Step |
Hyp |
Ref |
Expression |
1 |
|
carsgval.1 |
⊢ ( 𝜑 → 𝑂 ∈ 𝑉 ) |
2 |
|
carsgval.2 |
⊢ ( 𝜑 → 𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) ) |
3 |
|
carsgsiga.1 |
⊢ ( 𝜑 → ( 𝑀 ‘ ∅ ) = 0 ) |
4 |
|
carsgsiga.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂 ) → ( 𝑀 ‘ ∪ 𝑥 ) ≤ Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) |
5 |
|
carsgsiga.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂 ) → ( 𝑀 ‘ 𝑥 ) ≤ ( 𝑀 ‘ 𝑦 ) ) |
6 |
|
carsgclctunlem2.1 |
⊢ ( 𝜑 → Disj 𝑘 ∈ ℕ 𝐴 ) |
7 |
|
carsgclctunlem2.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐴 ∈ ( toCaraSiga ‘ 𝑀 ) ) |
8 |
|
carsgclctunlem2.3 |
⊢ ( 𝜑 → 𝐸 ∈ 𝒫 𝑂 ) |
9 |
|
carsgclctunlem2.4 |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐸 ) ≠ +∞ ) |
10 |
|
iunin2 |
⊢ ∪ 𝑘 ∈ ℕ ( 𝐸 ∩ 𝐴 ) = ( 𝐸 ∩ ∪ 𝑘 ∈ ℕ 𝐴 ) |
11 |
10
|
fveq2i |
⊢ ( 𝑀 ‘ ∪ 𝑘 ∈ ℕ ( 𝐸 ∩ 𝐴 ) ) = ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ℕ 𝐴 ) ) |
12 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
13 |
|
nnex |
⊢ ℕ ∈ V |
14 |
13
|
a1i |
⊢ ( 𝜑 → ℕ ∈ V ) |
15 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐸 ∈ 𝒫 𝑂 ) |
16 |
15
|
elpwincl1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐸 ∩ 𝐴 ) ∈ 𝒫 𝑂 ) |
17 |
14 16
|
elpwiuncl |
⊢ ( 𝜑 → ∪ 𝑘 ∈ ℕ ( 𝐸 ∩ 𝐴 ) ∈ 𝒫 𝑂 ) |
18 |
2 17
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑀 ‘ ∪ 𝑘 ∈ ℕ ( 𝐸 ∩ 𝐴 ) ) ∈ ( 0 [,] +∞ ) ) |
19 |
12 18
|
sselid |
⊢ ( 𝜑 → ( 𝑀 ‘ ∪ 𝑘 ∈ ℕ ( 𝐸 ∩ 𝐴 ) ) ∈ ℝ* ) |
20 |
11 19
|
eqeltrrid |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ∈ ℝ* ) |
21 |
2 8
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐸 ) ∈ ( 0 [,] +∞ ) ) |
22 |
12 21
|
sselid |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐸 ) ∈ ℝ* ) |
23 |
8
|
elpwdifcl |
⊢ ( 𝜑 → ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ∈ 𝒫 𝑂 ) |
24 |
2 23
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ∈ ( 0 [,] +∞ ) ) |
25 |
12 24
|
sselid |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ∈ ℝ* ) |
26 |
25
|
xnegcld |
⊢ ( 𝜑 → -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ∈ ℝ* ) |
27 |
22 26
|
xaddcld |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝐸 ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ) ∈ ℝ* ) |
28 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) ) |
29 |
28 16
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑀 ‘ ( 𝐸 ∩ 𝐴 ) ) ∈ ( 0 [,] +∞ ) ) |
30 |
29
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ ( 𝑀 ‘ ( 𝐸 ∩ 𝐴 ) ) ∈ ( 0 [,] +∞ ) ) |
31 |
|
nfcv |
⊢ Ⅎ 𝑘 ℕ |
32 |
31
|
esumcl |
⊢ ( ( ℕ ∈ V ∧ ∀ 𝑘 ∈ ℕ ( 𝑀 ‘ ( 𝐸 ∩ 𝐴 ) ) ∈ ( 0 [,] +∞ ) ) → Σ* 𝑘 ∈ ℕ ( 𝑀 ‘ ( 𝐸 ∩ 𝐴 ) ) ∈ ( 0 [,] +∞ ) ) |
33 |
14 30 32
|
syl2anc |
⊢ ( 𝜑 → Σ* 𝑘 ∈ ℕ ( 𝑀 ‘ ( 𝐸 ∩ 𝐴 ) ) ∈ ( 0 [,] +∞ ) ) |
34 |
12 33
|
sselid |
⊢ ( 𝜑 → Σ* 𝑘 ∈ ℕ ( 𝑀 ‘ ( 𝐸 ∩ 𝐴 ) ) ∈ ℝ* ) |
35 |
16
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ ( 𝐸 ∩ 𝐴 ) ∈ 𝒫 𝑂 ) |
36 |
|
dfiun3g |
⊢ ( ∀ 𝑘 ∈ ℕ ( 𝐸 ∩ 𝐴 ) ∈ 𝒫 𝑂 → ∪ 𝑘 ∈ ℕ ( 𝐸 ∩ 𝐴 ) = ∪ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ) |
37 |
35 36
|
syl |
⊢ ( 𝜑 → ∪ 𝑘 ∈ ℕ ( 𝐸 ∩ 𝐴 ) = ∪ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ) |
38 |
37
|
fveq2d |
⊢ ( 𝜑 → ( 𝑀 ‘ ∪ 𝑘 ∈ ℕ ( 𝐸 ∩ 𝐴 ) ) = ( 𝑀 ‘ ∪ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ) ) |
39 |
|
nnct |
⊢ ℕ ≼ ω |
40 |
|
mptct |
