Step |
Hyp |
Ref |
Expression |
1 |
|
carsgval.1 |
|- ( ph -> O e. V ) |
2 |
|
carsgval.2 |
|- ( ph -> M : ~P O --> ( 0 [,] +oo ) ) |
3 |
|
carsgsiga.1 |
|- ( ph -> ( M ` (/) ) = 0 ) |
4 |
|
carsgsiga.2 |
|- ( ( ph /\ x ~<_ _om /\ x C_ ~P O ) -> ( M ` U. x ) <_ sum* y e. x ( M ` y ) ) |
5 |
|
carsgsiga.3 |
|- ( ( ph /\ x C_ y /\ y e. ~P O ) -> ( M ` x ) <_ ( M ` y ) ) |
6 |
|
carsgclctunlem2.1 |
|- ( ph -> Disj_ k e. NN A ) |
7 |
|
carsgclctunlem2.2 |
|- ( ( ph /\ k e. NN ) -> A e. ( toCaraSiga ` M ) ) |
8 |
|
carsgclctunlem2.3 |
|- ( ph -> E e. ~P O ) |
9 |
|
carsgclctunlem2.4 |
|- ( ph -> ( M ` E ) =/= +oo ) |
10 |
|
iunin2 |
|- U_ k e. NN ( E i^i A ) = ( E i^i U_ k e. NN A ) |
11 |
10
|
fveq2i |
|- ( M ` U_ k e. NN ( E i^i A ) ) = ( M ` ( E i^i U_ k e. NN A ) ) |
12 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
13 |
|
nnex |
|- NN e. _V |
14 |
13
|
a1i |
|- ( ph -> NN e. _V ) |
15 |
8
|
adantr |
|- ( ( ph /\ k e. NN ) -> E e. ~P O ) |
16 |
15
|
elpwincl1 |
|- ( ( ph /\ k e. NN ) -> ( E i^i A ) e. ~P O ) |
17 |
14 16
|
elpwiuncl |
|- ( ph -> U_ k e. NN ( E i^i A ) e. ~P O ) |
18 |
2 17
|
ffvelrnd |
|- ( ph -> ( M ` U_ k e. NN ( E i^i A ) ) e. ( 0 [,] +oo ) ) |
19 |
12 18
|
sselid |
|- ( ph -> ( M ` U_ k e. NN ( E i^i A ) ) e. RR* ) |
20 |
11 19
|
eqeltrrid |
|- ( ph -> ( M ` ( E i^i U_ k e. NN A ) ) e. RR* ) |
21 |
2 8
|
ffvelrnd |
|- ( ph -> ( M ` E ) e. ( 0 [,] +oo ) ) |
22 |
12 21
|
sselid |
|- ( ph -> ( M ` E ) e. RR* ) |
23 |
8
|
elpwdifcl |
|- ( ph -> ( E \ U_ k e. NN A ) e. ~P O ) |
24 |
2 23
|
ffvelrnd |
|- ( ph -> ( M ` ( E \ U_ k e. NN A ) ) e. ( 0 [,] +oo ) ) |
25 |
12 24
|
sselid |
|- ( ph -> ( M ` ( E \ U_ k e. NN A ) ) e. RR* ) |
26 |
25
|
xnegcld |
|- ( ph -> -e ( M ` ( E \ U_ k e. NN A ) ) e. RR* ) |
27 |
22 26
|
xaddcld |
|- ( ph -> ( ( M ` E ) +e -e ( M ` ( E \ U_ k e. NN A ) ) ) e. RR* ) |
28 |
2
|
adantr |
|- ( ( ph /\ k e. NN ) -> M : ~P O --> ( 0 [,] +oo ) ) |
29 |
28 16
|
ffvelrnd |
|- ( ( ph /\ k e. NN ) -> ( M ` ( E i^i A ) ) e. ( 0 [,] +oo ) ) |
30 |
29
|
ralrimiva |
|- ( ph -> A. k e. NN ( M ` ( E i^i A ) ) e. ( 0 [,] +oo ) ) |
31 |
|
nfcv |
|- F/_ k NN |
32 |
31
|
esumcl |
|- ( ( NN e. _V /\ A. k e. NN ( M ` ( E i^i A ) ) e. ( 0 [,] +oo ) ) -> sum* k e. NN ( M ` ( E i^i A ) ) e. ( 0 [,] +oo ) ) |
33 |
14 30 32
|
syl2anc |
|- ( ph -> sum* k e. NN ( M ` ( E i^i A ) ) e. ( 0 [,] +oo ) ) |
34 |
12 33
|
sselid |
|- ( ph -> sum* k e. NN ( M ` ( E i^i A ) ) e. RR* ) |
35 |
16
|
ralrimiva |
|- ( ph -> A. k e. NN ( E i^i A ) e. ~P O ) |
36 |
|
dfiun3g |
|- ( A. k e. NN ( E i^i A ) e. ~P O -> U_ k e. NN ( E i^i A ) = U. ran ( k e. NN |-> ( E i^i A ) ) ) |
37 |
35 36
|
syl |
|- ( ph -> U_ k e. NN ( E i^i A ) = U. ran ( k e. NN |-> ( E i^i A ) ) ) |
38 |
37
|
fveq2d |
|- ( ph -> ( M ` U_ k e. NN ( E i^i A ) ) = ( M ` U. ran ( k e. NN |-> ( E i^i A ) ) ) ) |
39 |
|
nnct |
|- NN ~<_ _om |
40 |
|
mptct |
|- ( NN ~<_ _om -> ( k e. NN |-> ( E i^i A ) ) ~<_ _om ) |
41 |
|
rnct |
|- ( ( k e. NN |-> ( E i^i A ) ) ~<_ _om -> ran ( k e. NN |-> ( E i^i A ) ) ~<_ _om ) |
42 |
39 40 41
|
mp2b |
|- ran ( k e. NN |-> ( E i^i A ) ) ~<_ _om |
43 |
42
|
a1i |
|- ( ph -> ran ( k e. NN |-> ( E i^i A ) ) ~<_ _om ) |
44 |
|
eqid |
