Metamath Proof Explorer


Theorem carsgclctunlem2

Description: Lemma for carsgclctun . (Contributed by Thierry Arnoux, 25-May-2020)

Ref Expression
Hypotheses carsgval.1 ( 𝜑𝑂𝑉 )
carsgval.2 ( 𝜑𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) )
carsgsiga.1 ( 𝜑 → ( 𝑀 ‘ ∅ ) = 0 )
carsgsiga.2 ( ( 𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂 ) → ( 𝑀 𝑥 ) ≤ Σ* 𝑦𝑥 ( 𝑀𝑦 ) )
carsgsiga.3 ( ( 𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂 ) → ( 𝑀𝑥 ) ≤ ( 𝑀𝑦 ) )
carsgclctunlem2.1 ( 𝜑Disj 𝑘 ∈ ℕ 𝐴 )
carsgclctunlem2.2 ( ( 𝜑𝑘 ∈ ℕ ) → 𝐴 ∈ ( toCaraSiga ‘ 𝑀 ) )
carsgclctunlem2.3 ( 𝜑𝐸 ∈ 𝒫 𝑂 )
carsgclctunlem2.4 ( 𝜑 → ( 𝑀𝐸 ) ≠ +∞ )
Assertion carsgclctunlem2 ( 𝜑 → ( ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ℕ 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ℕ 𝐴 ) ) ) ≤ ( 𝑀𝐸 ) )

Proof

Step Hyp Ref Expression
1 carsgval.1 ( 𝜑𝑂𝑉 )
2 carsgval.2 ( 𝜑𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) )
3 carsgsiga.1 ( 𝜑 → ( 𝑀 ‘ ∅ ) = 0 )
4 carsgsiga.2 ( ( 𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂 ) → ( 𝑀 𝑥 ) ≤ Σ* 𝑦𝑥 ( 𝑀𝑦 ) )
5 carsgsiga.3 ( ( 𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂 ) → ( 𝑀𝑥 ) ≤ ( 𝑀𝑦 ) )
6 carsgclctunlem2.1 ( 𝜑Disj 𝑘 ∈ ℕ 𝐴 )
7 carsgclctunlem2.2 ( ( 𝜑𝑘 ∈ ℕ ) → 𝐴 ∈ ( toCaraSiga ‘ 𝑀 ) )
8 carsgclctunlem2.3 ( 𝜑𝐸 ∈ 𝒫 𝑂 )
9 carsgclctunlem2.4 ( 𝜑 → ( 𝑀𝐸 ) ≠ +∞ )
10 iunin2 𝑘 ∈ ℕ ( 𝐸𝐴 ) = ( 𝐸 𝑘 ∈ ℕ 𝐴 )
11 10 fveq2i ( 𝑀 𝑘 ∈ ℕ ( 𝐸𝐴 ) ) = ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ℕ 𝐴 ) )
12 iccssxr ( 0 [,] +∞ ) ⊆ ℝ*
13 nnex ℕ ∈ V
14 13 a1i ( 𝜑 → ℕ ∈ V )
15 8 adantr ( ( 𝜑𝑘 ∈ ℕ ) → 𝐸 ∈ 𝒫 𝑂 )
16 15 elpwincl1 ( ( 𝜑𝑘 ∈ ℕ ) → ( 𝐸𝐴 ) ∈ 𝒫 𝑂 )
17 14 16 elpwiuncl ( 𝜑 𝑘 ∈ ℕ ( 𝐸𝐴 ) ∈ 𝒫 𝑂 )
18 2 17 ffvelrnd ( 𝜑 → ( 𝑀 𝑘 ∈ ℕ ( 𝐸𝐴 ) ) ∈ ( 0 [,] +∞ ) )
19 12 18 sseldi ( 𝜑 → ( 𝑀 𝑘 ∈ ℕ ( 𝐸𝐴 ) ) ∈ ℝ* )
20 11 19 eqeltrrid ( 𝜑 → ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ℕ 𝐴 ) ) ∈ ℝ* )
21 2 8 ffvelrnd ( 𝜑 → ( 𝑀𝐸 ) ∈ ( 0 [,] +∞ ) )
22 12 21 sseldi ( 𝜑 → ( 𝑀𝐸 ) ∈ ℝ* )
23 8 elpwdifcl ( 𝜑 → ( 𝐸 𝑘 ∈ ℕ 𝐴 ) ∈ 𝒫 𝑂 )
24 2 23 ffvelrnd ( 𝜑 → ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ℕ 𝐴 ) ) ∈ ( 0 [,] +∞ ) )
25 12 24 sseldi ( 𝜑 → ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ℕ 𝐴 ) ) ∈ ℝ* )
26 25 xnegcld ( 𝜑 → -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ℕ 𝐴 ) ) ∈ ℝ* )
27 22 26 xaddcld ( 𝜑 → ( ( 𝑀𝐸 ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ℕ 𝐴 ) ) ) ∈ ℝ* )
28 2 adantr ( ( 𝜑𝑘 ∈ ℕ ) → 𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) )
29 28 16 ffvelrnd ( ( 𝜑𝑘 ∈ ℕ ) → ( 𝑀 ‘ ( 𝐸𝐴 ) ) ∈ ( 0 [,] +∞ ) )
30 29 ralrimiva ( 𝜑 → ∀ 𝑘 ∈ ℕ ( 𝑀 ‘ ( 𝐸𝐴 ) ) ∈ ( 0 [,] +∞ ) )
31 nfcv 𝑘
32 31 esumcl ( ( ℕ ∈ V ∧ ∀ 𝑘 ∈ ℕ ( 𝑀 ‘ ( 𝐸𝐴 ) ) ∈ ( 0 [,] +∞ ) ) → Σ* 𝑘 ∈ ℕ ( 𝑀 ‘ ( 𝐸𝐴 ) ) ∈ ( 0 [,] +∞ ) )
33 14 30 32 syl2anc ( 𝜑 → Σ* 𝑘 ∈ ℕ ( 𝑀 ‘ ( 𝐸𝐴 ) ) ∈ ( 0 [,] +∞ ) )
34 12 33 sseldi ( 𝜑 → Σ* 𝑘 ∈ ℕ ( 𝑀 ‘ ( 𝐸𝐴 ) ) ∈ ℝ* )
35 16 ralrimiva ( 𝜑 → ∀ 𝑘 ∈ ℕ ( 𝐸𝐴 ) ∈ 𝒫 𝑂 )
36 dfiun3g ( ∀ 𝑘 ∈ ℕ ( 𝐸𝐴 ) ∈ 𝒫 𝑂 𝑘 ∈ ℕ ( 𝐸𝐴 ) = ran ( 𝑘 ∈ ℕ ↦ ( 𝐸𝐴 ) ) )
