| Step | Hyp | Ref | Expression | 
						
							| 1 |  | carsgval.1 |  |-  ( ph -> O e. V ) | 
						
							| 2 |  | carsgval.2 |  |-  ( ph -> M : ~P O --> ( 0 [,] +oo ) ) | 
						
							| 3 |  | carsgsiga.1 |  |-  ( ph -> ( M ` (/) ) = 0 ) | 
						
							| 4 |  | carsgsiga.2 |  |-  ( ( ph /\ x ~<_ _om /\ x C_ ~P O ) -> ( M ` U. x ) <_ sum* y e. x ( M ` y ) ) | 
						
							| 5 |  | carsgsiga.3 |  |-  ( ( ph /\ x C_ y /\ y e. ~P O ) -> ( M ` x ) <_ ( M ` y ) ) | 
						
							| 6 |  | carsgclctun.1 |  |-  ( ph -> A ~<_ _om ) | 
						
							| 7 |  | carsgclctun.2 |  |-  ( ph -> A C_ ( toCaraSiga ` M ) ) | 
						
							| 8 |  | carsgclctunlem3.1 |  |-  ( ph -> E e. ~P O ) | 
						
							| 9 |  | iccssxr |  |-  ( 0 [,] +oo ) C_ RR* | 
						
							| 10 | 8 | elpwincl1 |  |-  ( ph -> ( E i^i U. A ) e. ~P O ) | 
						
							| 11 | 2 10 | ffvelcdmd |  |-  ( ph -> ( M ` ( E i^i U. A ) ) e. ( 0 [,] +oo ) ) | 
						
							| 12 | 9 11 | sselid |  |-  ( ph -> ( M ` ( E i^i U. A ) ) e. RR* ) | 
						
							| 13 | 8 | elpwdifcl |  |-  ( ph -> ( E \ U. A ) e. ~P O ) | 
						
							| 14 | 2 13 | ffvelcdmd |  |-  ( ph -> ( M ` ( E \ U. A ) ) e. ( 0 [,] +oo ) ) | 
						
							| 15 | 9 14 | sselid |  |-  ( ph -> ( M ` ( E \ U. A ) ) e. RR* ) | 
						
							| 16 | 12 15 | xaddcld |  |-  ( ph -> ( ( M ` ( E i^i U. A ) ) +e ( M ` ( E \ U. A ) ) ) e. RR* ) | 
						
							| 17 | 16 | adantr |  |-  ( ( ph /\ ( M ` E ) = +oo ) -> ( ( M ` ( E i^i U. A ) ) +e ( M ` ( E \ U. A ) ) ) e. RR* ) | 
						
							| 18 |  | pnfge |  |-  ( ( ( M ` ( E i^i U. A ) ) +e ( M ` ( E \ U. A ) ) ) e. RR* -> ( ( M ` ( E i^i U. A ) ) +e ( M ` ( E \ U. A ) ) ) <_ +oo ) | 
						
							| 19 | 17 18 | syl |  |-  ( ( ph /\ ( M ` E ) = +oo ) -> ( ( M ` ( E i^i U. A ) ) +e ( M ` ( E \ U. A ) ) ) <_ +oo ) | 
						
							| 20 |  | simpr |  |-  ( ( ph /\ ( M ` E ) = +oo ) -> ( M ` E ) = +oo ) | 
						
							| 21 | 19 20 | breqtrrd |  |-  ( ( ph /\ ( M ` E ) = +oo ) -> ( ( M ` ( E i^i U. A ) ) +e ( M ` ( E \ U. A ) ) ) <_ ( M ` E ) ) | 
						