|- ( k e. NN |-> ( E i^i A ) ) = ( k e. NN |-> ( E i^i A ) ) |
45 |
44
|
rnmptss |
|- ( A. k e. NN ( E i^i A ) e. ~P O -> ran ( k e. NN |-> ( E i^i A ) ) C_ ~P O ) |
46 |
35 45
|
syl |
|- ( ph -> ran ( k e. NN |-> ( E i^i A ) ) C_ ~P O ) |
47 |
|
mptexg |
|- ( NN e. _V -> ( k e. NN |-> ( E i^i A ) ) e. _V ) |
48 |
|
rnexg |
|- ( ( k e. NN |-> ( E i^i A ) ) e. _V -> ran ( k e. NN |-> ( E i^i A ) ) e. _V ) |
49 |
13 47 48
|
mp2b |
|- ran ( k e. NN |-> ( E i^i A ) ) e. _V |
50 |
|
breq1 |
|- ( x = ran ( k e. NN |-> ( E i^i A ) ) -> ( x ~<_ _om <-> ran ( k e. NN |-> ( E i^i A ) ) ~<_ _om ) ) |
51 |
|
sseq1 |
|- ( x = ran ( k e. NN |-> ( E i^i A ) ) -> ( x C_ ~P O <-> ran ( k e. NN |-> ( E i^i A ) ) C_ ~P O ) ) |
52 |
50 51
|
3anbi23d |
|- ( x = ran ( k e. NN |-> ( E i^i A ) ) -> ( ( ph /\ x ~<_ _om /\ x C_ ~P O ) <-> ( ph /\ ran ( k e. NN |-> ( E i^i A ) ) ~<_ _om /\ ran ( k e. NN |-> ( E i^i A ) ) C_ ~P O ) ) ) |
53 |
|
unieq |
|- ( x = ran ( k e. NN |-> ( E i^i A ) ) -> U. x = U. ran ( k e. NN |-> ( E i^i A ) ) ) |
54 |
53
|
fveq2d |
|- ( x = ran ( k e. NN |-> ( E i^i A ) ) -> ( M ` U. x ) = ( M ` U. ran ( k e. NN |-> ( E i^i A ) ) ) ) |
55 |
|
esumeq1 |
|- ( x = ran ( k e. NN |-> ( E i^i A ) ) -> sum* y e. x ( M ` y ) = sum* y e. ran ( k e. NN |-> ( E i^i A ) ) ( M ` y ) ) |
56 |
54 55
|
breq12d |
|- ( x = ran ( k e. NN |-> ( E i^i A ) ) -> ( ( M ` U. x ) <_ sum* y e. x ( M ` y ) <-> ( M ` U. ran ( k e. NN |-> ( E i^i A ) ) ) <_ sum* y e. ran ( k e. NN |-> ( E i^i A ) ) ( M ` y ) ) ) |
57 |
52 56
|
imbi12d |
|- ( x = ran ( k e. NN |-> ( E i^i A ) ) -> ( ( ( ph /\ x ~<_ _om /\ x C_ ~P O ) -> ( M ` U. x ) <_ sum* y e. x ( M ` y ) ) <-> ( ( ph /\ ran ( k e. NN |-> ( E i^i A ) ) ~<_ _om /\ ran ( k e. NN |-> ( E i^i A ) ) C_ ~P O ) -> ( M ` U. ran ( k e. NN |-> ( E i^i A ) ) ) <_ sum* y e. ran ( k e. NN |-> ( E i^i A ) ) ( M ` y ) ) ) ) |
58 |
57 4
|
vtoclg |
|- ( ran ( k e. NN |-> ( E i^i A ) ) e. _V -> ( ( ph /\ ran ( k e. NN |-> ( E i^i A ) ) ~<_ _om /\ ran ( k e. NN |-> ( E i^i A ) ) C_ ~P O ) -> ( M ` U. ran ( k e. NN |-> ( E i^i A ) ) ) <_ sum* y e. ran ( k e. NN |-> ( E i^i A ) ) ( M ` y ) ) ) |
59 |
49 58
|
ax-mp |
|- ( ( ph /\ ran ( k e. NN |-> ( E i^i A ) ) ~<_ _om /\ ran ( k e. NN |-> ( E i^i A ) ) C_ ~P O ) -> ( M ` U. ran ( k e. NN |-> ( E i^i A ) ) ) <_ sum* y e. ran ( k e. NN |-> ( E i^i A ) ) ( M ` y ) ) |
60 |
43 46 59
|
mpd3an23 |
|- ( ph -> ( M ` U. ran ( k e. NN |-> ( E i^i A ) ) ) <_ sum* y e. ran ( k e. NN |-> ( E i^i A ) ) ( M ` y ) ) |
61 |
38 60
|
eqbrtrd |
|- ( ph -> ( M ` U_ k e. NN ( E i^i A ) ) <_ sum* y e. ran ( k e. NN |-> ( E i^i A ) ) ( M ` y ) ) |
62 |
|
fveq2 |
|- ( y = ( E i^i A ) -> ( M ` y ) = ( M ` ( E i^i A ) ) ) |
63 |
|
simpr |
|- ( ( ( ph /\ k e. NN ) /\ ( E i^i A ) = (/) ) -> ( E i^i A ) = (/) ) |
64 |
63
|
fveq2d |
|- ( ( ( ph /\ k e. NN ) /\ ( E i^i A ) = (/) ) -> ( M ` ( E i^i A ) ) = ( M ` (/) ) ) |
65 |
3
|
ad2antrr |
|- ( ( ( ph /\ k e. NN ) /\ ( E i^i A ) = (/) ) -> ( M ` (/) ) = 0 ) |
66 |
64 65
|
eqtrd |
|- ( ( ( ph /\ k e. NN ) /\ ( E i^i A ) = (/) ) -> ( M ` ( E i^i A ) ) = 0 ) |
67 |
|
disjin |
|- ( Disj_ k e. NN A -> Disj_ k e. NN ( A i^i E ) ) |
68 |
6 67
|
syl |
|- ( ph -> Disj_ k e. NN ( A i^i E ) ) |