37 35 36 syl ( 𝜑 𝑘 ∈ ℕ ( 𝐸𝐴 ) = ran ( 𝑘 ∈ ℕ ↦ ( 𝐸𝐴 ) ) )
38 37 fveq2d ( 𝜑 → ( 𝑀 𝑘 ∈ ℕ ( 𝐸𝐴 ) ) = ( 𝑀 ran ( 𝑘 ∈ ℕ ↦ ( 𝐸𝐴 ) ) ) )
39 nnct ℕ ≼ ω
40 mptct ( ℕ ≼ ω → ( 𝑘 ∈ ℕ ↦ ( 𝐸𝐴 ) ) ≼ ω )
41 rnct ( ( 𝑘 ∈ ℕ ↦ ( 𝐸𝐴 ) ) ≼ ω → ran ( 𝑘 ∈ ℕ ↦ ( 𝐸𝐴 ) ) ≼ ω )
42 39 40 41 mp2b ran ( 𝑘 ∈ ℕ ↦ ( 𝐸𝐴 ) ) ≼ ω
43 42 a1i ( 𝜑 → ran ( 𝑘 ∈ ℕ ↦ ( 𝐸𝐴 ) ) ≼ ω )
44 eqid ( 𝑘 ∈ ℕ ↦ ( 𝐸𝐴 ) ) = ( 𝑘 ∈ ℕ ↦ ( 𝐸𝐴 ) )
45 44 rnmptss ( ∀ 𝑘 ∈ ℕ ( 𝐸𝐴 ) ∈ 𝒫 𝑂 → ran ( 𝑘 ∈ ℕ ↦ ( 𝐸𝐴 ) ) ⊆ 𝒫 𝑂 )
46 35 45 syl ( 𝜑 → ran ( 𝑘 ∈ ℕ ↦ ( 𝐸𝐴 ) ) ⊆ 𝒫 𝑂 )
47 mptexg ( ℕ ∈ V → ( 𝑘 ∈ ℕ ↦ ( 𝐸𝐴 ) ) ∈ V )
48 rnexg ( ( 𝑘 ∈ ℕ ↦ ( 𝐸𝐴 ) ) ∈ V → ran ( 𝑘 ∈ ℕ ↦ ( 𝐸𝐴 ) ) ∈ V )
49 13 47 48 mp2b ran ( 𝑘 ∈ ℕ ↦ ( 𝐸𝐴 ) ) ∈ V
50 breq1 ( 𝑥 = ran ( 𝑘 ∈ ℕ ↦ ( 𝐸𝐴 ) ) → ( 𝑥 ≼ ω ↔ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸𝐴 ) ) ≼ ω ) )
51 sseq1 ( 𝑥 = ran ( 𝑘 ∈ ℕ ↦ ( 𝐸𝐴 ) ) → ( 𝑥 ⊆ 𝒫 𝑂 ↔ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸𝐴 ) ) ⊆ 𝒫 𝑂 ) )
52 50 51 3anbi23d ( 𝑥 = ran ( 𝑘 ∈ ℕ ↦ ( 𝐸𝐴 ) ) → ( ( 𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂 ) ↔ ( 𝜑 ∧ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸𝐴 ) ) ≼ ω ∧ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸𝐴 ) ) ⊆ 𝒫 𝑂 ) ) )
53 unieq ( 𝑥 = ran ( 𝑘 ∈ ℕ ↦ ( 𝐸𝐴 ) ) → 𝑥 = ran ( 𝑘 ∈ ℕ ↦ ( 𝐸𝐴 ) ) )
54 53 fveq2d ( 𝑥 = ran ( 𝑘 ∈ ℕ ↦ ( 𝐸𝐴 ) ) → ( 𝑀 𝑥 ) = ( 𝑀 ran ( 𝑘 ∈ ℕ ↦ ( 𝐸𝐴 ) ) ) )
55 esumeq1 ( 𝑥 = ran ( 𝑘 ∈ ℕ ↦ ( 𝐸𝐴 ) ) → Σ* 𝑦𝑥 ( 𝑀𝑦 ) = Σ* 𝑦 ∈ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸𝐴 ) ) ( 𝑀𝑦 ) )
56 54 55 breq12d ( 𝑥 = ran ( 𝑘 ∈ ℕ ↦ ( 𝐸𝐴 ) ) → ( ( 𝑀 𝑥 ) ≤ Σ* 𝑦𝑥 ( 𝑀𝑦 ) ↔ ( 𝑀 ran ( 𝑘 ∈ ℕ ↦ ( 𝐸𝐴 ) ) ) ≤ Σ* 𝑦 ∈ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸𝐴 ) ) ( 𝑀𝑦 ) ) )
57 52 56 imbi12d ( 𝑥 = ran ( 𝑘 ∈ ℕ ↦ ( 𝐸𝐴 ) ) → ( ( ( 𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂 ) → ( 𝑀 𝑥 ) ≤ Σ* 𝑦𝑥 ( 𝑀𝑦 ) ) ↔ ( ( 𝜑 ∧ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸𝐴 ) ) ≼ ω ∧ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸𝐴 ) ) ⊆ 𝒫 𝑂 ) → ( 𝑀 ran ( 𝑘 ∈ ℕ ↦ ( 𝐸𝐴 ) ) ) ≤ Σ* 𝑦 ∈ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸𝐴 ) ) ( 𝑀𝑦 ) ) ) )
58 57 4 vtoclg ( ran ( 𝑘 ∈ ℕ ↦ ( 𝐸𝐴 ) ) ∈ V → ( ( 𝜑 ∧ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸𝐴 ) ) ≼ ω ∧ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸𝐴 ) ) ⊆ 𝒫 𝑂 ) → ( 𝑀 ran ( 𝑘 ∈ ℕ ↦ ( 𝐸𝐴 ) ) ) ≤ Σ* 𝑦 ∈ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸𝐴 ) ) ( 𝑀𝑦 ) ) )
59 49 58 ax-mp ( ( 𝜑 ∧ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸𝐴 ) ) ≼ ω ∧ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸𝐴 ) ) ⊆ 𝒫 𝑂 ) → ( 𝑀 ran ( 𝑘 ∈ ℕ ↦ ( 𝐸𝐴 ) ) ) ≤ Σ* 𝑦 ∈ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸𝐴 ) ) ( 𝑀𝑦 ) )
60 43 46 59 mpd3an23 ( 𝜑 → ( 𝑀 ran ( 𝑘 ∈ ℕ ↦ ( 𝐸𝐴 ) ) ) ≤ Σ* 𝑦 ∈ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸𝐴 ) ) ( 𝑀𝑦 ) )
61 38 60 eqbrtrd ( 𝜑 → ( 𝑀 𝑘 ∈ ℕ ( 𝐸𝐴 ) ) ≤ Σ* 𝑦 ∈ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸𝐴 ) ) ( 𝑀𝑦 ) )
62 fveq2 ( 𝑦 = ( 𝐸𝐴 ) → ( 𝑀𝑦 ) = ( 𝑀 ‘ ( 𝐸𝐴 ) ) )
63 simpr ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ ( 𝐸𝐴 ) = ∅ ) → ( 𝐸𝐴 ) = ∅ )