⊢ ( ℕ ≼ ω → ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ≼ ω ) |
41 |
|
rnct |
⊢ ( ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ≼ ω → ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ≼ ω ) |
42 |
39 40 41
|
mp2b |
⊢ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ≼ ω |
43 |
42
|
a1i |
⊢ ( 𝜑 → ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ≼ ω ) |
44 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) = ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) |
45 |
44
|
rnmptss |
⊢ ( ∀ 𝑘 ∈ ℕ ( 𝐸 ∩ 𝐴 ) ∈ 𝒫 𝑂 → ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ⊆ 𝒫 𝑂 ) |
46 |
35 45
|
syl |
⊢ ( 𝜑 → ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ⊆ 𝒫 𝑂 ) |
47 |
|
mptexg |
⊢ ( ℕ ∈ V → ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ∈ V ) |
48 |
|
rnexg |
⊢ ( ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ∈ V → ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ∈ V ) |
49 |
13 47 48
|
mp2b |
⊢ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ∈ V |
50 |
|
breq1 |
⊢ ( 𝑥 = ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) → ( 𝑥 ≼ ω ↔ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ≼ ω ) ) |
51 |
|
sseq1 |
⊢ ( 𝑥 = ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) → ( 𝑥 ⊆ 𝒫 𝑂 ↔ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ⊆ 𝒫 𝑂 ) ) |
52 |
50 51
|
3anbi23d |
⊢ ( 𝑥 = ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) → ( ( 𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂 ) ↔ ( 𝜑 ∧ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ≼ ω ∧ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ⊆ 𝒫 𝑂 ) ) ) |
53 |
|
unieq |
⊢ ( 𝑥 = ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) → ∪ 𝑥 = ∪ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ) |
54 |
53
|
fveq2d |
⊢ ( 𝑥 = ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) → ( 𝑀 ‘ ∪ 𝑥 ) = ( 𝑀 ‘ ∪ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ) ) |
55 |
|
esumeq1 |
⊢ ( 𝑥 = ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) → Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) = Σ* 𝑦 ∈ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ( 𝑀 ‘ 𝑦 ) ) |
56 |
54 55
|
breq12d |
⊢ ( 𝑥 = ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) → ( ( 𝑀 ‘ ∪ 𝑥 ) ≤ Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ↔ ( 𝑀 ‘ ∪ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ) ≤ Σ* 𝑦 ∈ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ( 𝑀 ‘ 𝑦 ) ) ) |
57 |
52 56
|
imbi12d |
⊢ ( 𝑥 = ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) → ( ( ( 𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂 ) → ( 𝑀 ‘ ∪ 𝑥 ) ≤ Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) ↔ ( ( 𝜑 ∧ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ≼ ω ∧ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ⊆ 𝒫 𝑂 ) → ( 𝑀 ‘ ∪ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ) ≤ Σ* 𝑦 ∈ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ( 𝑀 ‘ 𝑦 ) ) ) ) |
58 |
57 4
|
vtoclg |
⊢ ( ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ∈ V → ( ( 𝜑 ∧ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ≼ ω ∧ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ⊆ 𝒫 𝑂 ) → ( 𝑀 ‘ ∪ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ) ≤ Σ* 𝑦 ∈ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ( 𝑀 ‘ 𝑦 ) ) ) |