							| 22 |  | unieq |  |-  ( A = (/) -> U. A = U. (/) ) | 
						
							| 23 |  | uni0 |  |-  U. (/) = (/) | 
						
							| 24 | 22 23 | eqtrdi |  |-  ( A = (/) -> U. A = (/) ) | 
						
							| 25 | 24 | ineq2d |  |-  ( A = (/) -> ( E i^i U. A ) = ( E i^i (/) ) ) | 
						
							| 26 |  | in0 |  |-  ( E i^i (/) ) = (/) | 
						
							| 27 | 25 26 | eqtrdi |  |-  ( A = (/) -> ( E i^i U. A ) = (/) ) | 
						
							| 28 | 27 | fveq2d |  |-  ( A = (/) -> ( M ` ( E i^i U. A ) ) = ( M ` (/) ) ) | 
						
							| 29 | 24 | difeq2d |  |-  ( A = (/) -> ( E \ U. A ) = ( E \ (/) ) ) | 
						
							| 30 |  | dif0 |  |-  ( E \ (/) ) = E | 
						
							| 31 | 29 30 | eqtrdi |  |-  ( A = (/) -> ( E \ U. A ) = E ) | 
						
							| 32 | 31 | fveq2d |  |-  ( A = (/) -> ( M ` ( E \ U. A ) ) = ( M ` E ) ) | 
						
							| 33 | 28 32 | oveq12d |  |-  ( A = (/) -> ( ( M ` ( E i^i U. A ) ) +e ( M ` ( E \ U. A ) ) ) = ( ( M ` (/) ) +e ( M ` E ) ) ) | 
						
							| 34 | 33 | adantl |  |-  ( ( ph /\ A = (/) ) -> ( ( M ` ( E i^i U. A ) ) +e ( M ` ( E \ U. A ) ) ) = ( ( M ` (/) ) +e ( M ` E ) ) ) | 
						
							| 35 | 3 | adantr |  |-  ( ( ph /\ A = (/) ) -> ( M ` (/) ) = 0 ) | 
						
							| 36 | 35 | oveq1d |  |-  ( ( ph /\ A = (/) ) -> ( ( M ` (/) ) +e ( M ` E ) ) = ( 0 +e ( M ` E ) ) ) | 
						
							| 37 | 2 8 | ffvelcdmd |  |-  ( ph -> ( M ` E ) e. ( 0 [,] +oo ) ) | 
						
							| 38 | 9 37 | sselid |  |-  ( ph -> ( M ` E ) e. RR* ) | 
						
							| 39 | 38 | adantr |  |-  ( ( ph /\ A = (/) ) -> ( M ` E ) e. RR* ) | 
						
							| 40 |  | xaddlid |  |-  ( ( M ` E ) e. RR* -> ( 0 +e ( M ` E ) ) = ( M ` E ) ) | 
						
							| 41 | 39 40 | syl |  |-  ( ( ph /\ A = (/) ) -> ( 0 +e ( M ` E ) ) = ( M ` E ) ) | 
						
							| 42 | 34 36 41 | 3eqtrd |  |-  ( ( ph /\ A = (/) ) -> ( ( M ` ( E i^i U. A ) ) +e ( M ` ( E \ U. A ) ) ) = ( M ` E ) ) | 
						
							| 43 | 42 39 | eqeltrd |  |-  ( ( ph /\ A = (/) ) -> ( ( M ` ( E i^i U. A ) ) +e ( M ` ( E \ U. A ) ) ) e. RR* ) | 
						
							| 44 |  | xeqlelt |  |-  ( ( ( ( M ` ( E i^i U. A ) ) +e ( M ` ( E \ U. A ) ) ) e. RR* /\ ( M ` E ) e. RR* ) -> ( ( ( M ` ( E i^i U. A ) ) +e ( M ` ( E \ U. A ) ) ) = ( M ` E ) <-> ( ( ( M ` ( E i^i U. A ) ) +e ( M ` ( E \ U. A ) ) ) <_ ( M ` E ) /\ -. ( ( M ` ( E i^i U. A ) ) +e ( M ` ( E \ U. A ) ) ) < ( M ` E ) ) ) ) | 
						
							| 45 | 43 39 44 | syl2anc |  |-  ( ( ph /\ A = (/) ) -> ( ( ( M ` ( E i^i U. A ) ) +e ( M ` ( E \ U. A ) ) ) = ( M ` E ) <-> ( ( ( M ` ( E i^i U. A ) ) +e ( M ` ( E \ U. A ) ) ) <_ ( M ` E ) /\ -. ( ( M ` ( E i^i U. A ) ) +e ( M ` ( E \ U. A ) ) ) < ( M ` E ) ) ) ) | 
						
							| 46 | 42 45 | mpbid |  |-  ( ( ph /\ A = (/) ) -> ( ( ( M ` ( E i^i U. A ) ) +e ( M ` ( E \ U. A ) ) ) <_ ( M ` E ) /\ -. ( ( M ` ( E i^i U. A ) ) +e ( M ` ( E \ U. A ) ) ) < ( M ` E ) ) ) | 
						