64 63 fveq2d ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ ( 𝐸𝐴 ) = ∅ ) → ( 𝑀 ‘ ( 𝐸𝐴 ) ) = ( 𝑀 ‘ ∅ ) )
65 3 ad2antrr ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ ( 𝐸𝐴 ) = ∅ ) → ( 𝑀 ‘ ∅ ) = 0 )
66 64 65 eqtrd ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ ( 𝐸𝐴 ) = ∅ ) → ( 𝑀 ‘ ( 𝐸𝐴 ) ) = 0 )
67 disjin ( Disj 𝑘 ∈ ℕ 𝐴Disj 𝑘 ∈ ℕ ( 𝐴𝐸 ) )
68 6 67 syl ( 𝜑Disj 𝑘 ∈ ℕ ( 𝐴𝐸 ) )
69 incom ( 𝐴𝐸 ) = ( 𝐸𝐴 )
70 69 rgenw 𝑘 ∈ ℕ ( 𝐴𝐸 ) = ( 𝐸𝐴 )
71 disjeq2 ( ∀ 𝑘 ∈ ℕ ( 𝐴𝐸 ) = ( 𝐸𝐴 ) → ( Disj 𝑘 ∈ ℕ ( 𝐴𝐸 ) ↔ Disj 𝑘 ∈ ℕ ( 𝐸𝐴 ) ) )
72 70 71 ax-mp ( Disj 𝑘 ∈ ℕ ( 𝐴𝐸 ) ↔ Disj 𝑘 ∈ ℕ ( 𝐸𝐴 ) )
73 68 72 sylib ( 𝜑Disj 𝑘 ∈ ℕ ( 𝐸𝐴 ) )
74 62 14 29 16 66 73 esumrnmpt2 ( 𝜑 → Σ* 𝑦 ∈ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸𝐴 ) ) ( 𝑀𝑦 ) = Σ* 𝑘 ∈ ℕ ( 𝑀 ‘ ( 𝐸𝐴 ) ) )
75 61 74 breqtrd ( 𝜑 → ( 𝑀 𝑘 ∈ ℕ ( 𝐸𝐴 ) ) ≤ Σ* 𝑘 ∈ ℕ ( 𝑀 ‘ ( 𝐸𝐴 ) ) )
76 difssd ( 𝜑 → ( 𝐸 𝑘 ∈ ℕ 𝐴 ) ⊆ 𝐸 )
77 1 2 76 8 5 carsgmon ( 𝜑 → ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ℕ 𝐴 ) ) ≤ ( 𝑀𝐸 ) )
78 21 24 77 xrge0subcld ( 𝜑 → ( ( 𝑀𝐸 ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ℕ 𝐴 ) ) ) ∈ ( 0 [,] +∞ ) )
79 2 adantr ( ( 𝜑𝑛 ∈ ℕ ) → 𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) )
80 8 adantr ( ( 𝜑𝑛 ∈ ℕ ) → 𝐸 ∈ 𝒫 𝑂 )
81 80 elpwincl1 ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ∈ 𝒫 𝑂 )
82 79 81 ffvelrnd ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ∈ ( 0 [,] +∞ ) )
83 12 82 sseldi ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ∈ ℝ* )
84 xrge0neqmnf ( ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ∈ ( 0 [,] +∞ ) → ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ≠ -∞ )
85 82 84 syl ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ≠ -∞ )
86 80 elpwdifcl ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ∈ 𝒫 𝑂 )
87 79 86 ffvelrnd ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ∈ ( 0 [,] +∞ ) )
88 12 87 sseldi ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ∈ ℝ* )
89 xrge0neqmnf ( ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ∈ ( 0 [,] +∞ ) → ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ≠ -∞ )
90 87 89 syl ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ≠ -∞ )
91 88 xnegcld ( ( 𝜑𝑛 ∈ ℕ ) → -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ∈ ℝ* )
92 xnegneg ( ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ∈ ℝ* → -𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) )
93 88 92 syl ( ( 𝜑𝑛 ∈ ℕ ) → -𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) )
94 93 adantr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = -∞ ) → -𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) )
95 xnegeq ( -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = -∞ → -𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = -𝑒 -∞ )
96 95 adantl ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = -∞ ) → -𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = -𝑒 -∞ )
97 xnegmnf -𝑒 -∞ = +∞