59 |
49 58
|
ax-mp |
⊢ ( ( 𝜑 ∧ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ≼ ω ∧ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ⊆ 𝒫 𝑂 ) → ( 𝑀 ‘ ∪ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ) ≤ Σ* 𝑦 ∈ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ( 𝑀 ‘ 𝑦 ) ) |
60 |
43 46 59
|
mpd3an23 |
⊢ ( 𝜑 → ( 𝑀 ‘ ∪ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ) ≤ Σ* 𝑦 ∈ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ( 𝑀 ‘ 𝑦 ) ) |
61 |
38 60
|
eqbrtrd |
⊢ ( 𝜑 → ( 𝑀 ‘ ∪ 𝑘 ∈ ℕ ( 𝐸 ∩ 𝐴 ) ) ≤ Σ* 𝑦 ∈ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ( 𝑀 ‘ 𝑦 ) ) |
62 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝐸 ∩ 𝐴 ) → ( 𝑀 ‘ 𝑦 ) = ( 𝑀 ‘ ( 𝐸 ∩ 𝐴 ) ) ) |
63 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝐸 ∩ 𝐴 ) = ∅ ) → ( 𝐸 ∩ 𝐴 ) = ∅ ) |
64 |
63
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝐸 ∩ 𝐴 ) = ∅ ) → ( 𝑀 ‘ ( 𝐸 ∩ 𝐴 ) ) = ( 𝑀 ‘ ∅ ) ) |
65 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝐸 ∩ 𝐴 ) = ∅ ) → ( 𝑀 ‘ ∅ ) = 0 ) |
66 |
64 65
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝐸 ∩ 𝐴 ) = ∅ ) → ( 𝑀 ‘ ( 𝐸 ∩ 𝐴 ) ) = 0 ) |
67 |
|
disjin |
⊢ ( Disj 𝑘 ∈ ℕ 𝐴 → Disj 𝑘 ∈ ℕ ( 𝐴 ∩ 𝐸 ) ) |
68 |
6 67
|
syl |
⊢ ( 𝜑 → Disj 𝑘 ∈ ℕ ( 𝐴 ∩ 𝐸 ) ) |
69 |
|
incom |
⊢ ( 𝐴 ∩ 𝐸 ) = ( 𝐸 ∩ 𝐴 ) |
70 |
69
|
rgenw |
⊢ ∀ 𝑘 ∈ ℕ ( 𝐴 ∩ 𝐸 ) = ( 𝐸 ∩ 𝐴 ) |
71 |
|
disjeq2 |
⊢ ( ∀ 𝑘 ∈ ℕ ( 𝐴 ∩ 𝐸 ) = ( 𝐸 ∩ 𝐴 ) → ( Disj 𝑘 ∈ ℕ ( 𝐴 ∩ 𝐸 ) ↔ Disj 𝑘 ∈ ℕ ( 𝐸 ∩ 𝐴 ) ) ) |
72 |
70 71
|
ax-mp |
⊢ ( Disj 𝑘 ∈ ℕ ( 𝐴 ∩ 𝐸 ) ↔ Disj 𝑘 ∈ ℕ ( 𝐸 ∩ 𝐴 ) ) |
73 |
68 72
|
sylib |
⊢ ( 𝜑 → Disj 𝑘 ∈ ℕ ( 𝐸 ∩ 𝐴 ) ) |
74 |
62 14 29 16 66 73
|
esumrnmpt2 |
⊢ ( 𝜑 → Σ* 𝑦 ∈ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ( 𝑀 ‘ 𝑦 ) = Σ* 𝑘 ∈ ℕ ( 𝑀 ‘ ( 𝐸 ∩ 𝐴 ) ) ) |
75 |
61 74
|
breqtrd |
⊢ ( 𝜑 → ( 𝑀 ‘ ∪ 𝑘 ∈ ℕ ( 𝐸 ∩ 𝐴 ) ) ≤ Σ* 𝑘 ∈ ℕ ( 𝑀 ‘ ( 𝐸 ∩ 𝐴 ) ) ) |
76 |
|
difssd |
⊢ ( 𝜑 → ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ⊆ 𝐸 ) |
77 |
1 2 76 8 5
|
carsgmon |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ≤ ( 𝑀 ‘ 𝐸 ) ) |
78 |
21 24 77
|
xrge0subcld |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝐸 ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ) ∈ ( 0 [,] +∞ ) ) |
79 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) ) |
80 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐸 ∈ 𝒫 𝑂 ) |
81 |
80
|
elpwincl1 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ∈ 𝒫 𝑂 ) |
82 |
79 81
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ∈ ( 0 [,] +∞ ) ) |
83 |
12 82
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ∈ ℝ* ) |
84 |
|
xrge0neqmnf |
⊢ ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ∈ ( 0 [,] +∞ ) → ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ≠ -∞ ) |
85 |
82 84
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ≠ -∞ ) |
86 |
80
|
elpwdifcl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ∈ 𝒫 𝑂 ) |
87 |
79 86
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ∈ ( 0 [,] +∞ ) ) |
88 |
12 87
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ∈ ℝ* ) |
89 |
|
xrge0neqmnf |
⊢ ( ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ∈ ( 0 [,] +∞ ) → ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ≠ -∞ ) |
90 |
87 89