69 |
|
incom |
|- ( A i^i E ) = ( E i^i A ) |
70 |
69
|
rgenw |
|- A. k e. NN ( A i^i E ) = ( E i^i A ) |
71 |
|
disjeq2 |
|- ( A. k e. NN ( A i^i E ) = ( E i^i A ) -> ( Disj_ k e. NN ( A i^i E ) <-> Disj_ k e. NN ( E i^i A ) ) ) |
72 |
70 71
|
ax-mp |
|- ( Disj_ k e. NN ( A i^i E ) <-> Disj_ k e. NN ( E i^i A ) ) |
73 |
68 72
|
sylib |
|- ( ph -> Disj_ k e. NN ( E i^i A ) ) |
74 |
62 14 29 16 66 73
|
esumrnmpt2 |
|- ( ph -> sum* y e. ran ( k e. NN |-> ( E i^i A ) ) ( M ` y ) = sum* k e. NN ( M ` ( E i^i A ) ) ) |
75 |
61 74
|
breqtrd |
|- ( ph -> ( M ` U_ k e. NN ( E i^i A ) ) <_ sum* k e. NN ( M ` ( E i^i A ) ) ) |
76 |
|
difssd |
|- ( ph -> ( E \ U_ k e. NN A ) C_ E ) |
77 |
1 2 76 8 5
|
carsgmon |
|- ( ph -> ( M ` ( E \ U_ k e. NN A ) ) <_ ( M ` E ) ) |
78 |
21 24 77
|
xrge0subcld |
|- ( ph -> ( ( M ` E ) +e -e ( M ` ( E \ U_ k e. NN A ) ) ) e. ( 0 [,] +oo ) ) |
79 |
2
|
adantr |
|- ( ( ph /\ n e. NN ) -> M : ~P O --> ( 0 [,] +oo ) ) |
80 |
8
|
adantr |
|- ( ( ph /\ n e. NN ) -> E e. ~P O ) |
81 |
80
|
elpwincl1 |
|- ( ( ph /\ n e. NN ) -> ( E i^i U_ k e. ( 1 ... n ) A ) e. ~P O ) |
82 |
79 81
|
ffvelrnd |
|- ( ( ph /\ n e. NN ) -> ( M ` ( E i^i U_ k e. ( 1 ... n ) A ) ) e. ( 0 [,] +oo ) ) |
83 |
12 82
|
sselid |
|- ( ( ph /\ n e. NN ) -> ( M ` ( E i^i U_ k e. ( 1 ... n ) A ) ) e. RR* ) |
84 |
|
xrge0neqmnf |
|- ( ( M ` ( E i^i U_ k e. ( 1 ... n ) A ) ) e. ( 0 [,] +oo ) -> ( M ` ( E i^i U_ k e. ( 1 ... n ) A ) ) =/= -oo ) |
85 |
82 84
|
syl |
|- ( ( ph /\ n e. NN ) -> ( M ` ( E i^i U_ k e. ( 1 ... n ) A ) ) =/= -oo ) |
86 |
80
|
elpwdifcl |
|- ( ( ph /\ n e. NN ) -> ( E \ U_ k e. ( 1 ... n ) A ) e. ~P O ) |
87 |
79 86
|
ffvelrnd |
|- ( ( ph /\ n e. NN ) -> ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) e. ( 0 [,] +oo ) ) |
88 |
12 87
|
sselid |
|- ( ( ph /\ n e. NN ) -> ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) e. RR* ) |
89 |
|
xrge0neqmnf |
|- ( ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) e. ( 0 [,] +oo ) -> ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) =/= -oo ) |
90 |
87 89
|
syl |
|- ( ( ph /\ n e. NN ) -> ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) =/= -oo ) |
91 |
88
|
xnegcld |
|- ( ( ph /\ n e. NN ) -> -e ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) e. RR* ) |
92 |
|
xnegneg |
|- ( ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) e. RR* -> -e -e ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) = ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) ) |
93 |
88 92
|
syl |
|- ( ( ph /\ n e. NN ) -> -e -e ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) = ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) ) |
94 |
93
|
adantr |
|- ( ( ( ph /\ n e. NN ) /\ -e ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) = -oo ) -> -e -e ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) = ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) ) |
95 |
|
xnegeq |
|- ( -e ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) = -oo -> -e -e ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) = -e -oo ) |
96 |
95
|
adantl |
|- ( ( ( ph /\ n e. NN ) /\ -e ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) = -oo ) -> -e -e ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) = -e -oo ) |
