| Step |
Hyp |
Ref |
Expression |
| 1 |
|
carsgval.1 |
|
| 2 |
|
carsgval.2 |
|
| 3 |
|
carsgsiga.1 |
|
| 4 |
|
carsgsiga.2 |
|
| 5 |
|
fiunelcarsg.1 |
|
| 6 |
|
fiunelcarsg.2 |
|
| 7 |
|
unieq |
|
| 8 |
|
eqidd |
|
| 9 |
7 8
|
eleq12d |
|
| 10 |
|
unieq |
|
| 11 |
|
eqidd |
|
| 12 |
10 11
|
eleq12d |
|
| 13 |
|
unieq |
|
| 14 |
|
eqidd |
|
| 15 |
13 14
|
eleq12d |
|
| 16 |
|
unieq |
|
| 17 |
|
eqidd |
|
| 18 |
16 17
|
eleq12d |
|
| 19 |
|
uni0 |
|
| 20 |
|
difid |
|
| 21 |
19 20
|
eqtr4i |
|
| 22 |
1 2 3
|
baselcarsg |
|
| 23 |
1 2 22
|
difelcarsg |
|
| 24 |
21 23
|
eqeltrid |
|
| 25 |
|
uniun |
|
| 26 |
|
unisnv |
|
| 27 |
26
|
uneq2i |
|
| 28 |
25 27
|
eqtri |
|
| 29 |
1
|
ad2antrr |
|
| 30 |
2
|
ad2antrr |
|
| 31 |
|
simpr |
|
| 32 |
|
simpll |
|
| 33 |
1 2 3 4
|
carsgsigalem |
|
| 34 |
32 33
|
syl3an1 |
|
| 35 |
6
|
ad2antrr |
|
| 36 |
|
simplrr |
|
| 37 |
36
|
eldifad |
|
| 38 |
35 37
|
sseldd |
|
| 39 |
29 30 31 34 38
|
unelcarsg |
|
| 40 |
28 39
|
eqeltrid |
|
| 41 |
40
|
ex |
|
| 42 |
9 12 15 18 24 41 5
|
findcard2d |
|