Step |
Hyp |
Ref |
Expression |
1 |
|
carsgval.1 |
|
2 |
|
carsgval.2 |
|
3 |
|
carsgsiga.1 |
|
4 |
|
carsgsiga.2 |
|
5 |
|
fiunelcarsg.1 |
|
6 |
|
fiunelcarsg.2 |
|
7 |
|
unieq |
|
8 |
|
eqidd |
|
9 |
7 8
|
eleq12d |
|
10 |
|
unieq |
|
11 |
|
eqidd |
|
12 |
10 11
|
eleq12d |
|
13 |
|
unieq |
|
14 |
|
eqidd |
|
15 |
13 14
|
eleq12d |
|
16 |
|
unieq |
|
17 |
|
eqidd |
|
18 |
16 17
|
eleq12d |
|
19 |
|
uni0 |
|
20 |
|
difid |
|
21 |
19 20
|
eqtr4i |
|
22 |
1 2 3
|
baselcarsg |
|
23 |
1 2 22
|
difelcarsg |
|
24 |
21 23
|
eqeltrid |
|
25 |
|
uniun |
|
26 |
|
vex |
|
27 |
26
|
unisn |
|
28 |
27
|
uneq2i |
|
29 |
25 28
|
eqtri |
|
30 |
1
|
ad2antrr |
|
31 |
2
|
ad2antrr |
|
32 |
|
simpr |
|
33 |
|
simpll |
|
34 |
1 2 3 4
|
carsgsigalem |
|
35 |
33 34
|
syl3an1 |
|
36 |
6
|
ad2antrr |
|
37 |
|
simplrr |
|
38 |
37
|
eldifad |
|
39 |
36 38
|
sseldd |
|
40 |
30 31 32 35 39
|
unelcarsg |
|
41 |
29 40
|
eqeltrid |
|
42 |
41
|
ex |
|
43 |
9 12 15 18 24 42 5
|
findcard2d |
|