97 |
|
xnegmnf |
|- -e -oo = +oo |
98 |
96 97
|
eqtrdi |
|- ( ( ( ph /\ n e. NN ) /\ -e ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) = -oo ) -> -e -e ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) = +oo ) |
99 |
94 98
|
eqtr3d |
|- ( ( ( ph /\ n e. NN ) /\ -e ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) = -oo ) -> ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) = +oo ) |
100 |
99
|
oveq2d |
|- ( ( ( ph /\ n e. NN ) /\ -e ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) = -oo ) -> ( ( M ` ( E i^i U_ k e. ( 1 ... n ) A ) ) +e ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) ) = ( ( M ` ( E i^i U_ k e. ( 1 ... n ) A ) ) +e +oo ) ) |
101 |
|
simpll |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ph ) |
102 |
|
fz1ssnn |
|- ( 1 ... n ) C_ NN |
103 |
102
|
a1i |
|- ( ( ph /\ n e. NN ) -> ( 1 ... n ) C_ NN ) |
104 |
103
|
sselda |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> k e. NN ) |
105 |
101 104 7
|
syl2anc |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> A e. ( toCaraSiga ` M ) ) |
106 |
105
|
ralrimiva |
|- ( ( ph /\ n e. NN ) -> A. k e. ( 1 ... n ) A e. ( toCaraSiga ` M ) ) |
107 |
|
dfiun3g |
|- ( A. k e. ( 1 ... n ) A e. ( toCaraSiga ` M ) -> U_ k e. ( 1 ... n ) A = U. ran ( k e. ( 1 ... n ) |-> A ) ) |
108 |
106 107
|
syl |
|- ( ( ph /\ n e. NN ) -> U_ k e. ( 1 ... n ) A = U. ran ( k e. ( 1 ... n ) |-> A ) ) |
109 |
1
|
adantr |
|- ( ( ph /\ n e. NN ) -> O e. V ) |
110 |
3
|
adantr |
|- ( ( ph /\ n e. NN ) -> ( M ` (/) ) = 0 ) |
111 |
4
|
3adant1r |
|- ( ( ( ph /\ n e. NN ) /\ x ~<_ _om /\ x C_ ~P O ) -> ( M ` U. x ) <_ sum* y e. x ( M ` y ) ) |
112 |
|
fzfi |
|- ( 1 ... n ) e. Fin |
113 |
|
mptfi |
|- ( ( 1 ... n ) e. Fin -> ( k e. ( 1 ... n ) |-> A ) e. Fin ) |
114 |
|
rnfi |
|- ( ( k e. ( 1 ... n ) |-> A ) e. Fin -> ran ( k e. ( 1 ... n ) |-> A ) e. Fin ) |
115 |
112 113 114
|
mp2b |
|- ran ( k e. ( 1 ... n ) |-> A ) e. Fin |
116 |
115
|
a1i |
|- ( ( ph /\ n e. NN ) -> ran ( k e. ( 1 ... n ) |-> A ) e. Fin ) |
117 |
|
eqid |
|- ( k e. ( 1 ... n ) |-> A ) = ( k e. ( 1 ... n ) |-> A ) |
118 |
117
|
rnmptss |
|- ( A. k e. ( 1 ... n ) A e. ( toCaraSiga ` M ) -> ran ( k e. ( 1 ... n ) |-> A ) C_ ( toCaraSiga ` M ) ) |
119 |
106 118
|
syl |
|- ( ( ph /\ n e. NN ) -> ran ( k e. ( 1 ... n ) |-> A ) C_ ( toCaraSiga ` M ) ) |
120 |
109 79 110 111 116 119
|
fiunelcarsg |
|- ( ( ph /\ n e. NN ) -> U. ran ( k e. ( 1 ... n ) |-> A ) e. ( toCaraSiga ` M ) ) |
121 |
108 120
|
eqeltrd |
|- ( ( ph /\ n e. NN ) -> U_ k e. ( 1 ... n ) A e. ( toCaraSiga ` M ) ) |
122 |
109 79
|
elcarsg |
|- ( ( ph /\ n e. NN ) -> ( U_ k e. ( 1 ... n ) A e. ( toCaraSiga ` M ) <-> ( U_ k e. ( 1 ... n ) A C_ O /\ A. e e. ~P O ( ( M ` ( e i^i U_ k e. ( 1 ... n ) A ) ) +e ( M ` ( e \ U_ k e. ( 1 ... n ) A ) ) ) = ( M ` e ) ) ) ) |
123 |
121 122
|
mpbid |
|- ( ( ph /\ n e. NN ) -> ( U_ k e. ( 1 ... n ) A C_ O /\ A. e e. ~P O ( ( M ` ( e i^i U_ k e. ( 1 ... n ) A ) ) +e ( M ` ( e \ U_ k e. ( 1 ... n ) A ) ) ) = ( M ` e ) ) ) |
124 |
123
|
simprd |
|- ( ( ph /\ n e. NN ) -> A. e e. ~P O ( ( M ` ( e i^i U_ k e. ( 1 ... n ) A ) ) +e ( M ` ( e \ U_ k e. ( 1 ... n ) A ) ) ) = ( M ` e ) ) |
