| Step |
Hyp |
Ref |
Expression |
| 1 |
|
carsgval.1 |
⊢ ( 𝜑 → 𝑂 ∈ 𝑉 ) |
| 2 |
|
carsgval.2 |
⊢ ( 𝜑 → 𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) ) |
| 3 |
|
carsgsiga.1 |
⊢ ( 𝜑 → ( 𝑀 ‘ ∅ ) = 0 ) |
| 4 |
|
carsgsiga.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂 ) → ( 𝑀 ‘ ∪ 𝑥 ) ≤ Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) |
| 5 |
|
carsgsiga.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂 ) → ( 𝑀 ‘ 𝑥 ) ≤ ( 𝑀 ‘ 𝑦 ) ) |
| 6 |
|
carsgclctunlem2.1 |
⊢ ( 𝜑 → Disj 𝑘 ∈ ℕ 𝐴 ) |
| 7 |
|
carsgclctunlem2.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐴 ∈ ( toCaraSiga ‘ 𝑀 ) ) |
| 8 |
|
carsgclctunlem2.3 |
⊢ ( 𝜑 → 𝐸 ∈ 𝒫 𝑂 ) |
| 9 |
|
carsgclctunlem2.4 |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐸 ) ≠ +∞ ) |
| 10 |
|
iunin2 |
⊢ ∪ 𝑘 ∈ ℕ ( 𝐸 ∩ 𝐴 ) = ( 𝐸 ∩ ∪ 𝑘 ∈ ℕ 𝐴 ) |
| 11 |
10
|
fveq2i |
⊢ ( 𝑀 ‘ ∪ 𝑘 ∈ ℕ ( 𝐸 ∩ 𝐴 ) ) = ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ℕ 𝐴 ) ) |
| 12 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
| 13 |
|
nnex |
⊢ ℕ ∈ V |
| 14 |
13
|
a1i |
⊢ ( 𝜑 → ℕ ∈ V ) |
| 15 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐸 ∈ 𝒫 𝑂 ) |
| 16 |
15
|
elpwincl1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐸 ∩ 𝐴 ) ∈ 𝒫 𝑂 ) |
| 17 |
14 16
|
elpwiuncl |
⊢ ( 𝜑 → ∪ 𝑘 ∈ ℕ ( 𝐸 ∩ 𝐴 ) ∈ 𝒫 𝑂 ) |
| 18 |
2 17
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑀 ‘ ∪ 𝑘 ∈ ℕ ( 𝐸 ∩ 𝐴 ) ) ∈ ( 0 [,] +∞ ) ) |
| 19 |
12 18
|
sselid |
⊢ ( 𝜑 → ( 𝑀 ‘ ∪ 𝑘 ∈ ℕ ( 𝐸 ∩ 𝐴 ) ) ∈ ℝ* ) |
| 20 |
11 19
|
eqeltrrid |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ∈ ℝ* ) |
| 21 |
2 8
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐸 ) ∈ ( 0 [,] +∞ ) ) |
| 22 |
12 21
|
sselid |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐸 ) ∈ ℝ* ) |
| 23 |
8
|
elpwdifcl |
⊢ ( 𝜑 → ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ∈ 𝒫 𝑂 ) |
| 24 |
2 23
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ∈ ( 0 [,] +∞ ) ) |
| 25 |
12 24
|
sselid |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ∈ ℝ* ) |
| 26 |
25
|
xnegcld |
⊢ ( 𝜑 → -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ∈ ℝ* ) |
| 27 |
22 26
|
xaddcld |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝐸 ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ) ∈ ℝ* ) |
| 28 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) ) |
| 29 |
28 16
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑀 ‘ ( 𝐸 ∩ 𝐴 ) ) ∈ ( 0 [,] +∞ ) ) |
| 30 |
29
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ ( 𝑀 ‘ ( 𝐸 ∩ 𝐴 ) ) ∈ ( 0 [,] +∞ ) ) |
| 31 |
|
nfcv |
⊢ Ⅎ 𝑘 ℕ |
| 32 |
31
|
esumcl |
⊢ ( ( ℕ ∈ V ∧ ∀ 𝑘 ∈ ℕ ( 𝑀 ‘ ( 𝐸 ∩ 𝐴 ) ) ∈ ( 0 [,] +∞ ) ) → Σ* 𝑘 ∈ ℕ ( 𝑀 ‘ ( 𝐸 ∩ 𝐴 ) ) ∈ ( 0 [,] +∞ ) ) |
| 33 |
14 30 32
|
syl2anc |
⊢ ( 𝜑 → Σ* 𝑘 ∈ ℕ ( 𝑀 ‘ ( 𝐸 ∩ 𝐴 ) ) ∈ ( 0 [,] +∞ ) ) |
| 34 |
12 33
|
sselid |
⊢ ( 𝜑 → Σ* 𝑘 ∈ ℕ ( 𝑀 ‘ ( 𝐸 ∩ 𝐴 ) ) ∈ ℝ* ) |
| 35 |
16
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ ( 𝐸 ∩ 𝐴 ) ∈ 𝒫 𝑂 ) |
| 36 |
|
dfiun3g |
⊢ ( ∀ 𝑘 ∈ ℕ ( 𝐸 ∩ 𝐴 ) ∈ 𝒫 𝑂 → ∪ 𝑘 ∈ ℕ ( 𝐸 ∩ 𝐴 ) = ∪ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ) |
| 37 |
35 36
|
syl |
⊢ ( 𝜑 → ∪ 𝑘 ∈ ℕ ( 𝐸 ∩ 𝐴 ) = ∪ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ) |
| 38 |
37
|
fveq2d |
⊢ ( 𝜑 → ( 𝑀 ‘ ∪ 𝑘 ∈ ℕ ( 𝐸 ∩ 𝐴 ) ) = ( 𝑀 ‘ ∪ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ) ) |
| 39 |
|
nnct |