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ≠ -∞ ) |
91 |
88
|
xnegcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ∈ ℝ* ) |
92 |
|
xnegneg |
⊢ ( ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ∈ ℝ* → -𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) |
93 |
88 92
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → -𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) |
94 |
93
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = -∞ ) → -𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) |
95 |
|
xnegeq |
⊢ ( -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = -∞ → -𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = -𝑒 -∞ ) |
96 |
95
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = -∞ ) → -𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = -𝑒 -∞ ) |
97 |
|
xnegmnf |
⊢ -𝑒 -∞ = +∞ |
98 |
96 97
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = -∞ ) → -𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = +∞ ) |
99 |
94 98
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = -∞ ) → ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = +∞ ) |
100 |
99
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = -∞ ) → ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) = ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 +∞ ) ) |
101 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝜑 ) |
102 |
|
fz1ssnn |
⊢ ( 1 ... 𝑛 ) ⊆ ℕ |
103 |
102
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 1 ... 𝑛 ) ⊆ ℕ ) |
104 |
103
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝑘 ∈ ℕ ) |
105 |
101 104 7
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝐴 ∈ ( toCaraSiga ‘ 𝑀 ) ) |
106 |
105
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∀ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ∈ ( toCaraSiga ‘ 𝑀 ) ) |
107 |
|
dfiun3g |
⊢ ( ∀ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ∈ ( toCaraSiga ‘ 𝑀 ) → ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 = ∪ ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ) |
108 |
106 107
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 = ∪ ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ) |
109 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑂 ∈ 𝑉 ) |
110 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ‘ ∅ ) = 0 ) |
111 |
4
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂 ) → ( 𝑀 ‘ ∪ 𝑥 ) ≤ Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) |
112 |
|
fzfi |
⊢ ( 1 ... 𝑛 ) ∈ Fin |
113 |
|
mptfi |
⊢ ( ( 1 ... 𝑛 ) ∈ Fin → ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ∈ Fin ) |
114 |
|
rnfi |
⊢ ( ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ∈ Fin → ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ∈ Fin ) |
115 |
112 113 114
|
mp2b |
⊢ ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ∈ Fin |
116 |
115
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ∈ Fin ) |
117 |
|
eqid |
⊢ ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) = ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) |
118 |
117
|
rnmptss |
⊢ ( ∀ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ∈ ( toCaraSiga ‘ 𝑀 ) → ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ⊆ ( toCaraSiga ‘ 𝑀 ) ) |
119 |
106 118