125 |
|
ineq1 |
|- ( e = E -> ( e i^i U_ k e. ( 1 ... n ) A ) = ( E i^i U_ k e. ( 1 ... n ) A ) ) |
126 |
125
|
fveq2d |
|- ( e = E -> ( M ` ( e i^i U_ k e. ( 1 ... n ) A ) ) = ( M ` ( E i^i U_ k e. ( 1 ... n ) A ) ) ) |
127 |
|
difeq1 |
|- ( e = E -> ( e \ U_ k e. ( 1 ... n ) A ) = ( E \ U_ k e. ( 1 ... n ) A ) ) |
128 |
127
|
fveq2d |
|- ( e = E -> ( M ` ( e \ U_ k e. ( 1 ... n ) A ) ) = ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) ) |
129 |
126 128
|
oveq12d |
|- ( e = E -> ( ( M ` ( e i^i U_ k e. ( 1 ... n ) A ) ) +e ( M ` ( e \ U_ k e. ( 1 ... n ) A ) ) ) = ( ( M ` ( E i^i U_ k e. ( 1 ... n ) A ) ) +e ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) ) ) |
130 |
|
fveq2 |
|- ( e = E -> ( M ` e ) = ( M ` E ) ) |
131 |
129 130
|
eqeq12d |
|- ( e = E -> ( ( ( M ` ( e i^i U_ k e. ( 1 ... n ) A ) ) +e ( M ` ( e \ U_ k e. ( 1 ... n ) A ) ) ) = ( M ` e ) <-> ( ( M ` ( E i^i U_ k e. ( 1 ... n ) A ) ) +e ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) ) = ( M ` E ) ) ) |
132 |
131
|
rspcv |
|- ( E e. ~P O -> ( A. e e. ~P O ( ( M ` ( e i^i U_ k e. ( 1 ... n ) A ) ) +e ( M ` ( e \ U_ k e. ( 1 ... n ) A ) ) ) = ( M ` e ) -> ( ( M ` ( E i^i U_ k e. ( 1 ... n ) A ) ) +e ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) ) = ( M ` E ) ) ) |
133 |
80 124 132
|
sylc |
|- ( ( ph /\ n e. NN ) -> ( ( M ` ( E i^i U_ k e. ( 1 ... n ) A ) ) +e ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) ) = ( M ` E ) ) |
134 |
133
|
adantr |
|- ( ( ( ph /\ n e. NN ) /\ -e ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) = -oo ) -> ( ( M ` ( E i^i U_ k e. ( 1 ... n ) A ) ) +e ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) ) = ( M ` E ) ) |
135 |
|
xaddpnf1 |
|- ( ( ( M ` ( E i^i U_ k e. ( 1 ... n ) A ) ) e. RR* /\ ( M ` ( E i^i U_ k e. ( 1 ... n ) A ) ) =/= -oo ) -> ( ( M ` ( E i^i U_ k e. ( 1 ... n ) A ) ) +e +oo ) = +oo ) |
136 |
83 85 135
|
syl2anc |
|- ( ( ph /\ n e. NN ) -> ( ( M ` ( E i^i U_ k e. ( 1 ... n ) A ) ) +e +oo ) = +oo ) |
137 |
136
|
adantr |
|- ( ( ( ph /\ n e. NN ) /\ -e ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) = -oo ) -> ( ( M ` ( E i^i U_ k e. ( 1 ... n ) A ) ) +e +oo ) = +oo ) |
138 |
100 134 137
|
3eqtr3d |
|- ( ( ( ph /\ n e. NN ) /\ -e ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) = -oo ) -> ( M ` E ) = +oo ) |
139 |
9
|
ad2antrr |
|- ( ( ( ph /\ n e. NN ) /\ -e ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) = -oo ) -> ( M ` E ) =/= +oo ) |
140 |
139
|
neneqd |
|- ( ( ( ph /\ n e. NN ) /\ -e ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) = -oo ) -> -. ( M ` E ) = +oo ) |
141 |
138 140
|
pm2.65da |
|- ( ( ph /\ n e. NN ) -> -. -e ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) = -oo ) |
142 |
141
|
neqned |
|- ( ( ph /\ n e. NN ) -> -e ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) =/= -oo ) |
143 |
|
xaddass |
