Metamath Proof Explorer


Theorem carsgclctunlem3

Description: Lemma for carsgclctun . (Contributed by Thierry Arnoux, 24-May-2020)

Ref Expression
Hypotheses carsgval.1 φ O V
carsgval.2 φ M : 𝒫 O 0 +∞
carsgsiga.1 φ M = 0
carsgsiga.2 φ x ω x 𝒫 O M x * y x M y
carsgsiga.3 φ x y y 𝒫 O M x M y
carsgclctun.1 φ A ω
carsgclctun.2 φ A toCaraSiga M
carsgclctunlem3.1 φ E 𝒫 O
Assertion carsgclctunlem3 φ M E A + 𝑒 M E A M E

Proof

Step Hyp Ref Expression
1 carsgval.1 φ O V
2 carsgval.2 φ M : 𝒫 O 0 +∞
3 carsgsiga.1 φ M = 0
4 carsgsiga.2 φ x ω x 𝒫 O M x * y x M y
5 carsgsiga.3 φ x y y 𝒫 O M x M y
6 carsgclctun.1 φ A ω
7 carsgclctun.2 φ A toCaraSiga M
8 carsgclctunlem3.1 φ E 𝒫 O
9 iccssxr 0 +∞ *
10 8 elpwincl1 φ E A 𝒫 O
11 2 10 ffvelrnd φ M E A 0 +∞
12 9 11 sseldi φ M E A *
13 8 elpwdifcl φ E A 𝒫 O
14 2 13 ffvelrnd φ M E A 0 +∞
15 9 14 sseldi φ M E A *
16 12 15 xaddcld φ M E A + 𝑒 M E A *
17 16 adantr φ M E = +∞ M E A + 𝑒 M E A *
18 pnfge M E A + 𝑒 M E A * M E A + 𝑒 M E A +∞
19 17 18 syl φ M E = +∞ M E A + 𝑒 M E A +∞
20 simpr φ M E = +∞ M E = +∞
21 19 20 breqtrrd φ M E = +∞ M E A + 𝑒 M E A M E
22 unieq A = A =
23 uni0 =
24 22 23 eqtrdi A = A =
25 24 ineq2d A = E A = E
26 in0 E =
27 25 26 eqtrdi A = E A =
28 27 fveq2d A = M E A = M
29 24 difeq2d A = E A = E
30 dif0 E = E
31 29 30 eqtrdi A = E A = E
32 31 fveq2d A = M E A = M E
33 28 32 oveq12d A = M E A + 𝑒 M E A = M + 𝑒 M E
34 33 adantl φ A = M E A + 𝑒 M E A = M + 𝑒 M E
35 3 adantr φ A = M = 0
36 35 oveq1d φ A = M + 𝑒 M E = 0 + 𝑒 M E
37 2 8 ffvelrnd φ M E 0 +∞
38 9 37 sseldi φ M E *
39 38 adantr φ A = M E *
40 xaddid2 M E * 0 + 𝑒 M E = M E
41 39 40 syl φ A = 0 + 𝑒 M E = M E
42 34 36 41 3eqtrd φ A = M E A + 𝑒 M E A = M E
43 42 39 eqeltrd φ A = M E A + 𝑒 M E A *
44 xeqlelt M E A + 𝑒 M E A * M E * M E A + 𝑒 M E A = M E M E A + 𝑒 M E A M E ¬ M E A + 𝑒 M E A < M E
45 43 39 44 syl2anc φ A = M E A + 𝑒 M E A = M E M E A + 𝑒 M E A M E ¬ M E A + 𝑒 M E A < M E
46 42 45 mpbid φ A = M E A + 𝑒 M E A M E ¬ M E A + 𝑒 M E A < M E
47 46 simpld φ A = M E A + 𝑒 M E A M E
48 47 adantlr φ M E +∞ A = M E A + 𝑒 M E A M E
49 fvex toCaraSiga M V
50 49 ssex A toCaraSiga M A V
51 0sdomg A V A A
52 7 50 51 3syl φ A A
53 52 biimpar φ A A
54 53 adantlr φ M E +∞ A A
55 nnenom ω
56 55 ensymi ω
57 domentr A ω ω A
58 6 56 57 sylancl φ A
59 58 ad2antrr φ M E +∞ A A
60 fodomr A A f f : onto A
61 54 59 60 syl2anc φ M E +∞ A f f : onto A
62 fveq2 n = k f n = f k
63 62 iundisj n f n = n f n k 1 ..^ n f k
64 fofn f : onto A f Fn
65 fniunfv f Fn n f n = ran f
66 64 65 syl f : onto A n f n = ran f
67 forn f : onto A ran f = A
68 67 unieqd f : onto A ran f = A
69 66 68 eqtrd f : onto A n f n = A
70 69 adantl φ M E +∞ A f : onto A n f n = A
71 63 70 eqtr3id φ M E +∞ A f : onto A n f n k 1 ..^ n f k = A
72 71 ineq2d φ M E +∞ A f : onto A E n f n k 1 ..^ n f k = E A
73 72 fveq2d φ M E +∞ A f : onto A M E n f n k 1 ..^ n f k = M E A
74 71 difeq2d φ M E +∞ A f : onto A E n f n k 1 ..^ n f k = E A
75 74 fveq2d φ M E +∞ A f : onto A M E n f n k 1 ..^ n f k = M E A