98 96 97 eqtrdi ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = -∞ ) → -𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = +∞ )
99 94 98 eqtr3d ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = -∞ ) → ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = +∞ )
100 99 oveq2d ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = -∞ ) → ( ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) = ( ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 +∞ ) )
101 simpll ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝜑 )
102 fz1ssnn ( 1 ... 𝑛 ) ⊆ ℕ
103 102 a1i ( ( 𝜑𝑛 ∈ ℕ ) → ( 1 ... 𝑛 ) ⊆ ℕ )
104 103 sselda ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝑘 ∈ ℕ )
105 101 104 7 syl2anc ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝐴 ∈ ( toCaraSiga ‘ 𝑀 ) )
106 105 ralrimiva ( ( 𝜑𝑛 ∈ ℕ ) → ∀ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ∈ ( toCaraSiga ‘ 𝑀 ) )
107 dfiun3g ( ∀ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ∈ ( toCaraSiga ‘ 𝑀 ) → 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 = ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) )
108 106 107 syl ( ( 𝜑𝑛 ∈ ℕ ) → 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 = ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) )
109 1 adantr ( ( 𝜑𝑛 ∈ ℕ ) → 𝑂𝑉 )
110 3 adantr ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑀 ‘ ∅ ) = 0 )
111 4 3adant1r ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂 ) → ( 𝑀 𝑥 ) ≤ Σ* 𝑦𝑥 ( 𝑀𝑦 ) )
112 fzfi ( 1 ... 𝑛 ) ∈ Fin
113 mptfi ( ( 1 ... 𝑛 ) ∈ Fin → ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ∈ Fin )
114 rnfi ( ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ∈ Fin → ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ∈ Fin )
115 112 113 114 mp2b ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ∈ Fin
116 115 a1i ( ( 𝜑𝑛 ∈ ℕ ) → ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ∈ Fin )
117 eqid ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) = ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 )
118 117 rnmptss ( ∀ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ∈ ( toCaraSiga ‘ 𝑀 ) → ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ⊆ ( toCaraSiga ‘ 𝑀 ) )
119 106 118 syl ( ( 𝜑𝑛 ∈ ℕ ) → ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ⊆ ( toCaraSiga ‘ 𝑀 ) )
120 109 79 110 111 116 119 fiunelcarsg ( ( 𝜑𝑛 ∈ ℕ ) → ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ∈ ( toCaraSiga ‘ 𝑀 ) )
121 108 120 eqeltrd ( ( 𝜑𝑛 ∈ ℕ ) → 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ∈ ( toCaraSiga ‘ 𝑀 ) )
122 109 79 elcarsg ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ∈ ( toCaraSiga ‘ 𝑀 ) ↔ ( 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴𝑂 ∧ ∀ 𝑒 ∈ 𝒫 𝑂 ( ( 𝑀 ‘ ( 𝑒 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) = ( 𝑀𝑒 ) ) ) )
123 121 122 mpbid ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴𝑂 ∧ ∀ 𝑒 ∈ 𝒫 𝑂 ( ( 𝑀 ‘ ( 𝑒 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) = ( 𝑀𝑒 ) ) )
