| Step |
Hyp |
Ref |
Expression |
| 1 |
|
carsgval.1 |
|
| 2 |
|
carsgval.2 |
|
| 3 |
|
carsgsiga.1 |
|
| 4 |
|
carsgsiga.2 |
|
| 5 |
|
fiunelcarsg.1 |
|
| 6 |
|
fiunelcarsg.2 |
|
| 7 |
|
carsgclctunlem1.1 |
|
| 8 |
|
carsgclctunlem1.2 |
|
| 9 |
|
unieq |
|
| 10 |
9
|
ineq2d |
|
| 11 |
10
|
fveq2d |
|
| 12 |
|
esumeq1 |
|
| 13 |
11 12
|
eqeq12d |
|
| 14 |
|
unieq |
|
| 15 |
14
|
ineq2d |
|
| 16 |
15
|
fveq2d |
|
| 17 |
|
esumeq1 |
|
| 18 |
16 17
|
eqeq12d |
|
| 19 |
|
unieq |
|
| 20 |
19
|
ineq2d |
|
| 21 |
20
|
fveq2d |
|
| 22 |
|
esumeq1 |
|
| 23 |
21 22
|
eqeq12d |
|
| 24 |
|
unieq |
|
| 25 |
24
|
ineq2d |
|
| 26 |
25
|
fveq2d |
|
| 27 |
|
esumeq1 |
|
| 28 |
26 27
|
eqeq12d |
|
| 29 |
|
uni0 |
|
| 30 |
29
|
ineq2i |
|
| 31 |
|
in0 |
|
| 32 |
30 31
|
eqtri |
|
| 33 |
32
|
fveq2i |
|
| 34 |
|
esumnul |
|
| 35 |
3 33 34
|
3eqtr4g |
|
| 36 |
|
simpr |
|
| 37 |
36
|
eqcomd |
|
| 38 |
|
simpr |
|
| 39 |
38
|
ineq2d |
|
| 40 |
39
|
fveq2d |
|
| 41 |
|
simprr |
|
| 42 |
2
|
adantr |
|
| 43 |
8
|
adantr |
|
| 44 |
43
|
elpwincl1 |
|
| 45 |
42 44
|
ffvelcdmd |
|
| 46 |
40 41 45
|
esumsn |
|
| 47 |
46
|
adantr |
|
| 48 |
37 47
|
oveq12d |
|
| 49 |
|
nfv |
|
| 50 |
|
nfcv |
|
| 51 |
|
nfcv |
|
| 52 |
|
vex |
|
| 53 |
52
|
a1i |
|
| 54 |
|
vsnex |
|
| 55 |
54
|
a1i |
|
| 56 |
41
|
eldifbd |
|
| 57 |
|
disjsn |
|
| 58 |
56 57
|
sylibr |
|
| 59 |
2
|
ad2antrr |
|
| 60 |
8
|
ad2antrr |
|
| 61 |
60
|
elpwincl1 |
|
| 62 |
59 61
|
ffvelcdmd |
|
| 63 |
2
|
ad2antrr |
|
| 64 |
8
|
ad2antrr |
|
| 65 |
64
|
elpwincl1 |
|
| 66 |
63 65
|
ffvelcdmd |
|
| 67 |
49 50 51 53 55 58 62 66
|
esumsplit |
|
| 68 |
67
|
adantr |
|
| 69 |
|
uniun |
|
| 70 |
|
unisnv |
|
| 71 |
70
|
uneq2i |
|
| 72 |
69 71
|
eqtri |
|
| 73 |
72
|
ineq2i |
|
| 74 |
73
|
fveq2i |
|
| 75 |
|
inass |
|
| 76 |
|
indir |
|
| 77 |
|
inidm |
|
| 78 |
77
|
a1i |
|
| 79 |
|
incom |
|
| 80 |
7
|
adantr |
|
| 81 |
|
simpr |
|
| 82 |
81
|
adantrr |
|
| 83 |
80 82 41
|
disjuniel |
|
| 84 |
79 83
|
eqtr3id |
|
| 85 |
78 84
|
uneq12d |
|
| 86 |
|
un0 |
|
| 87 |
85 86
|
eqtrdi |
|
| 88 |
76 87
|
eqtrid |
|
| 89 |
88
|
ineq2d |
|
| 90 |
75 89
|
eqtrid |
|
| 91 |
90
|
fveq2d |
|
| 92 |
|
indif2 |
|
| 93 |
|
uncom |
|
| 94 |
93
|
difeq1i |
|
| 95 |
|
difun2 |
|
| 96 |
|
disj3 |
|
| 97 |
96
|
biimpi |
|
| 98 |
95 97
|
eqtr4id |
|
| 99 |
94 98
|
eqtrid |
|
| 100 |
84 99
|
syl |
|
| 101 |
100
|
ineq2d |
|
| 102 |
92 101
|
eqtr3id |
|
| 103 |
102
|
fveq2d |
|
| 104 |
91 103
|
oveq12d |
|
| 105 |
1
|
adantr |
|
| 106 |
2
|
adantr |
|
| 107 |
3
|
adantr |
|
| 108 |
4
|
3adant1r |
|
| 109 |
|
ssfi |
|
| 110 |
5 109
|
sylan |
|
| 111 |
6
|
adantr |
|
| 112 |
81 111
|
sstrd |
|
| 113 |
105 106 107 108 110 112
|
fiunelcarsg |
|
| 114 |
1 2
|
elcarsg |
|
| 115 |
114
|
adantr |
|
| 116 |
113 115
|
mpbid |
|
| 117 |
116
|
simprd |
|
| 118 |
117
|
adantrr |
|
| 119 |
43
|
elpwincl1 |
|
| 120 |
|
simpr |
|
| 121 |
120
|
ineq1d |
|
| 122 |
121
|
fveq2d |
|
| 123 |
120
|
difeq1d |
|
| 124 |
123
|
fveq2d |
|
| 125 |
122 124
|
oveq12d |
|
| 126 |
120
|
fveq2d |
|
| 127 |
125 126
|
eqeq12d |
|
| 128 |
119 127
|
rspcdv |
|
| 129 |
118 128
|
mpd |
|
| 130 |
104 129
|
eqtr3d |
|
| 131 |
130
|
adantr |
|
| 132 |
74 131
|
eqtr4id |
|
| 133 |
48 68 132
|
3eqtr4rd |
|
| 134 |
133
|
ex |
|
| 135 |
13 18 23 28 35 134 5
|
findcard2d |
|