Step |
Hyp |
Ref |
Expression |
1 |
|
carsgval.1 |
|
2 |
|
carsgval.2 |
|
3 |
|
carsgsiga.1 |
|
4 |
|
carsgsiga.2 |
|
5 |
|
fiunelcarsg.1 |
|
6 |
|
fiunelcarsg.2 |
|
7 |
|
carsgclctunlem1.1 |
|
8 |
|
carsgclctunlem1.2 |
|
9 |
|
unieq |
|
10 |
9
|
ineq2d |
|
11 |
10
|
fveq2d |
|
12 |
|
esumeq1 |
|
13 |
11 12
|
eqeq12d |
|
14 |
|
unieq |
|
15 |
14
|
ineq2d |
|
16 |
15
|
fveq2d |
|
17 |
|
esumeq1 |
|
18 |
16 17
|
eqeq12d |
|
19 |
|
unieq |
|
20 |
19
|
ineq2d |
|
21 |
20
|
fveq2d |
|
22 |
|
esumeq1 |
|
23 |
21 22
|
eqeq12d |
|
24 |
|
unieq |
|
25 |
24
|
ineq2d |
|
26 |
25
|
fveq2d |
|
27 |
|
esumeq1 |
|
28 |
26 27
|
eqeq12d |
|
29 |
|
uni0 |
|
30 |
29
|
ineq2i |
|
31 |
|
in0 |
|
32 |
30 31
|
eqtri |
|
33 |
32
|
fveq2i |
|
34 |
|
esumnul |
|
35 |
3 33 34
|
3eqtr4g |
|
36 |
|
simpr |
|
37 |
36
|
eqcomd |
|
38 |
|
simpr |
|
39 |
38
|
ineq2d |
|
40 |
39
|
fveq2d |
|
41 |
|
simprr |
|
42 |
2
|
adantr |
|
43 |
8
|
adantr |
|
44 |
43
|
elpwincl1 |
|
45 |
42 44
|
ffvelrnd |
|
46 |
40 41 45
|
esumsn |
|
47 |
46
|
adantr |
|
48 |
37 47
|
oveq12d |
|
49 |
|
nfv |
|
50 |
|
nfcv |
|
51 |
|
nfcv |
|
52 |
|
vex |
|
53 |
52
|
a1i |
|
54 |
|
snex |
|
55 |
54
|
a1i |
|
56 |
41
|
eldifbd |
|
57 |
|
disjsn |
|
58 |
56 57
|
sylibr |
|
59 |
2
|
ad2antrr |
|
60 |
8
|
ad2antrr |
|
61 |
60
|
elpwincl1 |
|
62 |
59 61
|
ffvelrnd |
|
63 |
2
|
ad2antrr |
|
64 |
8
|
ad2antrr |
|
65 |
64
|
elpwincl1 |
|
66 |
63 65
|
ffvelrnd |
|
67 |
49 50 51 53 55 58 62 66
|
esumsplit |
|
68 |
67
|
adantr |
|
69 |
|
uniun |
|
70 |
|
vex |
|
71 |
70
|
unisn |
|
72 |
71
|
uneq2i |
|
73 |
69 72
|
eqtri |
|
74 |
73
|
ineq2i |
|
75 |
74
|
fveq2i |
|
76 |
|
inass |
|
77 |
|
indir |
|
78 |
|
inidm |
|
79 |
78
|
a1i |
|
80 |
|
incom |
|
81 |
7
|
adantr |
|
82 |
|
simpr |
|
83 |
82
|
adantrr |
|
84 |
81 83 41
|
disjuniel |
|
85 |
80 84
|
eqtr3id |
|
86 |
79 85
|
uneq12d |
|
87 |
|
un0 |
|
88 |
86 87
|
eqtrdi |
|
89 |
77 88
|
syl5eq |
|
90 |
89
|
ineq2d |
|
91 |
76 90
|
syl5eq |
|
92 |
91
|
fveq2d |
|
93 |
|
indif2 |
|
94 |
|
uncom |
|
95 |
94
|
difeq1i |
|
96 |
|
difun2 |
|
97 |
|
disj3 |
|
98 |
97
|
biimpi |
|
99 |
96 98
|
eqtr4id |
|
100 |
95 99
|
syl5eq |
|
101 |
85 100
|
syl |
|
102 |
101
|
ineq2d |
|
103 |
93 102
|
eqtr3id |
|
104 |
103
|
fveq2d |
|
105 |
92 104
|
oveq12d |
|
106 |
1
|
adantr |
|
107 |
2
|
adantr |
|
108 |
3
|
adantr |
|
109 |
4
|
3adant1r |
|
110 |
|
ssfi |
|
111 |
5 110
|
sylan |
|
112 |
6
|
adantr |
|
113 |
82 112
|
sstrd |
|
114 |
106 107 108 109 111 113
|
fiunelcarsg |
|
115 |
1 2
|
elcarsg |
|
116 |
115
|
adantr |
|
117 |
114 116
|
mpbid |
|
118 |
117
|
simprd |
|
119 |
118
|
adantrr |
|
120 |
43
|
elpwincl1 |
|
121 |
|
simpr |
|
122 |
121
|
ineq1d |
|
123 |
122
|
fveq2d |
|
124 |
121
|
difeq1d |
|
125 |
124
|
fveq2d |
|
126 |
123 125
|
oveq12d |
|
127 |
121
|
fveq2d |
|
128 |
126 127
|
eqeq12d |
|
129 |
120 128
|
rspcdv |
|
130 |
119 129
|
mpd |
|
131 |
105 130
|
eqtr3d |
|
132 |
131
|
adantr |
|
133 |
75 132
|
eqtr4id |
|
134 |
48 68 133
|
3eqtr4rd |
|
135 |
134
|
ex |
|
136 |
13 18 23 28 35 135 5
|
findcard2d |
|