Metamath Proof Explorer


Theorem fiunelcarsg

Description: The Caratheodory measurable sets are closed under finite union. (Contributed by Thierry Arnoux, 23-May-2020)

Ref Expression
Hypotheses carsgval.1 φ O V
carsgval.2 φ M : 𝒫 O 0 +∞
carsgsiga.1 φ M = 0
carsgsiga.2 φ x ω x 𝒫 O M x * y x M y
fiunelcarsg.1 φ A Fin
fiunelcarsg.2 φ A toCaraSiga M
Assertion fiunelcarsg φ A toCaraSiga M

Proof

Step Hyp Ref Expression
1 carsgval.1 φ O V
2 carsgval.2 φ M : 𝒫 O 0 +∞
3 carsgsiga.1 φ M = 0
4 carsgsiga.2 φ x ω x 𝒫 O M x * y x M y
5 fiunelcarsg.1 φ A Fin
6 fiunelcarsg.2 φ A toCaraSiga M
7 unieq a = a =
8 eqidd a = toCaraSiga M = toCaraSiga M
9 7 8 eleq12d a = a toCaraSiga M toCaraSiga M
10 unieq a = b a = b
11 eqidd a = b toCaraSiga M = toCaraSiga M
12 10 11 eleq12d a = b a toCaraSiga M b toCaraSiga M
13 unieq a = b x a = b x
14 eqidd a = b x toCaraSiga M = toCaraSiga M
15 13 14 eleq12d a = b x a toCaraSiga M b x toCaraSiga M
16 unieq a = A a = A
17 eqidd a = A toCaraSiga M = toCaraSiga M
18 16 17 eleq12d a = A a toCaraSiga M A toCaraSiga M
19 uni0 =
20 difid O O =
21 19 20 eqtr4i = O O
22 1 2 3 baselcarsg φ O toCaraSiga M
23 1 2 22 difelcarsg φ O O toCaraSiga M
24 21 23 eqeltrid φ toCaraSiga M
25 uniun b x = b x
26 unisnv x = x
27 26 uneq2i b x = b x
28 25 27 eqtri b x = b x
29 1 ad2antrr φ b A x A b b toCaraSiga M O V
30 2 ad2antrr φ b A x A b b toCaraSiga M M : 𝒫 O 0 +∞
31 simpr φ b A x A b b toCaraSiga M b toCaraSiga M
32 simpll φ b A x A b b toCaraSiga M φ
33 1 2 3 4 carsgsigalem φ e 𝒫 O f 𝒫 O M e f M e + 𝑒 M f
34 32 33 syl3an1 φ b A x A b b toCaraSiga M e 𝒫 O f 𝒫 O M e f M e + 𝑒 M f
35 6 ad2antrr φ b A x A b b toCaraSiga M A toCaraSiga M
36 simplrr φ b A x A b b toCaraSiga M x A b
37 36 eldifad φ b A x A b b toCaraSiga M x A
38 35 37 sseldd φ b A x A b b toCaraSiga M x toCaraSiga M
39 29 30 31 34 38 unelcarsg φ b A x A b b toCaraSiga M b x toCaraSiga M
40 28 39 eqeltrid φ b A x A b b toCaraSiga M b x toCaraSiga M
41 40 ex φ b A x A b b toCaraSiga M b x toCaraSiga M
42 9 12 15 18 24 41 5 findcard2d φ A toCaraSiga M