124 123 simprd ( ( 𝜑𝑛 ∈ ℕ ) → ∀ 𝑒 ∈ 𝒫 𝑂 ( ( 𝑀 ‘ ( 𝑒 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) = ( 𝑀𝑒 ) )
125 ineq1 ( 𝑒 = 𝐸 → ( 𝑒 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) = ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) )
126 125 fveq2d ( 𝑒 = 𝐸 → ( 𝑀 ‘ ( 𝑒 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) )
127 difeq1 ( 𝑒 = 𝐸 → ( 𝑒 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) = ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) )
128 127 fveq2d ( 𝑒 = 𝐸 → ( 𝑀 ‘ ( 𝑒 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) )
129 126 128 oveq12d ( 𝑒 = 𝐸 → ( ( 𝑀 ‘ ( 𝑒 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) = ( ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) )
130 fveq2 ( 𝑒 = 𝐸 → ( 𝑀𝑒 ) = ( 𝑀𝐸 ) )
131 129 130 eqeq12d ( 𝑒 = 𝐸 → ( ( ( 𝑀 ‘ ( 𝑒 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) = ( 𝑀𝑒 ) ↔ ( ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) = ( 𝑀𝐸 ) ) )
132 131 rspcv ( 𝐸 ∈ 𝒫 𝑂 → ( ∀ 𝑒 ∈ 𝒫 𝑂 ( ( 𝑀 ‘ ( 𝑒 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) = ( 𝑀𝑒 ) → ( ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) = ( 𝑀𝐸 ) ) )
133 80 124 132 sylc ( ( 𝜑𝑛 ∈ ℕ ) → ( ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) = ( 𝑀𝐸 ) )
134 133 adantr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = -∞ ) → ( ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) = ( 𝑀𝐸 ) )
135 xaddpnf1 ( ( ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ∈ ℝ* ∧ ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ≠ -∞ ) → ( ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 +∞ ) = +∞ )
136 83 85 135 syl2anc ( ( 𝜑𝑛 ∈ ℕ ) → ( ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 +∞ ) = +∞ )
137 136 adantr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = -∞ ) → ( ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 +∞ ) = +∞ )
138 100 134 137 3eqtr3d ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = -∞ ) → ( 𝑀𝐸 ) = +∞ )
139 9 ad2antrr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = -∞ ) → ( 𝑀𝐸 ) ≠ +∞ )
140 139 neneqd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = -∞ ) → ¬ ( 𝑀𝐸 ) = +∞ )
141 138 140 pm2.65da ( ( 𝜑𝑛 ∈ ℕ ) → ¬ -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = -∞ )
142 141 neqned ( ( 𝜑𝑛 ∈ ℕ ) → -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ≠ -∞ )
143 xaddass ( ( ( ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ∈ ℝ* ∧ ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ≠ -∞ ) ∧ ( ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ∈ ℝ* ∧ ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ≠ -∞ ) ∧ ( -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ∈ ℝ* ∧ -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ≠ -∞ ) ) → ( ( ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) = ( ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 ( ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) ) )