							| 47 | 46 | simpld |  |-  ( ( ph /\ A = (/) ) -> ( ( M ` ( E i^i U. A ) ) +e ( M ` ( E \ U. A ) ) ) <_ ( M ` E ) ) | 
						
							| 48 | 47 | adantlr |  |-  ( ( ( ph /\ ( M ` E ) =/= +oo ) /\ A = (/) ) -> ( ( M ` ( E i^i U. A ) ) +e ( M ` ( E \ U. A ) ) ) <_ ( M ` E ) ) | 
						
							| 49 |  | fvex |  |-  ( toCaraSiga ` M ) e. _V | 
						
							| 50 | 49 | ssex |  |-  ( A C_ ( toCaraSiga ` M ) -> A e. _V ) | 
						
							| 51 |  | 0sdomg |  |-  ( A e. _V -> ( (/) ~< A <-> A =/= (/) ) ) | 
						
							| 52 | 7 50 51 | 3syl |  |-  ( ph -> ( (/) ~< A <-> A =/= (/) ) ) | 
						
							| 53 | 52 | biimpar |  |-  ( ( ph /\ A =/= (/) ) -> (/) ~< A ) | 
						
							| 54 | 53 | adantlr |  |-  ( ( ( ph /\ ( M ` E ) =/= +oo ) /\ A =/= (/) ) -> (/) ~< A ) | 
						
							| 55 |  | nnenom |  |-  NN ~~ _om | 
						
							| 56 | 55 | ensymi |  |-  _om ~~ NN | 
						
							| 57 |  | domentr |  |-  ( ( A ~<_ _om /\ _om ~~ NN ) -> A ~<_ NN ) | 
						
							| 58 | 6 56 57 | sylancl |  |-  ( ph -> A ~<_ NN ) | 
						
							| 59 | 58 | ad2antrr |  |-  ( ( ( ph /\ ( M ` E ) =/= +oo ) /\ A =/= (/) ) -> A ~<_ NN ) | 
						
							| 60 |  | fodomr |  |-  ( ( (/) ~< A /\ A ~<_ NN ) -> E. f f : NN -onto-> A ) | 
						
							| 61 | 54 59 60 | syl2anc |  |-  ( ( ( ph /\ ( M ` E ) =/= +oo ) /\ A =/= (/) ) -> E. f f : NN -onto-> A ) | 
						
							| 62 |  | fveq2 |  |-  ( n = k -> ( f ` n ) = ( f ` k ) ) | 
						
							| 63 | 62 | iundisj |  |-  U_ n e. NN ( f ` n ) = U_ n e. NN ( ( f ` n ) \ U_ k e. ( 1 ..^ n ) ( f ` k ) ) | 
						
							| 64 |  | fofn |  |-  ( f : NN -onto-> A -> f Fn NN ) | 
						
							| 65 |  | fniunfv |  |-  ( f Fn NN -> U_ n e. NN ( f ` n ) = U. ran f ) | 
						
							| 66 | 64 65 | syl |  |-  ( f : NN -onto-> A -> U_ n e. NN ( f ` n ) = U. ran f ) | 
						
							| 67 |  | forn |  |-  ( f : NN -onto-> A -> ran f = A ) | 
						
							| 68 | 67 | unieqd |  |-  ( f : NN -onto-> A -> U. ran f = U. A ) | 
						
							| 69 | 66 68 | eqtrd |  |-  ( f : NN -onto-> A -> U_ n e. NN ( f ` n ) = U. A ) | 
						
							| 70 | 69 | adantl |  |-  ( ( ( ( ph /\ ( M ` E ) =/= +oo ) /\ A =/= (/) ) /\ f : NN -onto-> A ) -> U_ n e. NN ( f ` n ) = U. A ) | 
						
							| 71 | 63 70 | eqtr3id |  |-  ( ( ( ( ph /\ ( M ` E ) =/= +oo ) /\ A =/= (/) ) /\ f : NN -onto-> A ) -> U_ n e. NN ( ( f ` n ) \ U_ k e. ( 1 ..^ n ) ( f ` k ) ) = U. A ) | 
						
							| 72 | 71 | ineq2d |  |-  ( ( ( ( ph /\ ( M ` E ) =/= +oo ) /\ A =/= (/) ) /\ f : NN -onto-> A ) -> ( E i^i U_ n e. NN ( ( f ` n ) \ U_ k e. ( 1 ..^ n ) ( f ` k ) ) ) = ( E i^i U. A ) ) | 
						