|- ( ( ( ( M ` ( E i^i U_ k e. ( 1 ... n ) A ) ) e. RR* /\ ( M ` ( E i^i U_ k e. ( 1 ... n ) A ) ) =/= -oo ) /\ ( ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) e. RR* /\ ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) =/= -oo ) /\ ( -e ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) e. RR* /\ -e ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) =/= -oo ) ) -> ( ( ( M ` ( E i^i U_ k e. ( 1 ... n ) A ) ) +e ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) ) +e -e ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) ) = ( ( M ` ( E i^i U_ k e. ( 1 ... n ) A ) ) +e ( ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) +e -e ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) ) ) ) |
144 |
83 85 88 90 91 142 143
|
syl222anc |
|- ( ( ph /\ n e. NN ) -> ( ( ( M ` ( E i^i U_ k e. ( 1 ... n ) A ) ) +e ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) ) +e -e ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) ) = ( ( M ` ( E i^i U_ k e. ( 1 ... n ) A ) ) +e ( ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) +e -e ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) ) ) ) |
145 |
|
xnegid |
|- ( ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) e. RR* -> ( ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) +e -e ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) ) = 0 ) |
146 |
88 145
|
syl |
|- ( ( ph /\ n e. NN ) -> ( ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) +e -e ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) ) = 0 ) |
147 |
146
|
oveq2d |
|- ( ( ph /\ n e. NN ) -> ( ( M ` ( E i^i U_ k e. ( 1 ... n ) A ) ) +e ( ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) +e -e ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) ) ) = ( ( M ` ( E i^i U_ k e. ( 1 ... n ) A ) ) +e 0 ) ) |
148 |
|
xaddid1 |
|- ( ( M ` ( E i^i U_ k e. ( 1 ... n ) A ) ) e. RR* -> ( ( M ` ( E i^i U_ k e. ( 1 ... n ) A ) ) +e 0 ) = ( M ` ( E i^i U_ k e. ( 1 ... n ) A ) ) ) |
149 |
83 148
|
syl |
|- ( ( ph /\ n e. NN ) -> ( ( M ` ( E i^i U_ k e. ( 1 ... n ) A ) ) +e 0 ) = ( M ` ( E i^i U_ k e. ( 1 ... n ) A ) ) ) |
150 |
144 147 149
|
3eqtrd |
|- ( ( ph /\ n e. NN ) -> ( ( ( M ` ( E i^i U_ k e. ( 1 ... n ) A ) ) +e ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) ) +e -e ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) ) = ( M ` ( E i^i U_ k e. ( 1 ... n ) A ) ) ) |
151 |
133
|
oveq1d |
|- ( ( ph /\ n e. NN ) -> ( ( ( M ` ( E i^i U_ k e. ( 1 ... n ) A ) ) +e ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) ) +e -e ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) ) = ( ( M ` E ) +e -e ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) ) ) |
152 |
108
|
ineq2d |
|- ( ( ph /\ n e. NN ) -> ( E i^i U_ k e. ( 1 ... n ) A ) = ( E i^i U. ran ( k e. ( 1 ... n ) |-> A ) ) ) |
153 |
152
|
fveq2d |
|- ( ( ph /\ n e. NN ) -> ( M ` ( E i^i U_ k e. ( 1 ... n ) A ) ) = ( M ` ( E i^i U. ran ( k e. ( 1 ... n ) |-> A ) ) ) ) |
154 |
|
mptss |
|- ( ( 1 ... n ) C_ NN -> ( k e. ( 1 ... n ) |-> A ) C_ ( k e. NN |-> A ) ) |
155 |
|
rnss |
|- ( ( k e. ( 1 ... n ) |-> A ) C_ ( k e. NN |-> A ) -> ran ( k e. ( 1 ... n ) |-> A ) C_ ran ( k e. NN |-> A ) ) |
156 |
102 154 155
|
mp2b |
|- ran ( k e. ( 1 ... n ) |-> A ) C_ ran ( k e. NN |-> A ) |
157 |
156
|
a1i |
|- ( ( ph /\ n e. NN ) -> ran ( k e. ( 1 ... n ) |-> A ) C_ ran ( k e. NN |-> A ) ) |
158 |
|
disjrnmpt |
|- ( Disj_ k e. NN A -> Disj_ y e. ran ( k e. NN |-> A ) y ) |
159 |
6 158
|
syl |
|- ( ph -> Disj_ y e. ran ( k e. NN |-> A ) y ) |