76 73 75 oveq12d φ M E +∞ A f : onto A M E n f n k 1 ..^ n f k + 𝑒 M E n f n k 1 ..^ n f k = M E A + 𝑒 M E A
77 1 ad3antrrr φ M E +∞ A f : onto A O V
78 2 ad3antrrr φ M E +∞ A f : onto A M : 𝒫 O 0 +∞
79 3 ad3antrrr φ M E +∞ A f : onto A M = 0
80 4 3adant1r φ M E +∞ x ω x 𝒫 O M x * y x M y
81 80 3adant1r φ M E +∞ A x ω x 𝒫 O M x * y x M y
82 81 3adant1r φ M E +∞ A f : onto A x ω x 𝒫 O M x * y x M y
83 5 3adant1r φ M E +∞ x y y 𝒫 O M x M y
84 83 3adant1r φ M E +∞ A x y y 𝒫 O M x M y
85 84 3adant1r φ M E +∞ A f : onto A x y y 𝒫 O M x M y
86 62 iundisj2 Disj n f n k 1 ..^ n f k
87 86 a1i φ M E +∞ A f : onto A Disj n f n k 1 ..^ n f k
88 77 adantr φ M E +∞ A f : onto A n O V
89 78 adantr φ M E +∞ A f : onto A n M : 𝒫 O 0 +∞
90 7 ad4antr φ M E +∞ A f : onto A n A toCaraSiga M
91 fof f : onto A f : A
92 91 ad2antlr φ M E +∞ A f : onto A n f : A
93 simpr φ M E +∞ A f : onto A n n
94 92 93 ffvelrnd φ M E +∞ A f : onto A n f n A
95 90 94 sseldd φ M E +∞ A f : onto A n f n toCaraSiga M
96 79 adantr φ M E +∞ A f : onto A n M = 0
97 82 3adant1r φ M E +∞ A f : onto A n x ω x 𝒫 O M x * y x M y
98 88 89 96 97 carsgsigalem φ M E +∞ A f : onto A n e 𝒫 O g 𝒫 O M e g M e + 𝑒 M g
99 91 ad3antlr φ M E +∞ A f : onto A n k 1 ..^ n f : A
100 fzossnn 1 ..^ n
101 100 a1i φ M E +∞ A f : onto A n 1 ..^ n
102 101 sselda φ M E +∞ A f : onto A n k 1 ..^ n k
103 99 102 ffvelrnd φ M E +∞ A f : onto A n k 1 ..^ n f k A
104 103 ralrimiva φ M E +∞ A f : onto A n k 1 ..^ n f k A
105 dfiun2g k 1 ..^ n f k A k 1 ..^ n f k = z | k 1 ..^ n z = f k
106 104 105 syl φ M E +∞ A f : onto A n k 1 ..^ n f k = z | k 1 ..^ n z = f k
107 eqid k 1 ..^ n f k = k 1 ..^ n f k
108 107 rnmpt ran k 1 ..^ n f k = z | k 1 ..^ n z = f k
109 fzofi 1 ..^ n Fin
110 mptfi 1 ..^ n Fin k 1 ..^ n f k Fin
111 rnfi k 1 ..^ n f k Fin ran k 1 ..^ n f k Fin
112 109 110 111 mp2b ran k 1 ..^ n f k Fin
113 108 112 eqeltrri z | k 1 ..^ n z = f k Fin
114 113 a1i φ M E +∞ A f : onto A n z | k 1 ..^ n z = f k Fin
115 90 adantr φ M E +∞ A f : onto A n k 1 ..^ n A toCaraSiga M
116 115 103 sseldd φ M E +∞ A f : onto A n k 1 ..^ n f k toCaraSiga M
117 116 ralrimiva φ M E +∞ A f : onto A n k 1 ..^ n f k toCaraSiga M
118 107 rnmptss k 1 ..^ n f k toCaraSiga M ran k 1 ..^ n f k toCaraSiga M
119 117 118 syl φ M E +∞ A f : onto A n ran k 1 ..^ n f k toCaraSiga M
120 108 119 eqsstrrid φ M E +∞ A f : onto A n z | k 1 ..^ n z = f k toCaraSiga M
121 88 89 96 97 114 120 fiunelcarsg φ M E +∞ A f : onto A n z | k 1 ..^ n z = f k toCaraSiga M
122 106 121 eqeltrd φ M E +∞ A f : onto A n k 1 ..^ n f k toCaraSiga M
123 88 89 95 98 122 difelcarsg2 φ M E +∞ A f : onto A n f n k 1 ..^ n f k toCaraSiga M
124 8 ad3antrrr φ M E +∞ A f : onto A E 𝒫 O
125 simpllr φ M E +∞ A f : onto A M E +∞
126 77 78 79 82 85 87 123 124 125 carsgclctunlem2 φ M E +∞ A f : onto A M E n f n k 1 ..^ n f k + 𝑒 M E n f n k 1 ..^ n f k M E
127 76 126 eqbrtrrd φ M E +∞ A f : onto A M E A + 𝑒 M E A M E
128 61 127 exlimddv φ M E +∞ A M E A + 𝑒 M E A M E
129 48 128 pm2.61dane φ M E +∞ M E A + 𝑒 M E A M E
130 21 129 pm2.61dane φ M E A + 𝑒 M E A M E