⊢ ℕ ≼ ω |
| 40 |
|
mptct |
⊢ ( ℕ ≼ ω → ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ≼ ω ) |
| 41 |
|
rnct |
⊢ ( ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ≼ ω → ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ≼ ω ) |
| 42 |
39 40 41
|
mp2b |
⊢ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ≼ ω |
| 43 |
42
|
a1i |
⊢ ( 𝜑 → ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ≼ ω ) |
| 44 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) = ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) |
| 45 |
44
|
rnmptss |
⊢ ( ∀ 𝑘 ∈ ℕ ( 𝐸 ∩ 𝐴 ) ∈ 𝒫 𝑂 → ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ⊆ 𝒫 𝑂 ) |
| 46 |
35 45
|
syl |
⊢ ( 𝜑 → ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ⊆ 𝒫 𝑂 ) |
| 47 |
|
mptexg |
⊢ ( ℕ ∈ V → ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ∈ V ) |
| 48 |
|
rnexg |
⊢ ( ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ∈ V → ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ∈ V ) |
| 49 |
13 47 48
|
mp2b |
⊢ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ∈ V |
| 50 |
|
breq1 |
⊢ ( 𝑥 = ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) → ( 𝑥 ≼ ω ↔ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ≼ ω ) ) |
| 51 |
|
sseq1 |
⊢ ( 𝑥 = ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) → ( 𝑥 ⊆ 𝒫 𝑂 ↔ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ⊆ 𝒫 𝑂 ) ) |
| 52 |
50 51
|
3anbi23d |
⊢ ( 𝑥 = ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) → ( ( 𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂 ) ↔ ( 𝜑 ∧ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ≼ ω ∧ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ⊆ 𝒫 𝑂 ) ) ) |
| 53 |
|
unieq |
⊢ ( 𝑥 = ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) → ∪ 𝑥 = ∪ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ) |
| 54 |
53
|
fveq2d |
⊢ ( 𝑥 = ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) → ( 𝑀 ‘ ∪ 𝑥 ) = ( 𝑀 ‘ ∪ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ) ) |
| 55 |
|
esumeq1 |
⊢ ( 𝑥 = ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) → Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) = Σ* 𝑦 ∈ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ( 𝑀 ‘ 𝑦 ) ) |
| 56 |
54 55
|
breq12d |
⊢ ( 𝑥 = ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) → ( ( 𝑀 ‘ ∪ 𝑥 ) ≤ Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ↔ ( 𝑀 ‘ ∪ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ) ≤ Σ* 𝑦 ∈ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ( 𝑀 ‘ 𝑦 ) ) ) |
| 57 |
52 56
|
imbi12d |
⊢ ( 𝑥 = ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) → ( ( ( 𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂 ) → ( 𝑀 ‘ ∪ 𝑥 ) ≤ Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) ↔ ( ( 𝜑 ∧ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ≼ ω ∧ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ⊆ 𝒫 𝑂 ) → ( 𝑀 ‘ ∪ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ) ≤ Σ* 𝑦 ∈ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ( 𝑀 ‘ 𝑦 ) ) ) ) |
| 58 |
57 4
|
vtoclg |
⊢ ( ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ∈ V → ( ( 𝜑 ∧ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ≼ ω ∧ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ⊆ 𝒫 𝑂 ) → ( 𝑀 ‘ ∪ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ) ≤ Σ* 𝑦 ∈ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ( 𝑀 ‘ 𝑦 ) ) ) |