160 |
159
|
adantr |
|- ( ( ph /\ n e. NN ) -> Disj_ y e. ran ( k e. NN |-> A ) y ) |
161 |
|
disjss1 |
|- ( ran ( k e. ( 1 ... n ) |-> A ) C_ ran ( k e. NN |-> A ) -> ( Disj_ y e. ran ( k e. NN |-> A ) y -> Disj_ y e. ran ( k e. ( 1 ... n ) |-> A ) y ) ) |
162 |
157 160 161
|
sylc |
|- ( ( ph /\ n e. NN ) -> Disj_ y e. ran ( k e. ( 1 ... n ) |-> A ) y ) |
163 |
109 79 110 111 116 119 162 80
|
carsgclctunlem1 |
|- ( ( ph /\ n e. NN ) -> ( M ` ( E i^i U. ran ( k e. ( 1 ... n ) |-> A ) ) ) = sum* y e. ran ( k e. ( 1 ... n ) |-> A ) ( M ` ( E i^i y ) ) ) |
164 |
|
ineq2 |
|- ( y = A -> ( E i^i y ) = ( E i^i A ) ) |
165 |
164
|
fveq2d |
|- ( y = A -> ( M ` ( E i^i y ) ) = ( M ` ( E i^i A ) ) ) |
166 |
112
|
elexi |
|- ( 1 ... n ) e. _V |
167 |
166
|
a1i |
|- ( ( ph /\ n e. NN ) -> ( 1 ... n ) e. _V ) |
168 |
101 104 29
|
syl2anc |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( M ` ( E i^i A ) ) e. ( 0 [,] +oo ) ) |
169 |
|
inss2 |
|- ( E i^i A ) C_ A |
170 |
|
sseq2 |
|- ( A = (/) -> ( ( E i^i A ) C_ A <-> ( E i^i A ) C_ (/) ) ) |
171 |
169 170
|
mpbii |
|- ( A = (/) -> ( E i^i A ) C_ (/) ) |
172 |
|
ss0 |
|- ( ( E i^i A ) C_ (/) -> ( E i^i A ) = (/) ) |
173 |
171 172
|
syl |
|- ( A = (/) -> ( E i^i A ) = (/) ) |
174 |
173
|
adantl |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) /\ A = (/) ) -> ( E i^i A ) = (/) ) |
175 |
174
|
fveq2d |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) /\ A = (/) ) -> ( M ` ( E i^i A ) ) = ( M ` (/) ) ) |
176 |
110
|
ad2antrr |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) /\ A = (/) ) -> ( M ` (/) ) = 0 ) |
177 |
175 176
|
eqtrd |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) /\ A = (/) ) -> ( M ` ( E i^i A ) ) = 0 ) |
178 |
6
|
adantr |
|- ( ( ph /\ n e. NN ) -> Disj_ k e. NN A ) |
179 |
|
disjss1 |
|- ( ( 1 ... n ) C_ NN -> ( Disj_ k e. NN A -> Disj_ k e. ( 1 ... n ) A ) ) |
180 |
103 178 179
|
sylc |
|- ( ( ph /\ n e. NN ) -> Disj_ k e. ( 1 ... n ) A ) |
181 |
165 167 168 105 177 180
|
esumrnmpt2 |
|- ( ( ph /\ n e. NN ) -> sum* y e. ran ( k e. ( 1 ... n ) |-> A ) ( M ` ( E i^i y ) ) = sum* k e. ( 1 ... n ) ( M ` ( E i^i A ) ) ) |
182 |
153 163 181
|
3eqtrd |
|- ( ( ph /\ n e. NN ) -> ( M ` ( E i^i U_ k e. ( 1 ... n ) A ) ) = sum* k e. ( 1 ... n ) ( M ` ( E i^i A ) ) ) |
183 |
150 151 182
|
3eqtr3rd |
|- ( ( ph /\ n e. NN ) -> sum* k e. ( 1 ... n ) ( M ` ( E i^i A ) ) = ( ( M ` E ) +e -e ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) ) ) |
184 |
24
|
adantr |
|- ( ( ph /\ n e. NN ) -> ( M ` ( E \ U_ k e. NN A ) ) e. ( 0 [,] +oo ) ) |
185 |
12 184
|
sselid |
|- ( ( ph /\ n e. NN ) -> ( M ` ( E \ U_ k e. NN A ) ) e. RR* ) |
186 |
185
|
xnegcld |
|- ( ( ph /\ n e. NN ) -> -e ( M ` ( E \ U_ k e. NN A ) ) e. RR* ) |
187 |
22
|
adantr |
|- ( ( ph /\ n e. NN ) -> ( M ` E ) e. RR* ) |
188 |
|
iunss1 |
|- ( ( 1 ... n ) C_ NN -> U_ k e. ( 1 ... n ) A C_ U_ k e. NN A ) |
189 |
102 188
|
mp1i |
|- ( ( ph /\ n e. NN ) -> U_ k e. ( 1 ... n ) A C_ U_ k e. NN A ) |
190 |
189
|
sscond |
|- ( ( ph /\ n e. NN ) -> ( E \ U_ k e. NN A ) C_ ( E \ U_ k e. ( 1 ... n ) A ) ) |
191 |
5
|
3adant1r |
|- ( ( ( ph /\ n e. NN ) /\ x C_ y /\ y e. ~P O ) -> ( M ` x ) <_ ( M ` y ) ) |
192 |