							| 73 | 72 | fveq2d |  |-  ( ( ( ( ph /\ ( M ` E ) =/= +oo ) /\ A =/= (/) ) /\ f : NN -onto-> A ) -> ( M ` ( E i^i U_ n e. NN ( ( f ` n ) \ U_ k e. ( 1 ..^ n ) ( f ` k ) ) ) ) = ( M ` ( E i^i U. A ) ) ) | 
						
							| 74 | 71 | difeq2d |  |-  ( ( ( ( ph /\ ( M ` E ) =/= +oo ) /\ A =/= (/) ) /\ f : NN -onto-> A ) -> ( E \ U_ n e. NN ( ( f ` n ) \ U_ k e. ( 1 ..^ n ) ( f ` k ) ) ) = ( E \ U. A ) ) | 
						
							| 75 | 74 | fveq2d |  |-  ( ( ( ( ph /\ ( M ` E ) =/= +oo ) /\ A =/= (/) ) /\ f : NN -onto-> A ) -> ( M ` ( E \ U_ n e. NN ( ( f ` n ) \ U_ k e. ( 1 ..^ n ) ( f ` k ) ) ) ) = ( M ` ( E \ U. A ) ) ) | 
						
							| 76 | 73 75 | oveq12d |  |-  ( ( ( ( ph /\ ( M ` E ) =/= +oo ) /\ A =/= (/) ) /\ f : NN -onto-> A ) -> ( ( M ` ( E i^i U_ n e. NN ( ( f ` n ) \ U_ k e. ( 1 ..^ n ) ( f ` k ) ) ) ) +e ( M ` ( E \ U_ n e. NN ( ( f ` n ) \ U_ k e. ( 1 ..^ n ) ( f ` k ) ) ) ) ) = ( ( M ` ( E i^i U. A ) ) +e ( M ` ( E \ U. A ) ) ) ) | 
						
							| 77 | 1 | ad3antrrr |  |-  ( ( ( ( ph /\ ( M ` E ) =/= +oo ) /\ A =/= (/) ) /\ f : NN -onto-> A ) -> O e. V ) | 
						
							| 78 | 2 | ad3antrrr |  |-  ( ( ( ( ph /\ ( M ` E ) =/= +oo ) /\ A =/= (/) ) /\ f : NN -onto-> A ) -> M : ~P O --> ( 0 [,] +oo ) ) | 
						
							| 79 | 3 | ad3antrrr |  |-  ( ( ( ( ph /\ ( M ` E ) =/= +oo ) /\ A =/= (/) ) /\ f : NN -onto-> A ) -> ( M ` (/) ) = 0 ) | 
						
							| 80 | 4 | 3adant1r |  |-  ( ( ( ph /\ ( M ` E ) =/= +oo ) /\ x ~<_ _om /\ x C_ ~P O ) -> ( M ` U. x ) <_ sum* y e. x ( M ` y ) ) | 
						
							| 81 | 80 | 3adant1r |  |-  ( ( ( ( ph /\ ( M ` E ) =/= +oo ) /\ A =/= (/) ) /\ x ~<_ _om /\ x C_ ~P O ) -> ( M ` U. x ) <_ sum* y e. x ( M ` y ) ) | 
						
							| 82 | 81 | 3adant1r |  |-  ( ( ( ( ( ph /\ ( M ` E ) =/= +oo ) /\ A =/= (/) ) /\ f : NN -onto-> A ) /\ x ~<_ _om /\ x C_ ~P O ) -> ( M ` U. x ) <_ sum* y e. x ( M ` y ) ) | 
						
							| 83 | 5 | 3adant1r |  |-  ( ( ( ph /\ ( M ` E ) =/= +oo ) /\ x C_ y /\ y e. ~P O ) -> ( M ` x ) <_ ( M ` y ) ) | 
						
							| 84 | 83 | 3adant1r |  |-  ( ( ( ( ph /\ ( M ` E ) =/= +oo ) /\ A =/= (/) ) /\ x C_ y /\ y e. ~P O ) -> ( M ` x ) <_ ( M ` y ) ) | 
						
							| 85 | 84 | 3adant1r |  |-  ( ( ( ( ( ph /\ ( M ` E ) =/= +oo ) /\ A =/= (/) ) /\ f : NN -onto-> A ) /\ x C_ y /\ y e. ~P O ) -> ( M ` x ) <_ ( M ` y ) ) | 
						