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ⊆ ( toCaraSiga ‘ 𝑀 ) ) |
120 |
109 79 110 111 116 119
|
fiunelcarsg |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∪ ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ∈ ( toCaraSiga ‘ 𝑀 ) ) |
121 |
108 120
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ∈ ( toCaraSiga ‘ 𝑀 ) ) |
122 |
109 79
|
elcarsg |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ∈ ( toCaraSiga ‘ 𝑀 ) ↔ ( ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ⊆ 𝑂 ∧ ∀ 𝑒 ∈ 𝒫 𝑂 ( ( 𝑀 ‘ ( 𝑒 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) = ( 𝑀 ‘ 𝑒 ) ) ) ) |
123 |
121 122
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ⊆ 𝑂 ∧ ∀ 𝑒 ∈ 𝒫 𝑂 ( ( 𝑀 ‘ ( 𝑒 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) = ( 𝑀 ‘ 𝑒 ) ) ) |
124 |
123
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∀ 𝑒 ∈ 𝒫 𝑂 ( ( 𝑀 ‘ ( 𝑒 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) = ( 𝑀 ‘ 𝑒 ) ) |
125 |
|
ineq1 |
⊢ ( 𝑒 = 𝐸 → ( 𝑒 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) = ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) |
126 |
125
|
fveq2d |
⊢ ( 𝑒 = 𝐸 → ( 𝑀 ‘ ( 𝑒 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) |
127 |
|
difeq1 |
⊢ ( 𝑒 = 𝐸 → ( 𝑒 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) = ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) |
128 |
127
|
fveq2d |
⊢ ( 𝑒 = 𝐸 → ( 𝑀 ‘ ( 𝑒 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) |
129 |
126 128
|
oveq12d |
⊢ ( 𝑒 = 𝐸 → ( ( 𝑀 ‘ ( 𝑒 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) = ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) ) |
130 |
|
fveq2 |
⊢ ( 𝑒 = 𝐸 → ( 𝑀 ‘ 𝑒 ) = ( 𝑀 ‘ 𝐸 ) ) |
131 |
129 130
|
eqeq12d |
⊢ ( 𝑒 = 𝐸 → ( ( ( 𝑀 ‘ ( 𝑒 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) = ( 𝑀 ‘ 𝑒 ) ↔ ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) = ( 𝑀 ‘ 𝐸 ) ) ) |
132 |
131
|
rspcv |
⊢ ( 𝐸 ∈ 𝒫 𝑂 → ( ∀ 𝑒 ∈ 𝒫 𝑂 ( ( 𝑀 ‘ ( 𝑒 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) = ( 𝑀 ‘ 𝑒 ) → ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) = ( 𝑀 ‘ 𝐸 ) ) ) |
133 |
80 124 132
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) = ( 𝑀 ‘ 𝐸 ) ) |
134 |
133
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = -∞ ) → ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) = ( 𝑀 ‘ 𝐸 ) ) |
135 |
|
xaddpnf1 |
⊢ ( ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ∈ ℝ* ∧ ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ≠ -∞ ) → ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 +∞ ) = +∞ ) |
136 |
83 85 135
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 +∞ ) = +∞ ) |
137 |
136
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = -∞ ) → ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 +∞ ) = +∞ ) |
138 |
100 134 137
|
3eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = -∞ ) → ( 𝑀 ‘ 𝐸 ) = +∞ ) |
139 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = -∞ ) → ( 𝑀 ‘ 𝐸 ) ≠ +∞ ) |
140 |
139
|
neneqd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = -∞ ) → ¬ ( 𝑀 ‘ 𝐸 ) = +∞ ) |
141 |
138 140
|
pm2.65da |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ¬ -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = -∞ ) |
142 |
141
|
neqned |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ≠ -∞ ) |