| 59 |
49 58
|
ax-mp |
⊢ ( ( 𝜑 ∧ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ≼ ω ∧ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ⊆ 𝒫 𝑂 ) → ( 𝑀 ‘ ∪ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ) ≤ Σ* 𝑦 ∈ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ( 𝑀 ‘ 𝑦 ) ) |
| 60 |
43 46 59
|
mpd3an23 |
⊢ ( 𝜑 → ( 𝑀 ‘ ∪ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ) ≤ Σ* 𝑦 ∈ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ( 𝑀 ‘ 𝑦 ) ) |
| 61 |
38 60
|
eqbrtrd |
⊢ ( 𝜑 → ( 𝑀 ‘ ∪ 𝑘 ∈ ℕ ( 𝐸 ∩ 𝐴 ) ) ≤ Σ* 𝑦 ∈ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ( 𝑀 ‘ 𝑦 ) ) |
| 62 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝐸 ∩ 𝐴 ) → ( 𝑀 ‘ 𝑦 ) = ( 𝑀 ‘ ( 𝐸 ∩ 𝐴 ) ) ) |
| 63 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝐸 ∩ 𝐴 ) = ∅ ) → ( 𝐸 ∩ 𝐴 ) = ∅ ) |
| 64 |
63
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝐸 ∩ 𝐴 ) = ∅ ) → ( 𝑀 ‘ ( 𝐸 ∩ 𝐴 ) ) = ( 𝑀 ‘ ∅ ) ) |
| 65 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝐸 ∩ 𝐴 ) = ∅ ) → ( 𝑀 ‘ ∅ ) = 0 ) |
| 66 |
64 65
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝐸 ∩ 𝐴 ) = ∅ ) → ( 𝑀 ‘ ( 𝐸 ∩ 𝐴 ) ) = 0 ) |
| 67 |
|
disjin |
⊢ ( Disj 𝑘 ∈ ℕ 𝐴 → Disj 𝑘 ∈ ℕ ( 𝐴 ∩ 𝐸 ) ) |
| 68 |
6 67
|
syl |
⊢ ( 𝜑 → Disj 𝑘 ∈ ℕ ( 𝐴 ∩ 𝐸 ) ) |
| 69 |
|
incom |
⊢ ( 𝐴 ∩ 𝐸 ) = ( 𝐸 ∩ 𝐴 ) |
| 70 |
69
|
rgenw |
⊢ ∀ 𝑘 ∈ ℕ ( 𝐴 ∩ 𝐸 ) = ( 𝐸 ∩ 𝐴 ) |
| 71 |
|
disjeq2 |
⊢ ( ∀ 𝑘 ∈ ℕ ( 𝐴 ∩ 𝐸 ) = ( 𝐸 ∩ 𝐴 ) → ( Disj 𝑘 ∈ ℕ ( 𝐴 ∩ 𝐸 ) ↔ Disj 𝑘 ∈ ℕ ( 𝐸 ∩ 𝐴 ) ) ) |
| 72 |
70 71
|
ax-mp |
⊢ ( Disj 𝑘 ∈ ℕ ( 𝐴 ∩ 𝐸 ) ↔ Disj 𝑘 ∈ ℕ ( 𝐸 ∩ 𝐴 ) ) |
| 73 |
68 72
|
sylib |
⊢ ( 𝜑 → Disj 𝑘 ∈ ℕ ( 𝐸 ∩ 𝐴 ) ) |
| 74 |
62 14 29 16 66 73
|
esumrnmpt2 |
⊢ ( 𝜑 → Σ* 𝑦 ∈ ran ( 𝑘 ∈ ℕ ↦ ( 𝐸 ∩ 𝐴 ) ) ( 𝑀 ‘ 𝑦 ) = Σ* 𝑘 ∈ ℕ ( 𝑀 ‘ ( 𝐸 ∩ 𝐴 ) ) ) |
| 75 |
61 74
|
breqtrd |
⊢ ( 𝜑 → ( 𝑀 ‘ ∪ 𝑘 ∈ ℕ ( 𝐸 ∩ 𝐴 ) ) ≤ Σ* 𝑘 ∈ ℕ ( 𝑀 ‘ ( 𝐸 ∩ 𝐴 ) ) ) |
| 76 |
|
difssd |
⊢ ( 𝜑 → ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ⊆ 𝐸 ) |
| 77 |
1 2 76 8 5
|
carsgmon |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ≤ ( 𝑀 ‘ 𝐸 ) ) |
| 78 |
21 24 77
|
xrge0subcld |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝐸 ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ) ∈ ( 0 [,] +∞ ) ) |
| 79 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) ) |
| 80 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐸 ∈ 𝒫 𝑂 ) |
| 81 |
80
|
elpwincl1 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ∈ 𝒫 𝑂 ) |
| 82 |
79 81
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ∈ ( 0 [,] +∞ ) ) |
| 83 |
12 82
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ∈ ℝ* ) |
| 84 |
|
xrge0neqmnf |
⊢ ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ∈ ( 0 [,] +∞ ) → ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ≠ -∞ ) |
| 85 |
82 84
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ≠ -∞ ) |
| 86 |
80
|
elpwdifcl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ∈ 𝒫 𝑂 ) |
| 87 |
79 86
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ∈ ( 0 [,] +∞ ) ) |
| 88 |
12 87
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ∈ ℝ* ) |
| 89 |
|
xrge0neqmnf |
⊢ ( ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ∈ ( 0 [,] +∞ ) → ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ≠ -∞ ) |
| 90 |
87 89