							| 86 | 62 | iundisj2 |  |-  Disj_ n e. NN ( ( f ` n ) \ U_ k e. ( 1 ..^ n ) ( f ` k ) ) | 
						
							| 87 | 86 | a1i |  |-  ( ( ( ( ph /\ ( M ` E ) =/= +oo ) /\ A =/= (/) ) /\ f : NN -onto-> A ) -> Disj_ n e. NN ( ( f ` n ) \ U_ k e. ( 1 ..^ n ) ( f ` k ) ) ) | 
						
							| 88 | 77 | adantr |  |-  ( ( ( ( ( ph /\ ( M ` E ) =/= +oo ) /\ A =/= (/) ) /\ f : NN -onto-> A ) /\ n e. NN ) -> O e. V ) | 
						
							| 89 | 78 | adantr |  |-  ( ( ( ( ( ph /\ ( M ` E ) =/= +oo ) /\ A =/= (/) ) /\ f : NN -onto-> A ) /\ n e. NN ) -> M : ~P O --> ( 0 [,] +oo ) ) | 
						
							| 90 | 7 | ad4antr |  |-  ( ( ( ( ( ph /\ ( M ` E ) =/= +oo ) /\ A =/= (/) ) /\ f : NN -onto-> A ) /\ n e. NN ) -> A C_ ( toCaraSiga ` M ) ) | 
						
							| 91 |  | fof |  |-  ( f : NN -onto-> A -> f : NN --> A ) | 
						
							| 92 | 91 | ad2antlr |  |-  ( ( ( ( ( ph /\ ( M ` E ) =/= +oo ) /\ A =/= (/) ) /\ f : NN -onto-> A ) /\ n e. NN ) -> f : NN --> A ) | 
						
							| 93 |  | simpr |  |-  ( ( ( ( ( ph /\ ( M ` E ) =/= +oo ) /\ A =/= (/) ) /\ f : NN -onto-> A ) /\ n e. NN ) -> n e. NN ) | 
						
							| 94 | 92 93 | ffvelcdmd |  |-  ( ( ( ( ( ph /\ ( M ` E ) =/= +oo ) /\ A =/= (/) ) /\ f : NN -onto-> A ) /\ n e. NN ) -> ( f ` n ) e. A ) | 
						
							| 95 | 90 94 | sseldd |  |-  ( ( ( ( ( ph /\ ( M ` E ) =/= +oo ) /\ A =/= (/) ) /\ f : NN -onto-> A ) /\ n e. NN ) -> ( f ` n ) e. ( toCaraSiga ` M ) ) | 
						
							| 96 | 79 | adantr |  |-  ( ( ( ( ( ph /\ ( M ` E ) =/= +oo ) /\ A =/= (/) ) /\ f : NN -onto-> A ) /\ n e. NN ) -> ( M ` (/) ) = 0 ) | 
						
							| 97 | 82 | 3adant1r |  |-  ( ( ( ( ( ( ph /\ ( M ` E ) =/= +oo ) /\ A =/= (/) ) /\ f : NN -onto-> A ) /\ n e. NN ) /\ x ~<_ _om /\ x C_ ~P O ) -> ( M ` U. x ) <_ sum* y e. x ( M ` y ) ) | 
						
							| 98 | 88 89 96 97 | carsgsigalem |  |-  ( ( ( ( ( ( ph /\ ( M ` E ) =/= +oo ) /\ A =/= (/) ) /\ f : NN -onto-> A ) /\ n e. NN ) /\ e e. ~P O /\ g e. ~P O ) -> ( M ` ( e u. g ) ) <_ ( ( M ` e ) +e ( M ` g ) ) ) | 
						
							| 99 | 91 | ad3antlr |  |-  ( ( ( ( ( ( ph /\ ( M ` E ) =/= +oo ) /\ A =/= (/) ) /\ f : NN -onto-> A ) /\ n e. NN ) /\ k e. ( 1 ..^ n ) ) -> f : NN --> A ) | 
						
							| 100 |  | fzossnn |  |-  ( 1 ..^ n ) C_ NN | 
						
							| 101 | 100 | a1i |  |-  ( ( ( ( ( ph /\ ( M ` E ) =/= +oo ) /\ A =/= (/) ) /\ f : NN -onto-> A ) /\ n e. NN ) -> ( 1 ..^ n ) C_ NN ) | 
						