143 |
|
xaddass |
⊢ ( ( ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ∈ ℝ* ∧ ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ≠ -∞ ) ∧ ( ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ∈ ℝ* ∧ ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ≠ -∞ ) ∧ ( -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ∈ ℝ* ∧ -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ≠ -∞ ) ) → ( ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) = ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 ( ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) ) ) |
144 |
83 85 88 90 91 142 143
|
syl222anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) = ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 ( ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) ) ) |
145 |
|
xnegid |
⊢ ( ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ∈ ℝ* → ( ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) = 0 ) |
146 |
88 145
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) = 0 ) |
147 |
146
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 ( ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) ) = ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 0 ) ) |
148 |
|
xaddid1 |
⊢ ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ∈ ℝ* → ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 0 ) = ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) |
149 |
83 148
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 0 ) = ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) |
150 |
144 147 149
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) = ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) |
151 |
133
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) = ( ( 𝑀 ‘ 𝐸 ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) ) |
152 |
108
|
ineq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) = ( 𝐸 ∩ ∪ ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ) ) |
153 |
152
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = ( 𝑀 ‘ ( 𝐸 ∩ ∪ ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ) ) ) |
154 |
|
mptss |
⊢ ( ( 1 ... 𝑛 ) ⊆ ℕ → ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ⊆ ( 𝑘 ∈ ℕ ↦ 𝐴 ) ) |
155 |
|
rnss |
⊢ ( ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ⊆ ( 𝑘 ∈ ℕ ↦ 𝐴 ) → ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ⊆ ran ( 𝑘 ∈ ℕ ↦ 𝐴 ) ) |
156 |
102 154 155
|
mp2b |
⊢ ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ⊆ ran ( 𝑘 ∈ ℕ ↦ 𝐴 ) |
157 |
156
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ⊆ ran ( 𝑘 ∈ ℕ ↦ 𝐴 ) ) |
158 |
|
disjrnmpt |
⊢ ( Disj 𝑘 ∈ ℕ 𝐴 → Disj 𝑦 ∈ ran ( 𝑘 ∈ ℕ ↦ 𝐴 ) 𝑦 ) |
159 |
6 158
|
syl |
⊢ ( 𝜑 → Disj 𝑦 ∈ ran ( 𝑘 ∈ ℕ ↦ 𝐴 ) 𝑦 ) |
160 |
159
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Disj 𝑦 ∈ ran ( 𝑘 ∈ ℕ ↦ 𝐴 ) 𝑦 ) |
161 |
|
disjss1 |
⊢ ( ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ⊆ ran ( 𝑘 ∈ ℕ ↦ 𝐴 ) → ( Disj 𝑦 ∈ ran ( 𝑘 ∈ ℕ ↦ 𝐴 ) 𝑦 → Disj 𝑦 ∈ ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) 𝑦 ) ) |
162 |
157 160 161
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Disj 𝑦 ∈ ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) 𝑦 ) |
163 |
109 79 110 111 116 119 162 80
|