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ≠ -∞ ) |
| 91 |
88
|
xnegcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ∈ ℝ* ) |
| 92 |
|
xnegneg |
⊢ ( ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ∈ ℝ* → -𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) |
| 93 |
88 92
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → -𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) |
| 94 |
93
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = -∞ ) → -𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) |
| 95 |
|
xnegeq |
⊢ ( -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = -∞ → -𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = -𝑒 -∞ ) |
| 96 |
95
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = -∞ ) → -𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = -𝑒 -∞ ) |
| 97 |
|
xnegmnf |
⊢ -𝑒 -∞ = +∞ |
| 98 |
96 97
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = -∞ ) → -𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = +∞ ) |
| 99 |
94 98
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = -∞ ) → ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = +∞ ) |
| 100 |
99
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = -∞ ) → ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) = ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 +∞ ) ) |
| 101 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝜑 ) |
| 102 |
|
fz1ssnn |
⊢ ( 1 ... 𝑛 ) ⊆ ℕ |
| 103 |
102
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 1 ... 𝑛 ) ⊆ ℕ ) |
| 104 |
103
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝑘 ∈ ℕ ) |
| 105 |
101 104 7
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝐴 ∈ ( toCaraSiga ‘ 𝑀 ) ) |
| 106 |
105
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∀ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ∈ ( toCaraSiga ‘ 𝑀 ) ) |
| 107 |
|
dfiun3g |
⊢ ( ∀ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ∈ ( toCaraSiga ‘ 𝑀 ) → ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 = ∪ ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ) |
| 108 |
106 107
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 = ∪ ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ) |
| 109 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑂 ∈ 𝑉 ) |
| 110 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ‘ ∅ ) = 0 ) |
| 111 |
4
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂 ) → ( 𝑀 ‘ ∪ 𝑥 ) ≤ Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) |
| 112 |
|
fzfi |
⊢ ( 1 ... 𝑛 ) ∈ Fin |
| 113 |
|
mptfi |
⊢ ( ( 1 ... 𝑛 ) ∈ Fin → ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ∈ Fin ) |
| 114 |
|
rnfi |
⊢ ( ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ∈ Fin → ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ∈ Fin ) |
| 115 |
112 113 114
|
mp2b |
⊢ ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ∈ Fin |
| 116 |
115
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ∈ Fin ) |
| 117 |
|
eqid |
⊢ ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) = ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) |
| 118 |
117
|
rnmptss |
⊢ ( ∀ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ∈ ( toCaraSiga ‘ 𝑀 ) → ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ⊆ ( toCaraSiga ‘ 𝑀 ) ) |
| 119 |
106 118
