 90 94 | sseldd | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐸 )  ≠  +∞ )  ∧  𝐴  ≠  ∅ )  ∧  𝑓 : ℕ –onto→ 𝐴 )  ∧  𝑛  ∈  ℕ )  →  ( 𝑓 ‘ 𝑛 )  ∈  ( toCaraSiga ‘ 𝑀 ) ) | 
						
							| 96 | 79 | adantr | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐸 )  ≠  +∞ )  ∧  𝐴  ≠  ∅ )  ∧  𝑓 : ℕ –onto→ 𝐴 )  ∧  𝑛  ∈  ℕ )  →  ( 𝑀 ‘ ∅ )  =  0 ) | 
						
							| 97 | 82 | 3adant1r | ⊢ ( ( ( ( ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐸 )  ≠  +∞ )  ∧  𝐴  ≠  ∅ )  ∧  𝑓 : ℕ –onto→ 𝐴 )  ∧  𝑛  ∈  ℕ )  ∧  𝑥  ≼  ω  ∧  𝑥  ⊆  𝒫  𝑂 )  →  ( 𝑀 ‘ ∪  𝑥 )  ≤  Σ* 𝑦  ∈  𝑥 ( 𝑀 ‘ 𝑦 ) ) | 
						
							| 98 | 88 89 96 97 | carsgsigalem | ⊢ ( ( ( ( ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐸 )  ≠  +∞ )  ∧  𝐴  ≠  ∅ )  ∧  𝑓 : ℕ –onto→ 𝐴 )  ∧  𝑛  ∈  ℕ )  ∧  𝑒  ∈  𝒫  𝑂  ∧  𝑔  ∈  𝒫  𝑂 )  →  ( 𝑀 ‘ ( 𝑒  ∪  𝑔 ) )  ≤  ( ( 𝑀 ‘ 𝑒 )  +𝑒  ( 𝑀 ‘ 𝑔 ) ) ) | 
						
							| 99 | 91 | ad3antlr | ⊢ ( ( ( ( ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐸 )  ≠  +∞ )  ∧  𝐴  ≠  ∅ )  ∧  𝑓 : ℕ –onto→ 𝐴 )  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ..^ 𝑛 ) )  →  𝑓 : ℕ ⟶ 𝐴 ) | 
						
							| 100 |  | fzossnn | ⊢ ( 1 ..^ 𝑛 )  ⊆  ℕ | 
						
							| 101 | 100 | a1i | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐸 )  ≠  +∞ )  ∧  𝐴  ≠  ∅ )  ∧  𝑓 : ℕ –onto→ 𝐴 )  ∧  𝑛  ∈  ℕ )  →  ( 1 ..^ 𝑛 )  ⊆  ℕ ) | 
						
							| 102 | 101 | sselda | ⊢ ( ( ( ( ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐸 )  ≠  +∞ )  ∧  𝐴  ≠  ∅ )  ∧  𝑓 : ℕ –onto→ 𝐴 )  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ..^ 𝑛 ) )  →  𝑘  ∈  ℕ ) | 
						
							| 103 | 99 102 | ffvelcdmd | ⊢ ( ( ( ( ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐸 )  ≠  +∞ )  ∧  𝐴  ≠  ∅ )  ∧  𝑓 : ℕ –onto→ 𝐴 )  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ..^ 𝑛 ) )  →  ( 𝑓 ‘ 𝑘 )  ∈  𝐴 ) | 
						
							| 104 | 103 | ralrimiva | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐸 )  ≠  +∞ )  ∧  𝐴  ≠  ∅ )  ∧  𝑓 : ℕ –onto→ 𝐴 )  ∧  𝑛  ∈  ℕ )  →  ∀ 𝑘  ∈  ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑘 )  ∈  𝐴 ) | 
						
							| 105 |  | dfiun2g | ⊢ ( ∀ 𝑘  ∈  ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑘 )  ∈  𝐴  →  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑘 )  =  ∪  { 𝑧  ∣  ∃ 𝑘  ∈  ( 1 ..^ 𝑛 ) 𝑧  =  ( 𝑓 ‘ 𝑘 ) } ) | 
						
							| 106 | 104 105 | syl | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐸 )  ≠  +∞ )  ∧  𝐴  ≠  ∅ )  ∧  𝑓 : ℕ –onto→ 𝐴 )  ∧  𝑛  ∈  ℕ )  →  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑘 )  =  ∪  { 𝑧  ∣  ∃ 𝑘  ∈  ( 1 ..^ 𝑛 ) 𝑧  =  ( 𝑓 ‘ 𝑘 ) } ) | 
						