							| 102 | 101 | sselda |  |-  ( ( ( ( ( ( ph /\ ( M ` E ) =/= +oo ) /\ A =/= (/) ) /\ f : NN -onto-> A ) /\ n e. NN ) /\ k e. ( 1 ..^ n ) ) -> k e. NN ) | 
						
							| 103 | 99 102 | ffvelcdmd |  |-  ( ( ( ( ( ( ph /\ ( M ` E ) =/= +oo ) /\ A =/= (/) ) /\ f : NN -onto-> A ) /\ n e. NN ) /\ k e. ( 1 ..^ n ) ) -> ( f ` k ) e. A ) | 
						
							| 104 | 103 | ralrimiva |  |-  ( ( ( ( ( ph /\ ( M ` E ) =/= +oo ) /\ A =/= (/) ) /\ f : NN -onto-> A ) /\ n e. NN ) -> A. k e. ( 1 ..^ n ) ( f ` k ) e. A ) | 
						
							| 105 |  | dfiun2g |  |-  ( A. k e. ( 1 ..^ n ) ( f ` k ) e. A -> U_ k e. ( 1 ..^ n ) ( f ` k ) = U. { z | E. k e. ( 1 ..^ n ) z = ( f ` k ) } ) | 
						
							| 106 | 104 105 | syl |  |-  ( ( ( ( ( ph /\ ( M ` E ) =/= +oo ) /\ A =/= (/) ) /\ f : NN -onto-> A ) /\ n e. NN ) -> U_ k e. ( 1 ..^ n ) ( f ` k ) = U. { z | E. k e. ( 1 ..^ n ) z = ( f ` k ) } ) | 
						
							| 107 |  | eqid |  |-  ( k e. ( 1 ..^ n ) |-> ( f ` k ) ) = ( k e. ( 1 ..^ n ) |-> ( f ` k ) ) | 
						
							| 108 | 107 | rnmpt |  |-  ran ( k e. ( 1 ..^ n ) |-> ( f ` k ) ) = { z | E. k e. ( 1 ..^ n ) z = ( f ` k ) } | 
						
							| 109 |  | fzofi |  |-  ( 1 ..^ n ) e. Fin | 
						
							| 110 |  | mptfi |  |-  ( ( 1 ..^ n ) e. Fin -> ( k e. ( 1 ..^ n ) |-> ( f ` k ) ) e. Fin ) | 
						
							| 111 |  | rnfi |  |-  ( ( k e. ( 1 ..^ n ) |-> ( f ` k ) ) e. Fin -> ran ( k e. ( 1 ..^ n ) |-> ( f ` k ) ) e. Fin ) | 
						
							| 112 | 109 110 111 | mp2b |  |-  ran ( k e. ( 1 ..^ n ) |-> ( f ` k ) ) e. Fin | 
						
							| 113 | 108 112 | eqeltrri |  |-  { z | E. k e. ( 1 ..^ n ) z = ( f ` k ) } e. Fin | 
						
							| 114 | 113 | a1i |  |-  ( ( ( ( ( ph /\ ( M ` E ) =/= +oo ) /\ A =/= (/) ) /\ f : NN -onto-> A ) /\ n e. NN ) -> { z | E. k e. ( 1 ..^ n ) z = ( f ` k ) } e. Fin ) | 
						
							| 115 | 90 | adantr |  |-  ( ( ( ( ( ( ph /\ ( M ` E ) =/= +oo ) /\ A =/= (/) ) /\ f : NN -onto-> A ) /\ n e. NN ) /\ k e. ( 1 ..^ n ) ) -> A C_ ( toCaraSiga ` M ) ) | 
						
							| 116 | 115 103 | sseldd |  |-  ( ( ( ( ( ( ph /\ ( M ` E ) =/= +oo ) /\ A =/= (/) ) /\ f : NN -onto-> A ) /\ n e. NN ) /\ k e. ( 1 ..^ n ) ) -> ( f ` k ) e. ( toCaraSiga ` M ) ) | 
						
							| 117 | 116 | ralrimiva |  |-  ( ( ( ( ( ph /\ ( M ` E ) =/= +oo ) /\ A =/= (/) ) /\ f : NN -onto-> A ) /\ n e. NN ) -> A. k e. ( 1 ..^ n ) ( f ` k ) e. ( toCaraSiga ` M ) ) | 
						