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ⊆ ( toCaraSiga ‘ 𝑀 ) ) |
| 120 |
109 79 110 111 116 119
|
fiunelcarsg |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∪ ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ∈ ( toCaraSiga ‘ 𝑀 ) ) |
| 121 |
108 120
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ∈ ( toCaraSiga ‘ 𝑀 ) ) |
| 122 |
109 79
|
elcarsg |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ∈ ( toCaraSiga ‘ 𝑀 ) ↔ ( ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ⊆ 𝑂 ∧ ∀ 𝑒 ∈ 𝒫 𝑂 ( ( 𝑀 ‘ ( 𝑒 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) = ( 𝑀 ‘ 𝑒 ) ) ) ) |
| 123 |
121 122
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ⊆ 𝑂 ∧ ∀ 𝑒 ∈ 𝒫 𝑂 ( ( 𝑀 ‘ ( 𝑒 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) = ( 𝑀 ‘ 𝑒 ) ) ) |
| 124 |
123
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∀ 𝑒 ∈ 𝒫 𝑂 ( ( 𝑀 ‘ ( 𝑒 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) = ( 𝑀 ‘ 𝑒 ) ) |
| 125 |
|
ineq1 |
⊢ ( 𝑒 = 𝐸 → ( 𝑒 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) = ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) |
| 126 |
125
|
fveq2d |
⊢ ( 𝑒 = 𝐸 → ( 𝑀 ‘ ( 𝑒 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) |
| 127 |
|
difeq1 |
⊢ ( 𝑒 = 𝐸 → ( 𝑒 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) = ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) |
| 128 |
127
|
fveq2d |
⊢ ( 𝑒 = 𝐸 → ( 𝑀 ‘ ( 𝑒 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) |
| 129 |
126 128
|
oveq12d |
⊢ ( 𝑒 = 𝐸 → ( ( 𝑀 ‘ ( 𝑒 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) = ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) ) |
| 130 |
|
fveq2 |
⊢ ( 𝑒 = 𝐸 → ( 𝑀 ‘ 𝑒 ) = ( 𝑀 ‘ 𝐸 ) ) |
| 131 |
129 130
|
eqeq12d |
⊢ ( 𝑒 = 𝐸 → ( ( ( 𝑀 ‘ ( 𝑒 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) = ( 𝑀 ‘ 𝑒 ) ↔ ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) = ( 𝑀 ‘ 𝐸 ) ) ) |
| 132 |
131
|
rspcv |
⊢ ( 𝐸 ∈ 𝒫 𝑂 → ( ∀ 𝑒 ∈ 𝒫 𝑂 ( ( 𝑀 ‘ ( 𝑒 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) = ( 𝑀 ‘ 𝑒 ) → ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) = ( 𝑀 ‘ 𝐸 ) ) ) |
| 133 |
80 124 132
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) = ( 𝑀 ‘ 𝐸 ) ) |
| 134 |
133
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = -∞ ) → ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) = ( 𝑀 ‘ 𝐸 ) ) |
| 135 |
|
xaddpnf1 |
⊢ ( ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ∈ ℝ* ∧ ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ≠ -∞ ) → ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 +∞ ) = +∞ ) |
| 136 |
83 85 135
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 +∞ ) = +∞ ) |
| 137 |
136
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = -∞ ) → ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 +∞ ) = +∞ ) |
| 138 |
100 134 137
|
3eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = -∞ ) → ( 𝑀 ‘ 𝐸 ) = +∞ ) |
| 139 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = -∞ ) → ( 𝑀 ‘ 𝐸 ) ≠ +∞ ) |
| 140 |
139
|
neneqd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = -∞ ) → ¬ ( 𝑀 ‘ 𝐸 ) = +∞ ) |
| 141 |
138 140
|
pm2.65da |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ¬ -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = -∞ ) |
| 142 |
141
|
neqned |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ≠ -∞ ) |