carsgclctunlem1 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ‘ ( 𝐸 ∩ ∪ ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ) ) = Σ* 𝑦 ∈ ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ( 𝑀 ‘ ( 𝐸 ∩ 𝑦 ) ) ) |
164 |
|
ineq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝐸 ∩ 𝑦 ) = ( 𝐸 ∩ 𝐴 ) ) |
165 |
164
|
fveq2d |
⊢ ( 𝑦 = 𝐴 → ( 𝑀 ‘ ( 𝐸 ∩ 𝑦 ) ) = ( 𝑀 ‘ ( 𝐸 ∩ 𝐴 ) ) ) |
166 |
112
|
elexi |
⊢ ( 1 ... 𝑛 ) ∈ V |
167 |
166
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 1 ... 𝑛 ) ∈ V ) |
168 |
101 104 29
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( 𝑀 ‘ ( 𝐸 ∩ 𝐴 ) ) ∈ ( 0 [,] +∞ ) ) |
169 |
|
inss2 |
⊢ ( 𝐸 ∩ 𝐴 ) ⊆ 𝐴 |
170 |
|
sseq2 |
⊢ ( 𝐴 = ∅ → ( ( 𝐸 ∩ 𝐴 ) ⊆ 𝐴 ↔ ( 𝐸 ∩ 𝐴 ) ⊆ ∅ ) ) |
171 |
169 170
|
mpbii |
⊢ ( 𝐴 = ∅ → ( 𝐸 ∩ 𝐴 ) ⊆ ∅ ) |
172 |
|
ss0 |
⊢ ( ( 𝐸 ∩ 𝐴 ) ⊆ ∅ → ( 𝐸 ∩ 𝐴 ) = ∅ ) |
173 |
171 172
|
syl |
⊢ ( 𝐴 = ∅ → ( 𝐸 ∩ 𝐴 ) = ∅ ) |
174 |
173
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) ∧ 𝐴 = ∅ ) → ( 𝐸 ∩ 𝐴 ) = ∅ ) |
175 |
174
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) ∧ 𝐴 = ∅ ) → ( 𝑀 ‘ ( 𝐸 ∩ 𝐴 ) ) = ( 𝑀 ‘ ∅ ) ) |
176 |
110
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) ∧ 𝐴 = ∅ ) → ( 𝑀 ‘ ∅ ) = 0 ) |
177 |
175 176
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) ∧ 𝐴 = ∅ ) → ( 𝑀 ‘ ( 𝐸 ∩ 𝐴 ) ) = 0 ) |
178 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Disj 𝑘 ∈ ℕ 𝐴 ) |
179 |
|
disjss1 |
⊢ ( ( 1 ... 𝑛 ) ⊆ ℕ → ( Disj 𝑘 ∈ ℕ 𝐴 → Disj 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) |
180 |
103 178 179
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Disj 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) |
181 |
165 167 168 105 177 180
|
esumrnmpt2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Σ* 𝑦 ∈ ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ( 𝑀 ‘ ( 𝐸 ∩ 𝑦 ) ) = Σ* 𝑘 ∈ ( 1 ... 𝑛 ) ( 𝑀 ‘ ( 𝐸 ∩ 𝐴 ) ) ) |
182 |
153 163 181
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = Σ* 𝑘 ∈ ( 1 ... 𝑛 ) ( 𝑀 ‘ ( 𝐸 ∩ 𝐴 ) ) ) |
183 |
150 151 182
|
3eqtr3rd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Σ* 𝑘 ∈ ( 1 ... 𝑛 ) ( 𝑀 ‘ ( 𝐸 ∩ 𝐴 ) ) = ( ( 𝑀 ‘ 𝐸 ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) ) |
184 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ∈ ( 0 [,] +∞ ) ) |
185 |
12 184
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ∈ ℝ* ) |
186 |
185
|
xnegcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ∈ ℝ* ) |
187 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ‘ 𝐸 ) ∈ ℝ* ) |
188 |
|
iunss1 |
⊢ ( ( 1 ... 𝑛 ) ⊆ ℕ → ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ⊆ ∪ 𝑘 ∈ ℕ 𝐴 ) |
189 |
102 188
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ⊆ ∪ 𝑘 ∈ ℕ 𝐴 ) |
190 |
189
|
sscond |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ⊆ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) |
191 |
5
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂 ) → ( 𝑀 ‘ 𝑥 ) ≤ ( 𝑀 ‘ 𝑦 ) ) |
192 |
109 79 190 86 191
|
carsgmon |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ≤ ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) |
193 |
|
xleneg |
⊢ ( ( ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ∈ ℝ* ∧ ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ∈ ℝ* ) → ( ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ≤ ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ↔ -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ≤ -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ) ) |