144 83 85 88 90 91 142 143 syl222anc ( ( 𝜑𝑛 ∈ ℕ ) → ( ( ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) = ( ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 ( ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) ) )
145 xnegid ( ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ∈ ℝ* → ( ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) = 0 )
146 88 145 syl ( ( 𝜑𝑛 ∈ ℕ ) → ( ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) = 0 )
147 146 oveq2d ( ( 𝜑𝑛 ∈ ℕ ) → ( ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 ( ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) ) = ( ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 0 ) )
148 xaddid1 ( ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ∈ ℝ* → ( ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 0 ) = ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) )
149 83 148 syl ( ( 𝜑𝑛 ∈ ℕ ) → ( ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 0 ) = ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) )
150 144 147 149 3eqtrd ( ( 𝜑𝑛 ∈ ℕ ) → ( ( ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) = ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) )
151 133 oveq1d ( ( 𝜑𝑛 ∈ ℕ ) → ( ( ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) = ( ( 𝑀𝐸 ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) )
152 108 ineq2d ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) = ( 𝐸 ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ) )
153 152 fveq2d ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = ( 𝑀 ‘ ( 𝐸 ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ) ) )
154 mptss ( ( 1 ... 𝑛 ) ⊆ ℕ → ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ⊆ ( 𝑘 ∈ ℕ ↦ 𝐴 ) )
155 rnss ( ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ⊆ ( 𝑘 ∈ ℕ ↦ 𝐴 ) → ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ⊆ ran ( 𝑘 ∈ ℕ ↦ 𝐴 ) )
156 102 154 155 mp2b ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ⊆ ran ( 𝑘 ∈ ℕ ↦ 𝐴 )
157 156 a1i ( ( 𝜑𝑛 ∈ ℕ ) → ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ⊆ ran ( 𝑘 ∈ ℕ ↦ 𝐴 ) )
158 disjrnmpt ( Disj 𝑘 ∈ ℕ 𝐴Disj 𝑦 ∈ ran ( 𝑘 ∈ ℕ ↦ 𝐴 ) 𝑦 )
159 6 158 syl ( 𝜑Disj 𝑦 ∈ ran ( 𝑘 ∈ ℕ ↦ 𝐴 ) 𝑦 )
160 159 adantr ( ( 𝜑𝑛 ∈ ℕ ) → Disj 𝑦 ∈ ran ( 𝑘 ∈ ℕ ↦ 𝐴 ) 𝑦 )
161 disjss1 ( ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ⊆ ran ( 𝑘 ∈ ℕ ↦ 𝐴 ) → ( Disj 𝑦 ∈ ran ( 𝑘 ∈ ℕ ↦ 𝐴 ) 𝑦Disj 𝑦 ∈ ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) 𝑦 ) )
162 157 160 161 sylc ( ( 𝜑𝑛 ∈ ℕ ) → Disj 𝑦 ∈ ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) 𝑦 )
163 109 79 110 111 116 119 162 80 carsgclctunlem1 ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑀 ‘ ( 𝐸 ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ) ) = Σ* 𝑦 ∈ ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ( 𝑀 ‘ ( 𝐸𝑦 ) ) )
164 ineq2 ( 𝑦 = 𝐴 → ( 𝐸𝑦 ) = ( 𝐸𝐴 ) )
165 164 fveq2d ( 𝑦 = 𝐴 → ( 𝑀 ‘ ( 𝐸𝑦 ) ) = ( 𝑀 ‘ ( 𝐸𝐴 ) ) )
166 112 elexi ( 1 ... 𝑛 ) ∈ V
167 166 a1i ( ( 𝜑𝑛 ∈ ℕ ) → ( 1 ... 𝑛 ) ∈ V )
168 101 104 29 syl2anc ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( 𝑀 ‘ ( 𝐸𝐴 ) ) ∈ ( 0 [,] +∞ ) )
169 inss2 ( 𝐸𝐴 ) ⊆ 𝐴