| 143 |
|
xaddass |
⊢ ( ( ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ∈ ℝ* ∧ ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ≠ -∞ ) ∧ ( ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ∈ ℝ* ∧ ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ≠ -∞ ) ∧ ( -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ∈ ℝ* ∧ -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ≠ -∞ ) ) → ( ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) = ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 ( ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) ) ) |
| 144 |
83 85 88 90 91 142 143
|
syl222anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) = ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 ( ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) ) ) |
| 145 |
|
xnegid |
⊢ ( ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ∈ ℝ* → ( ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) = 0 ) |
| 146 |
88 145
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) = 0 ) |
| 147 |
146
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 ( ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) ) = ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 0 ) ) |
| 148 |
|
xaddrid |
⊢ ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ∈ ℝ* → ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 0 ) = ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) |
| 149 |
83 148
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 0 ) = ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) |
| 150 |
144 147 149
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) = ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) |
| 151 |
133
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) = ( ( 𝑀 ‘ 𝐸 ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) ) |
| 152 |
108
|
ineq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) = ( 𝐸 ∩ ∪ ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ) ) |
| 153 |
152
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = ( 𝑀 ‘ ( 𝐸 ∩ ∪ ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ) ) ) |
| 154 |
|
mptss |
⊢ ( ( 1 ... 𝑛 ) ⊆ ℕ → ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ⊆ ( 𝑘 ∈ ℕ ↦ 𝐴 ) ) |
| 155 |
|
rnss |
⊢ ( ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ⊆ ( 𝑘 ∈ ℕ ↦ 𝐴 ) → ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ⊆ ran ( 𝑘 ∈ ℕ ↦ 𝐴 ) ) |
| 156 |
102 154 155
|
mp2b |
⊢ ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ⊆ ran ( 𝑘 ∈ ℕ ↦ 𝐴 ) |
| 157 |
156
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ⊆ ran ( 𝑘 ∈ ℕ ↦ 𝐴 ) ) |
| 158 |
|
disjrnmpt |
⊢ ( Disj 𝑘 ∈ ℕ 𝐴 → Disj 𝑦 ∈ ran ( 𝑘 ∈ ℕ ↦ 𝐴 ) 𝑦 ) |
| 159 |
6 158
|
syl |
⊢ ( 𝜑 → Disj 𝑦 ∈ ran ( 𝑘 ∈ ℕ ↦ 𝐴 ) 𝑦 ) |
| 160 |
159
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Disj 𝑦 ∈ ran ( 𝑘 ∈ ℕ ↦ 𝐴 ) 𝑦 ) |
| 161 |
|
disjss1 |
⊢ ( ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ⊆ ran ( 𝑘 ∈ ℕ ↦ 𝐴 ) → ( Disj 𝑦 ∈ ran ( 𝑘 ∈ ℕ ↦ 𝐴 ) 𝑦 → Disj 𝑦 ∈ ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) 𝑦 ) ) |
| 162 |
157 160 161
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Disj 𝑦 ∈ ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) 𝑦 ) |
| 163 |
109 79 110 111 116 119 162 80
|
