| Step | Hyp | Ref | Expression | 
						
							| 1 |  | carsgval.1 |  | 
						
							| 2 |  | carsgval.2 |  | 
						
							| 3 |  | carsgsiga.1 |  | 
						
							| 4 |  | carsgsiga.2 |  | 
						
							| 5 |  | carsgsiga.3 |  | 
						
							| 6 |  | carsgclctun.1 |  | 
						
							| 7 |  | carsgclctun.2 |  | 
						
							| 8 |  | carsgclctunlem3.1 |  | 
						
							| 9 |  | iccssxr |  | 
						
							| 10 | 8 | elpwincl1 |  | 
						
							| 11 | 2 10 | ffvelcdmd |  | 
						
							| 12 | 9 11 | sselid |  | 
						
							| 13 | 8 | elpwdifcl |  | 
						
							| 14 | 2 13 | ffvelcdmd |  | 
						
							| 15 | 9 14 | sselid |  | 
						
							| 16 | 12 15 | xaddcld |  | 
						
							| 17 | 16 | adantr |  | 
						
							| 18 |  | pnfge |  | 
						
							| 19 | 17 18 | syl |  | 
						
							| 20 |  | simpr |  | 
						
							| 21 | 19 20 | breqtrrd |  | 
						
							| 22 |  | unieq |  | 
						
							| 23 |  | uni0 |  | 
						
							| 24 | 22 23 | eqtrdi |  | 
						
							| 25 | 24 | ineq2d |  | 
						
							| 26 |  | in0 |  | 
						
							| 27 | 25 26 | eqtrdi |  | 
						
							| 28 | 27 | fveq2d |  | 
						
							| 29 | 24 | difeq2d |  | 
						
							| 30 |  | dif0 |  | 
						
							| 31 | 29 30 | eqtrdi |  | 
						
							| 32 | 31 | fveq2d |  | 
						
							| 33 | 28 32 | oveq12d |  | 
						
							| 34 | 33 | adantl |  | 
						
							| 35 | 3 | adantr |  | 
						
							| 36 | 35 | oveq1d |  | 
						
							| 37 | 2 8 | ffvelcdmd |  | 
						
							| 38 | 9 37 | sselid |  | 
						
							| 39 | 38 | adantr |  | 
						
							| 40 |  | xaddlid |  | 
						
							| 41 | 39 40 | syl |  | 
						
							| 42 | 34 36 41 | 3eqtrd |  | 
						
							| 43 | 42 39 | eqeltrd |  | 
						
							| 44 |  | xeqlelt |  | 
						
							| 45 | 43 39 44 | syl2anc |  | 
						
							| 46 | 42 45 | mpbid |  | 
						
							| 47 | 46 | simpld |  | 
						
							| 48 | 47 | adantlr |  | 
						
							| 49 |  | fvex |  | 
						
							| 50 | 49 | ssex |  | 
						
							| 51 |  | 0sdomg |  | 
						
							| 52 | 7 50 51 | 3syl |  | 
						
							| 53 | 52 | biimpar |  | 
						
							| 54 | 53 | adantlr |  | 
						
							| 55 |  | nnenom |  | 
						
							| 56 | 55 | ensymi |  | 
						
							| 57 |  | domentr |  | 
						
							| 58 | 6 56 57 | sylancl |  | 
						
							| 59 | 58 | ad2antrr |  | 
						
							| 60 |  | fodomr |  | 
						
							| 61 | 54 59 60 | syl2anc |  | 
						
							| 62 |  | fveq2 |  | 
						
							| 63 | 62 | iundisj |  | 
						
							| 64 |  | fofn |  | 
						
							| 65 |  | fniunfv |  | 
						
							| 66 | 64 65 | syl |  | 
						
							| 67 |  | forn |  | 
						
							| 68 | 67 | unieqd |  | 
						
							| 69 | 66 68 | eqtrd |  | 
						
							| 70 | 69 | adantl |  | 
						
							| 71 | 63 70 | eqtr3id |  | 
						
							| 72 | 71 | ineq2d |  | 
						
							| 73 | 72 | fveq2d |  | 
						
							| 74 | 71 | difeq2d |  | 
						
							| 75 | 74 | fveq2d |  | 
						
							| 76 | 73 75 | oveq12d |  | 
						
							| 77 | 1 | ad3antrrr |  | 
						
							| 78 | 2 | ad3antrrr |  | 
						
							| 79 | 3 | ad3antrrr |  | 
						
							| 80 | 4 | 3adant1r |  | 
						
							| 81 | 80 | 3adant1r |  | 
						
							| 82 | 81 | 3adant1r |  | 
						
							| 83 | 5 | 3adant1r |  | 
						
							| 84 | 83 | 3adant1r |  | 
						
							| 85 | 84 | 3adant1r |  | 
						
							| 86 | 62 | iundisj2 |  | 
						
							| 87 | 86 | a1i |  | 
						
							| 88 | 77 | adantr |  | 
						
							| 89 | 78 | adantr |  | 
						
							| 90 | 7 | ad4antr |  | 
						
							| 91 |  | fof |  | 
						
							| 92 | 91 | ad2antlr |  | 
						
							| 93 |  | simpr |  | 
						
							| 94 | 92 93 | ffvelcdmd |  | 
						
							| 95 | 90 94 | sseldd |  | 
						
							| 96 | 79 | adantr |  | 
						
							| 97 | 82 | 3adant1r |  | 
						
							| 98 | 88 89 96 97 | carsgsigalem |  | 
						
							| 99 | 91 | ad3antlr |  | 
						
							| 100 |  | fzossnn |  | 
						
							| 101 | 100 | a1i |  | 
						
							| 102 | 101 | sselda |  | 
						
							| 103 | 99 102 | ffvelcdmd |  | 
						
							| 104 | 103 | ralrimiva |  | 
						
							| 105 |  | dfiun2g |  | 
						
							| 106 | 104 105 | syl |  | 
						
							| 107 |  | eqid |  | 
						
							| 108 | 107 | rnmpt |  | 
						
							| 109 |  | fzofi |  | 
						
							| 110 |  | mptfi |  | 
						
							| 111 |  | rnfi |  | 
						
							| 112 | 109 110 111 | mp2b |  | 
						
							| 113 | 108 112 | eqeltrri |  | 
						
							| 114 | 113 | a1i |  | 
						
							| 115 | 90 | adantr |  | 
						
							| 116 | 115 103 | sseldd |  | 
						
							| 117 | 116 | ralrimiva |  | 
						
							| 118 | 107 | rnmptss |  | 
						
							| 119 | 117 118 | syl |  | 
						
							| 120 | 108 119 | eqsstrrid |  | 
						
							| 121 | 88 89 96 97 114 120 | fiunelcarsg |  | 
						
							| 122 | 106 121 | eqeltrd |  | 
						
							| 123 | 88 89 95 98 122 | difelcarsg2 |  | 
						
							| 124 | 8 | ad3antrrr |  | 
						
							| 125 |  | simpllr |  | 
						
							| 126 | 77 78 79 82 85 87 123 124 125 | carsgclctunlem2 |  | 
						
							| 127 | 76 126 | eqbrtrrd |  | 
						
							| 128 | 61 127 | exlimddv |  | 
						
							| 129 | 48 128 | pm2.61dane |  | 
						
							| 130 | 21 129 | pm2.61dane |  |