							| 118 | 107 | rnmptss |  |-  ( A. k e. ( 1 ..^ n ) ( f ` k ) e. ( toCaraSiga ` M ) -> ran ( k e. ( 1 ..^ n ) |-> ( f ` k ) ) C_ ( toCaraSiga ` M ) ) | 
						
							| 119 | 117 118 | syl |  |-  ( ( ( ( ( ph /\ ( M ` E ) =/= +oo ) /\ A =/= (/) ) /\ f : NN -onto-> A ) /\ n e. NN ) -> ran ( k e. ( 1 ..^ n ) |-> ( f ` k ) ) C_ ( toCaraSiga ` M ) ) | 
						
							| 120 | 108 119 | eqsstrrid |  |-  ( ( ( ( ( ph /\ ( M ` E ) =/= +oo ) /\ A =/= (/) ) /\ f : NN -onto-> A ) /\ n e. NN ) -> { z | E. k e. ( 1 ..^ n ) z = ( f ` k ) } C_ ( toCaraSiga ` M ) ) | 
						
							| 121 | 88 89 96 97 114 120 | fiunelcarsg |  |-  ( ( ( ( ( ph /\ ( M ` E ) =/= +oo ) /\ A =/= (/) ) /\ f : NN -onto-> A ) /\ n e. NN ) -> U. { z | E. k e. ( 1 ..^ n ) z = ( f ` k ) } e. ( toCaraSiga ` M ) ) | 
						
							| 122 | 106 121 | eqeltrd |  |-  ( ( ( ( ( ph /\ ( M ` E ) =/= +oo ) /\ A =/= (/) ) /\ f : NN -onto-> A ) /\ n e. NN ) -> U_ k e. ( 1 ..^ n ) ( f ` k ) e. ( toCaraSiga ` M ) ) | 
						
							| 123 | 88 89 95 98 122 | difelcarsg2 |  |-  ( ( ( ( ( ph /\ ( M ` E ) =/= +oo ) /\ A =/= (/) ) /\ f : NN -onto-> A ) /\ n e. NN ) -> ( ( f ` n ) \ U_ k e. ( 1 ..^ n ) ( f ` k ) ) e. ( toCaraSiga ` M ) ) | 
						
							| 124 | 8 | ad3antrrr |  |-  ( ( ( ( ph /\ ( M ` E ) =/= +oo ) /\ A =/= (/) ) /\ f : NN -onto-> A ) -> E e. ~P O ) | 
						
							| 125 |  | simpllr |  |-  ( ( ( ( ph /\ ( M ` E ) =/= +oo ) /\ A =/= (/) ) /\ f : NN -onto-> A ) -> ( M ` E ) =/= +oo ) | 
						
							| 126 | 77 78 79 82 85 87 123 124 125 | carsgclctunlem2 |  |-  ( ( ( ( ph /\ ( M ` E ) =/= +oo ) /\ A =/= (/) ) /\ f : NN -onto-> A ) -> ( ( M ` ( E i^i U_ n e. NN ( ( f ` n ) \ U_ k e. ( 1 ..^ n ) ( f ` k ) ) ) ) +e ( M ` ( E \ U_ n e. NN ( ( f ` n ) \ U_ k e. ( 1 ..^ n ) ( f ` k ) ) ) ) ) <_ ( M ` E ) ) | 
						
							| 127 | 76 126 | eqbrtrrd |  |-  ( ( ( ( ph /\ ( M ` E ) =/= +oo ) /\ A =/= (/) ) /\ f : NN -onto-> A ) -> ( ( M ` ( E i^i U. A ) ) +e ( M ` ( E \ U. A ) ) ) <_ ( M ` E ) ) | 
						
							| 128 | 61 127 | exlimddv |  |-  ( ( ( ph /\ ( M ` E ) =/= +oo ) /\ A =/= (/) ) -> ( ( M ` ( E i^i U. A ) ) +e ( M ` ( E \ U. A ) ) ) <_ ( M ` E ) ) | 
						
							| 129 | 48 128 | pm2.61dane |  |-  ( ( ph /\ ( M ` E ) =/= +oo ) -> ( ( M ` ( E i^i U. A ) ) +e ( M ` ( E \ U. A ) ) ) <_ ( M ` E ) ) | 
						
							| 130 | 21 129 | pm2.61dane |  |-  ( ph -> ( ( M ` ( E i^i U. A ) ) +e ( M ` ( E \ U. A ) ) ) <_ ( M ` E ) ) |