carsgclctunlem1 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ‘ ( 𝐸 ∩ ∪ ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ) ) = Σ* 𝑦 ∈ ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ( 𝑀 ‘ ( 𝐸 ∩ 𝑦 ) ) ) |
| 164 |
|
ineq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝐸 ∩ 𝑦 ) = ( 𝐸 ∩ 𝐴 ) ) |
| 165 |
164
|
fveq2d |
⊢ ( 𝑦 = 𝐴 → ( 𝑀 ‘ ( 𝐸 ∩ 𝑦 ) ) = ( 𝑀 ‘ ( 𝐸 ∩ 𝐴 ) ) ) |
| 166 |
112
|
elexi |
⊢ ( 1 ... 𝑛 ) ∈ V |
| 167 |
166
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 1 ... 𝑛 ) ∈ V ) |
| 168 |
101 104 29
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( 𝑀 ‘ ( 𝐸 ∩ 𝐴 ) ) ∈ ( 0 [,] +∞ ) ) |
| 169 |
|
inss2 |
⊢ ( 𝐸 ∩ 𝐴 ) ⊆ 𝐴 |
| 170 |
|
sseq2 |
⊢ ( 𝐴 = ∅ → ( ( 𝐸 ∩ 𝐴 ) ⊆ 𝐴 ↔ ( 𝐸 ∩ 𝐴 ) ⊆ ∅ ) ) |
| 171 |
169 170
|
mpbii |
⊢ ( 𝐴 = ∅ → ( 𝐸 ∩ 𝐴 ) ⊆ ∅ ) |
| 172 |
|
ss0 |
⊢ ( ( 𝐸 ∩ 𝐴 ) ⊆ ∅ → ( 𝐸 ∩ 𝐴 ) = ∅ ) |
| 173 |
171 172
|
syl |
⊢ ( 𝐴 = ∅ → ( 𝐸 ∩ 𝐴 ) = ∅ ) |
| 174 |
173
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) ∧ 𝐴 = ∅ ) → ( 𝐸 ∩ 𝐴 ) = ∅ ) |
| 175 |
174
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) ∧ 𝐴 = ∅ ) → ( 𝑀 ‘ ( 𝐸 ∩ 𝐴 ) ) = ( 𝑀 ‘ ∅ ) ) |
| 176 |
110
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) ∧ 𝐴 = ∅ ) → ( 𝑀 ‘ ∅ ) = 0 ) |
| 177 |
175 176
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) ∧ 𝐴 = ∅ ) → ( 𝑀 ‘ ( 𝐸 ∩ 𝐴 ) ) = 0 ) |
| 178 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Disj 𝑘 ∈ ℕ 𝐴 ) |
| 179 |
|
disjss1 |
⊢ ( ( 1 ... 𝑛 ) ⊆ ℕ → ( Disj 𝑘 ∈ ℕ 𝐴 → Disj 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) |
| 180 |
103 178 179
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Disj 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) |
| 181 |
165 167 168 105 177 180
|
esumrnmpt2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Σ* 𝑦 ∈ ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ 𝐴 ) ( 𝑀 ‘ ( 𝐸 ∩ 𝑦 ) ) = Σ* 𝑘 ∈ ( 1 ... 𝑛 ) ( 𝑀 ‘ ( 𝐸 ∩ 𝐴 ) ) ) |
| 182 |
153 163 181
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) = Σ* 𝑘 ∈ ( 1 ... 𝑛 ) ( 𝑀 ‘ ( 𝐸 ∩ 𝐴 ) ) ) |
| 183 |
150 151 182
|
3eqtr3rd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Σ* 𝑘 ∈ ( 1 ... 𝑛 ) ( 𝑀 ‘ ( 𝐸 ∩ 𝐴 ) ) = ( ( 𝑀 ‘ 𝐸 ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) ) |
| 184 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ∈ ( 0 [,] +∞ ) ) |
| 185 |
12 184
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ∈ ℝ* ) |
| 186 |
185
|
xnegcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ∈ ℝ* ) |
| 187 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ‘ 𝐸 ) ∈ ℝ* ) |
| 188 |
|
iunss1 |
⊢ ( ( 1 ... 𝑛 ) ⊆ ℕ → ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ⊆ ∪ 𝑘 ∈ ℕ 𝐴 ) |
| 189 |
102 188
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ⊆ ∪ 𝑘 ∈ ℕ 𝐴 ) |
| 190 |
189
|
sscond |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ⊆ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) |
| 191 |
5
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂 ) → ( 𝑀 ‘ 𝑥 ) ≤ ( 𝑀 ‘ 𝑦 ) ) |
| 192 |
109 79 190 86 191
|
carsgmon |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ≤ ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) |
| 193 |
|
xleneg |
⊢ ( ( ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ∈ ℝ* ∧ ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ∈ ℝ* ) → ( ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ≤ ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ↔ -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ≤ -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ) ) |