							| 107 |  | eqid | ⊢ ( 𝑘  ∈  ( 1 ..^ 𝑛 )  ↦  ( 𝑓 ‘ 𝑘 ) )  =  ( 𝑘  ∈  ( 1 ..^ 𝑛 )  ↦  ( 𝑓 ‘ 𝑘 ) ) | 
						
							| 108 | 107 | rnmpt | ⊢ ran  ( 𝑘  ∈  ( 1 ..^ 𝑛 )  ↦  ( 𝑓 ‘ 𝑘 ) )  =  { 𝑧  ∣  ∃ 𝑘  ∈  ( 1 ..^ 𝑛 ) 𝑧  =  ( 𝑓 ‘ 𝑘 ) } | 
						
							| 109 |  | fzofi | ⊢ ( 1 ..^ 𝑛 )  ∈  Fin | 
						
							| 110 |  | mptfi | ⊢ ( ( 1 ..^ 𝑛 )  ∈  Fin  →  ( 𝑘  ∈  ( 1 ..^ 𝑛 )  ↦  ( 𝑓 ‘ 𝑘 ) )  ∈  Fin ) | 
						
							| 111 |  | rnfi | ⊢ ( ( 𝑘  ∈  ( 1 ..^ 𝑛 )  ↦  ( 𝑓 ‘ 𝑘 ) )  ∈  Fin  →  ran  ( 𝑘  ∈  ( 1 ..^ 𝑛 )  ↦  ( 𝑓 ‘ 𝑘 ) )  ∈  Fin ) | 
						
							| 112 | 109 110 111 | mp2b | ⊢ ran  ( 𝑘  ∈  ( 1 ..^ 𝑛 )  ↦  ( 𝑓 ‘ 𝑘 ) )  ∈  Fin | 
						
							| 113 | 108 112 | eqeltrri | ⊢ { 𝑧  ∣  ∃ 𝑘  ∈  ( 1 ..^ 𝑛 ) 𝑧  =  ( 𝑓 ‘ 𝑘 ) }  ∈  Fin | 
						
							| 114 | 113 | a1i | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐸 )  ≠  +∞ )  ∧  𝐴  ≠  ∅ )  ∧  𝑓 : ℕ –onto→ 𝐴 )  ∧  𝑛  ∈  ℕ )  →  { 𝑧  ∣  ∃ 𝑘  ∈  ( 1 ..^ 𝑛 ) 𝑧  =  ( 𝑓 ‘ 𝑘 ) }  ∈  Fin ) | 
						
							| 115 | 90 | adantr | ⊢ ( ( ( ( ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐸 )  ≠  +∞ )  ∧  𝐴  ≠  ∅ )  ∧  𝑓 : ℕ –onto→ 𝐴 )  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ..^ 𝑛 ) )  →  𝐴  ⊆  ( toCaraSiga ‘ 𝑀 ) ) | 
						
							| 116 | 115 103 | sseldd | ⊢ ( ( ( ( ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐸 )  ≠  +∞ )  ∧  𝐴  ≠  ∅ )  ∧  𝑓 : ℕ –onto→ 𝐴 )  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ..^ 𝑛 ) )  →  ( 𝑓 ‘ 𝑘 )  ∈  ( toCaraSiga ‘ 𝑀 ) ) | 
						
							| 117 | 116 | ralrimiva | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐸 )  ≠  +∞ )  ∧  𝐴  ≠  ∅ )  ∧  𝑓 : ℕ –onto→ 𝐴 )  ∧  𝑛  ∈  ℕ )  →  ∀ 𝑘  ∈  ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑘 )  ∈  ( toCaraSiga ‘ 𝑀 ) ) | 
						
							| 118 | 107 | rnmptss | ⊢ ( ∀ 𝑘  ∈  ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑘 )  ∈  ( toCaraSiga ‘ 𝑀 )  →  ran  ( 𝑘  ∈  ( 1 ..^ 𝑛 )  ↦  ( 𝑓 ‘ 𝑘 ) )  ⊆  ( toCaraSiga ‘ 𝑀 ) ) | 
						
							| 119 | 117 118 | syl | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐸 )  ≠  +∞ )  ∧  𝐴  ≠  ∅ )  ∧  𝑓 : ℕ –onto→ 𝐴 )  ∧  𝑛  ∈  ℕ )  →  ran  ( 𝑘  ∈  ( 1 ..^ 𝑛 )  ↦  ( 𝑓 ‘ 𝑘 ) )  ⊆  ( toCaraSiga ‘ 𝑀 ) ) | 
						