170 sseq2 ( 𝐴 = ∅ → ( ( 𝐸𝐴 ) ⊆ 𝐴 ↔ ( 𝐸𝐴 ) ⊆ ∅ ) )
171 169 170 mpbii ( 𝐴 = ∅ → ( 𝐸𝐴 ) ⊆ ∅ )
172 ss0 ( ( 𝐸𝐴 ) ⊆ ∅ → ( 𝐸𝐴 ) = ∅ )
173 171 172 syl ( 𝐴 = ∅ → ( 𝐸𝐴 ) = ∅ )
174 173 adantl ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) ∧ 𝐴 = ∅ ) → ( 𝐸𝐴 ) = ∅ )
175 174 fveq2d ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) ∧ 𝐴 = ∅ ) → ( 𝑀 ‘ ( 𝐸𝐴 ) ) = ( 𝑀 ‘ ∅ ) )
176 110 ad2antrr ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) ∧ 𝐴 = ∅ ) → ( 𝑀 ‘ ∅ ) = 0 )
177 175 176 eqtrd ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) ∧ 𝐴 = ∅ ) → ( 𝑀 ‘ ( 𝐸𝐴 ) ) = 0 )
178 6 adantr ( ( 𝜑𝑛 ∈ ℕ ) → Disj 𝑘 ∈ ℕ 𝐴 )
179 disjss1 ( ( 1 ... 𝑛 ) ⊆ ℕ → ( Disj 𝑘 ∈ ℕ 𝐴Disj 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) )
180 103 178 179 sylc ( ( 𝜑𝑛 ∈ ℕ ) → Disj 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 )
181 165 167 168 105 177 180 esumrnmpt2 ( ( 𝜑𝑛 ∈ ℕ ) → Σ* 𝑦 ∈ ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ( 𝑀 ‘ ( 𝐸𝑦 ) ) = Σ* 𝑘 ∈ ( 1 ... 𝑛 ) ( 𝑀 ‘ ( 𝐸𝐴 ) ) )
182 153 163 181 3eqtrd ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = Σ* 𝑘 ∈ ( 1 ... 𝑛 ) ( 𝑀 ‘ ( 𝐸𝐴 ) ) )
183 150 151 182 3eqtr3rd ( ( 𝜑𝑛 ∈ ℕ ) → Σ* 𝑘 ∈ ( 1 ... 𝑛 ) ( 𝑀 ‘ ( 𝐸𝐴 ) ) = ( ( 𝑀𝐸 ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) )
184 24 adantr ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ℕ 𝐴 ) ) ∈ ( 0 [,] +∞ ) )
185 12 184 sseldi ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ℕ 𝐴 ) ) ∈ ℝ* )
186 185 xnegcld ( ( 𝜑𝑛 ∈ ℕ ) → -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ℕ 𝐴 ) ) ∈ ℝ* )
187 22 adantr ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑀𝐸 ) ∈ ℝ* )
188 iunss1 ( ( 1 ... 𝑛 ) ⊆ ℕ → 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 𝑘 ∈ ℕ 𝐴 )
189 102 188 mp1i ( ( 𝜑𝑛 ∈ ℕ ) → 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 𝑘 ∈ ℕ 𝐴 )
190 189 sscond ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐸 𝑘 ∈ ℕ 𝐴 ) ⊆ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) )
191 5 3adant1r ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑥𝑦𝑦 ∈ 𝒫 𝑂 ) → ( 𝑀𝑥 ) ≤ ( 𝑀𝑦 ) )
192 109 79 190 86 191 carsgmon ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ℕ 𝐴 ) ) ≤ ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) )
193 xleneg ( ( ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ℕ 𝐴 ) ) ∈ ℝ* ∧ ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ∈ ℝ* ) → ( ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ℕ 𝐴 ) ) ≤ ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ↔ -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ≤ -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ℕ 𝐴 ) ) ) )
194 193 biimpa ( ( ( ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ℕ 𝐴 ) ) ∈ ℝ* ∧ ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ∈ ℝ* ) ∧ ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ℕ 𝐴 ) ) ≤ ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) → -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ≤ -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ℕ 𝐴 ) ) )