194 |
193
|
biimpa |
⊢ ( ( ( ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ∈ ℝ* ∧ ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ∈ ℝ* ) ∧ ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ≤ ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) → -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ≤ -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ) |
195 |
185 88 192 194
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ≤ -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ) |
196 |
|
xleadd2a |
⊢ ( ( ( -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ∈ ℝ* ∧ -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ∈ ℝ* ∧ ( 𝑀 ‘ 𝐸 ) ∈ ℝ* ) ∧ -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ≤ -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ) → ( ( 𝑀 ‘ 𝐸 ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) ≤ ( ( 𝑀 ‘ 𝐸 ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ) ) |
197 |
91 186 187 195 196
|
syl31anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑀 ‘ 𝐸 ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) ≤ ( ( 𝑀 ‘ 𝐸 ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ) ) |
198 |
183 197
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Σ* 𝑘 ∈ ( 1 ... 𝑛 ) ( 𝑀 ‘ ( 𝐸 ∩ 𝐴 ) ) ≤ ( ( 𝑀 ‘ 𝐸 ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ) ) |
199 |
78 29 198
|
esumgect |
⊢ ( 𝜑 → Σ* 𝑘 ∈ ℕ ( 𝑀 ‘ ( 𝐸 ∩ 𝐴 ) ) ≤ ( ( 𝑀 ‘ 𝐸 ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ) ) |
200 |
19 34 27 75 199
|
xrletrd |
⊢ ( 𝜑 → ( 𝑀 ‘ ∪ 𝑘 ∈ ℕ ( 𝐸 ∩ 𝐴 ) ) ≤ ( ( 𝑀 ‘ 𝐸 ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ) ) |
201 |
11 200
|
eqbrtrrid |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ≤ ( ( 𝑀 ‘ 𝐸 ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ) ) |
202 |
|
xleadd1a |
⊢ ( ( ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ∈ ℝ* ∧ ( ( 𝑀 ‘ 𝐸 ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ) ∈ ℝ* ∧ ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ∈ ℝ* ) ∧ ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ≤ ( ( 𝑀 ‘ 𝐸 ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ) ) → ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ℕ 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ) ≤ ( ( ( 𝑀 ‘ 𝐸 ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ) ) |
203 |
20 27 25 201 202
|
syl31anc |
⊢ ( 𝜑 → ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ℕ 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ) ≤ ( ( ( 𝑀 ‘ 𝐸 ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ) ) |
204 |
|
xrge0npcan |
⊢ ( ( ( 𝑀 ‘ 𝐸 ) ∈ ( 0 [,] +∞ ) ∧ ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ∈ ( 0 [,] +∞ ) ∧ ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ≤ ( 𝑀 ‘ 𝐸 ) ) → ( ( ( 𝑀 ‘ 𝐸 ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ) = ( 𝑀 ‘ 𝐸 ) ) |
205 |
21 24 77 204
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝑀 ‘ 𝐸 ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ) = ( 𝑀 ‘ 𝐸 ) ) |
206 |
203 205
|
breqtrd |
⊢ ( 𝜑 → ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ℕ 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ) ≤ ( 𝑀 ‘ 𝐸 ) ) |