| 194 |
193
|
biimpa |
⊢ ( ( ( ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ∈ ℝ* ∧ ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ∈ ℝ* ) ∧ ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ≤ ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) → -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ≤ -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ) |
| 195 |
185 88 192 194
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ≤ -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ) |
| 196 |
|
xleadd2a |
⊢ ( ( ( -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ∈ ℝ* ∧ -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ∈ ℝ* ∧ ( 𝑀 ‘ 𝐸 ) ∈ ℝ* ) ∧ -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ≤ -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ) → ( ( 𝑀 ‘ 𝐸 ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) ≤ ( ( 𝑀 ‘ 𝐸 ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ) ) |
| 197 |
91 186 187 195 196
|
syl31anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑀 ‘ 𝐸 ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ) ≤ ( ( 𝑀 ‘ 𝐸 ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ) ) |
| 198 |
183 197
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Σ* 𝑘 ∈ ( 1 ... 𝑛 ) ( 𝑀 ‘ ( 𝐸 ∩ 𝐴 ) ) ≤ ( ( 𝑀 ‘ 𝐸 ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ) ) |
| 199 |
78 29 198
|
esumgect |
⊢ ( 𝜑 → Σ* 𝑘 ∈ ℕ ( 𝑀 ‘ ( 𝐸 ∩ 𝐴 ) ) ≤ ( ( 𝑀 ‘ 𝐸 ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ) ) |
| 200 |
19 34 27 75 199
|
xrletrd |
⊢ ( 𝜑 → ( 𝑀 ‘ ∪ 𝑘 ∈ ℕ ( 𝐸 ∩ 𝐴 ) ) ≤ ( ( 𝑀 ‘ 𝐸 ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ) ) |
| 201 |
11 200
|
eqbrtrrid |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ≤ ( ( 𝑀 ‘ 𝐸 ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ) ) |
| 202 |
|
xleadd1a |
⊢ ( ( ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ∈ ℝ* ∧ ( ( 𝑀 ‘ 𝐸 ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ) ∈ ℝ* ∧ ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ∈ ℝ* ) ∧ ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ≤ ( ( 𝑀 ‘ 𝐸 ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ) ) → ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ℕ 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ) ≤ ( ( ( 𝑀 ‘ 𝐸 ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ) ) |
| 203 |
20 27 25 201 202
|
syl31anc |
⊢ ( 𝜑 → ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ℕ 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ) ≤ ( ( ( 𝑀 ‘ 𝐸 ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ) ) |
| 204 |
|
xrge0npcan |
⊢ ( ( ( 𝑀 ‘ 𝐸 ) ∈ ( 0 [,] +∞ ) ∧ ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ∈ ( 0 [,] +∞ ) ∧ ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ≤ ( 𝑀 ‘ 𝐸 ) ) → ( ( ( 𝑀 ‘ 𝐸 ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ) = ( 𝑀 ‘ 𝐸 ) ) |
| 205 |
21 24 77 204
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝑀 ‘ 𝐸 ) +𝑒 -𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ) = ( 𝑀 ‘ 𝐸 ) ) |
| 206 |
203 205
|
breqtrd |
⊢ ( 𝜑 → ( ( 𝑀 ‘ ( 𝐸 ∩ ∪ 𝑘 ∈ ℕ 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝐸 ∖ ∪ 𝑘 ∈ ℕ 𝐴 ) ) ) ≤ ( 𝑀 ‘ 𝐸 ) ) |