195 185 88 192 194 syl21anc ( ( 𝜑𝑛 ∈ ℕ ) → -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ≤ -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ℕ 𝐴 ) ) )
196 xleadd2a ( ( ( -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ∈ ℝ* ∧ -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ℕ 𝐴 ) ) ∈ ℝ* ∧ ( 𝑀𝐸 ) ∈ ℝ* ) ∧ -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ≤ -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ℕ 𝐴 ) ) ) → ( ( 𝑀𝐸 ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) ≤ ( ( 𝑀𝐸 ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ℕ 𝐴 ) ) ) )
197 91 186 187 195 196 syl31anc ( ( 𝜑𝑛 ∈ ℕ ) → ( ( 𝑀𝐸 ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) ≤ ( ( 𝑀𝐸 ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ℕ 𝐴 ) ) ) )
198 183 197 eqbrtrd ( ( 𝜑𝑛 ∈ ℕ ) → Σ* 𝑘 ∈ ( 1 ... 𝑛 ) ( 𝑀 ‘ ( 𝐸𝐴 ) ) ≤ ( ( 𝑀𝐸 ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ℕ 𝐴 ) ) ) )
199 78 29 198 esumgect ( 𝜑 → Σ* 𝑘 ∈ ℕ ( 𝑀 ‘ ( 𝐸𝐴 ) ) ≤ ( ( 𝑀𝐸 ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ℕ 𝐴 ) ) ) )
200 19 34 27 75 199 xrletrd ( 𝜑 → ( 𝑀 𝑘 ∈ ℕ ( 𝐸𝐴 ) ) ≤ ( ( 𝑀𝐸 ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ℕ 𝐴 ) ) ) )
201 11 200 eqbrtrrid ( 𝜑 → ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ℕ 𝐴 ) ) ≤ ( ( 𝑀𝐸 ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ℕ 𝐴 ) ) ) )
202 xleadd1a ( ( ( ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ℕ 𝐴 ) ) ∈ ℝ* ∧ ( ( 𝑀𝐸 ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ℕ 𝐴 ) ) ) ∈ ℝ* ∧ ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ℕ 𝐴 ) ) ∈ ℝ* ) ∧ ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ℕ 𝐴 ) ) ≤ ( ( 𝑀𝐸 ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ℕ 𝐴 ) ) ) ) → ( ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ℕ 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ℕ 𝐴 ) ) ) ≤ ( ( ( 𝑀𝐸 ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ℕ 𝐴 ) ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ℕ 𝐴 ) ) ) )
203 20 27 25 201 202 syl31anc ( 𝜑 → ( ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ℕ 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ℕ 𝐴 ) ) ) ≤ ( ( ( 𝑀𝐸 ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ℕ 𝐴 ) ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ℕ 𝐴 ) ) ) )
204 xrge0npcan ( ( ( 𝑀𝐸 ) ∈ ( 0 [,] +∞ ) ∧ ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ℕ 𝐴 ) ) ∈ ( 0 [,] +∞ ) ∧ ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ℕ 𝐴 ) ) ≤ ( 𝑀𝐸 ) ) → ( ( ( 𝑀𝐸 ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ℕ 𝐴 ) ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ℕ 𝐴 ) ) ) = ( 𝑀𝐸 ) )
205 21 24 77 204 syl3anc ( 𝜑 → ( ( ( 𝑀𝐸 ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ℕ 𝐴 ) ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ℕ 𝐴 ) ) ) = ( 𝑀𝐸 ) )
206 203 205 breqtrd ( 𝜑 → ( ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ℕ 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 𝑘 ∈ ℕ 𝐴 ) ) ) ≤ ( 𝑀𝐸 ) )