109 79 190 86 191
|
carsgmon |
|- ( ( ph /\ n e. NN ) -> ( M ` ( E \ U_ k e. NN A ) ) <_ ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) ) |
193 |
|
xleneg |
|- ( ( ( M ` ( E \ U_ k e. NN A ) ) e. RR* /\ ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) e. RR* ) -> ( ( M ` ( E \ U_ k e. NN A ) ) <_ ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) <-> -e ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) <_ -e ( M ` ( E \ U_ k e. NN A ) ) ) ) |
194 |
193
|
biimpa |
|- ( ( ( ( M ` ( E \ U_ k e. NN A ) ) e. RR* /\ ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) e. RR* ) /\ ( M ` ( E \ U_ k e. NN A ) ) <_ ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) ) -> -e ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) <_ -e ( M ` ( E \ U_ k e. NN A ) ) ) |
195 |
185 88 192 194
|
syl21anc |
|- ( ( ph /\ n e. NN ) -> -e ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) <_ -e ( M ` ( E \ U_ k e. NN A ) ) ) |
196 |
|
xleadd2a |
|- ( ( ( -e ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) e. RR* /\ -e ( M ` ( E \ U_ k e. NN A ) ) e. RR* /\ ( M ` E ) e. RR* ) /\ -e ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) <_ -e ( M ` ( E \ U_ k e. NN A ) ) ) -> ( ( M ` E ) +e -e ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) ) <_ ( ( M ` E ) +e -e ( M ` ( E \ U_ k e. NN A ) ) ) ) |
197 |
91 186 187 195 196
|
syl31anc |
|- ( ( ph /\ n e. NN ) -> ( ( M ` E ) +e -e ( M ` ( E \ U_ k e. ( 1 ... n ) A ) ) ) <_ ( ( M ` E ) +e -e ( M ` ( E \ U_ k e. NN A ) ) ) ) |
198 |
183 197
|
eqbrtrd |
|- ( ( ph /\ n e. NN ) -> sum* k e. ( 1 ... n ) ( M ` ( E i^i A ) ) <_ ( ( M ` E ) +e -e ( M ` ( E \ U_ k e. NN A ) ) ) ) |
199 |
78 29 198
|
esumgect |
|- ( ph -> sum* k e. NN ( M ` ( E i^i A ) ) <_ ( ( M ` E ) +e -e ( M ` ( E \ U_ k e. NN A ) ) ) ) |
200 |
19 34 27 75 199
|
xrletrd |
|- ( ph -> ( M ` U_ k e. NN ( E i^i A ) ) <_ ( ( M ` E ) +e -e ( M ` ( E \ U_ k e. NN A ) ) ) ) |
201 |
11 200
|
eqbrtrrid |
|- ( ph -> ( M ` ( E i^i U_ k e. NN A ) ) <_ ( ( M ` E ) +e -e ( M ` ( E \ U_ k e. NN A ) ) ) ) |
202 |
|
xleadd1a |
|- ( ( ( ( M ` ( E i^i U_ k e. NN A ) ) e. RR* /\ ( ( M ` E ) +e -e ( M ` ( E \ U_ k e. NN A ) ) ) e. RR* /\ ( M ` ( E \ U_ k e. NN A ) ) e. RR* ) /\ ( M ` ( E i^i U_ k e. NN A ) ) <_ ( ( M ` E ) +e -e ( M ` ( E \ U_ k e. NN A ) ) ) ) -> ( ( M ` ( E i^i U_ k e. NN A ) ) +e ( M ` ( E \ U_ k e. NN A ) ) ) <_ ( ( ( M ` E ) +e -e ( M ` ( E \ U_ k e. NN A ) ) ) +e ( M ` ( E \ U_ k e. NN A ) ) ) ) |
203 |
20 27 25 201 202
|
syl31anc |
|- ( ph -> ( ( M ` ( E i^i U_ k e. NN A ) ) +e ( M ` ( E \ U_ k e. NN A ) ) ) <_ ( ( ( M ` E ) +e -e ( M ` ( E \ U_ k e. NN A ) ) ) +e ( M ` ( E \ U_ k e. NN A ) ) ) ) |
204 |
|
xrge0npcan |
|- ( ( ( M ` E ) e. ( 0 [,] +oo ) /\ ( M ` ( E \ U_ k e. NN A ) ) e. ( 0 [,] +oo ) /\ ( M ` ( E \ U_ k e. NN A ) ) <_ ( M ` E ) ) -> ( ( ( M ` E ) +e -e ( M ` ( E \ U_ k e. NN A ) ) ) +e ( M ` ( E \ U_ k e. NN A ) ) ) = ( M ` E ) ) |
205 |
21 24 77 204
|
syl3anc |
|- ( ph -> ( ( ( M ` E ) +e -e ( M ` ( E \ U_ k e. NN A ) ) ) +e ( M ` ( E \ U_ k e. NN A ) ) ) = ( M ` E ) ) |
206 |
203 205
|
breqtrd |
|- ( ph -> ( ( M ` ( E i^i U_ k e. NN A ) ) +e ( M ` ( E \ U_ k e. NN A ) ) ) <_ ( M ` E ) ) |