							| 120 | 108 119 | eqsstrrid | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐸 )  ≠  +∞ )  ∧  𝐴  ≠  ∅ )  ∧  𝑓 : ℕ –onto→ 𝐴 )  ∧  𝑛  ∈  ℕ )  →  { 𝑧  ∣  ∃ 𝑘  ∈  ( 1 ..^ 𝑛 ) 𝑧  =  ( 𝑓 ‘ 𝑘 ) }  ⊆  ( toCaraSiga ‘ 𝑀 ) ) | 
						
							| 121 | 88 89 96 97 114 120 | fiunelcarsg | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐸 )  ≠  +∞ )  ∧  𝐴  ≠  ∅ )  ∧  𝑓 : ℕ –onto→ 𝐴 )  ∧  𝑛  ∈  ℕ )  →  ∪  { 𝑧  ∣  ∃ 𝑘  ∈  ( 1 ..^ 𝑛 ) 𝑧  =  ( 𝑓 ‘ 𝑘 ) }  ∈  ( toCaraSiga ‘ 𝑀 ) ) | 
						
							| 122 | 106 121 | eqeltrd | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐸 )  ≠  +∞ )  ∧  𝐴  ≠  ∅ )  ∧  𝑓 : ℕ –onto→ 𝐴 )  ∧  𝑛  ∈  ℕ )  →  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑘 )  ∈  ( toCaraSiga ‘ 𝑀 ) ) | 
						
							| 123 | 88 89 95 98 122 | difelcarsg2 | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐸 )  ≠  +∞ )  ∧  𝐴  ≠  ∅ )  ∧  𝑓 : ℕ –onto→ 𝐴 )  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑓 ‘ 𝑛 )  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑘 ) )  ∈  ( toCaraSiga ‘ 𝑀 ) ) | 
						
							| 124 | 8 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐸 )  ≠  +∞ )  ∧  𝐴  ≠  ∅ )  ∧  𝑓 : ℕ –onto→ 𝐴 )  →  𝐸  ∈  𝒫  𝑂 ) | 
						
							| 125 |  | simpllr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐸 )  ≠  +∞ )  ∧  𝐴  ≠  ∅ )  ∧  𝑓 : ℕ –onto→ 𝐴 )  →  ( 𝑀 ‘ 𝐸 )  ≠  +∞ ) | 
						
							| 126 | 77 78 79 82 85 87 123 124 125 | carsgclctunlem2 | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐸 )  ≠  +∞ )  ∧  𝐴  ≠  ∅ )  ∧  𝑓 : ℕ –onto→ 𝐴 )  →  ( ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝑛  ∈  ℕ ( ( 𝑓 ‘ 𝑛 )  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑘 ) ) ) )  +𝑒  ( 𝑀 ‘ ( 𝐸  ∖  ∪  𝑛  ∈  ℕ ( ( 𝑓 ‘ 𝑛 )  ∖  ∪  𝑘  ∈  ( 1 ..^ 𝑛 ) ( 𝑓 ‘ 𝑘 ) ) ) ) )  ≤  ( 𝑀 ‘ 𝐸 ) ) | 
						
							| 127 | 76 126 | eqbrtrrd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐸 )  ≠  +∞ )  ∧  𝐴  ≠  ∅ )  ∧  𝑓 : ℕ –onto→ 𝐴 )  →  ( ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝐴 ) )  +𝑒  ( 𝑀 ‘ ( 𝐸  ∖  ∪  𝐴 ) ) )  ≤  ( 𝑀 ‘ 𝐸 ) ) | 
						
							| 128 | 61 127 | exlimddv | ⊢ ( ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐸 )  ≠  +∞ )  ∧  𝐴  ≠  ∅ )  →  ( ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝐴 ) )  +𝑒  ( 𝑀 ‘ ( 𝐸  ∖  ∪  𝐴 ) ) )  ≤  ( 𝑀 ‘ 𝐸 ) ) | 
						
							| 129 | 48 128 | pm2.61dane | ⊢ ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐸 )  ≠  +∞ )  →  ( ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝐴 ) )  +𝑒  ( 𝑀 ‘ ( 𝐸  ∖  ∪  𝐴 ) ) )  ≤  ( 𝑀 ‘ 𝐸 ) ) | 
						
							| 130 | 21 129 | pm2.61dane | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ ( 𝐸  ∩  ∪  𝐴 ) )  +𝑒  ( 𝑀 ‘ ( 𝐸  ∖  ∪  𝐴 ) ) )  ≤  ( 𝑀 ‘ 𝐸 ) ) |