Metamath Proof Explorer


Theorem carsgclctunlem1

Description: Lemma for carsgclctun . (Contributed by Thierry Arnoux, 23-May-2020)

Ref Expression
Hypotheses carsgval.1 φ O V
carsgval.2 φ M : 𝒫 O 0 +∞
carsgsiga.1 φ M = 0
carsgsiga.2 φ x ω x 𝒫 O M x * y x M y
fiunelcarsg.1 φ A Fin
fiunelcarsg.2 φ A toCaraSiga M
carsgclctunlem1.1 φ Disj y A y
carsgclctunlem1.2 φ E 𝒫 O
Assertion carsgclctunlem1 φ M E A = * y A M E y

Proof

Step Hyp Ref Expression
1 carsgval.1 φ O V
2 carsgval.2 φ M : 𝒫 O 0 +∞
3 carsgsiga.1 φ M = 0
4 carsgsiga.2 φ x ω x 𝒫 O M x * y x M y
5 fiunelcarsg.1 φ A Fin
6 fiunelcarsg.2 φ A toCaraSiga M
7 carsgclctunlem1.1 φ Disj y A y
8 carsgclctunlem1.2 φ E 𝒫 O
9 unieq a = a =
10 9 ineq2d a = E a = E
11 10 fveq2d a = M E a = M E
12 esumeq1 a = * y a M E y = * y M E y
13 11 12 eqeq12d a = M E a = * y a M E y M E = * y M E y
14 unieq a = b a = b
15 14 ineq2d a = b E a = E b
16 15 fveq2d a = b M E a = M E b
17 esumeq1 a = b * y a M E y = * y b M E y
18 16 17 eqeq12d a = b M E a = * y a M E y M E b = * y b M E y
19 unieq a = b x a = b x
20 19 ineq2d a = b x E a = E b x
21 20 fveq2d a = b x M E a = M E b x
22 esumeq1 a = b x * y a M E y = * y b x M E y
23 21 22 eqeq12d a = b x M E a = * y a M E y M E b x = * y b x M E y
24 unieq a = A a = A
25 24 ineq2d a = A E a = E A
26 25 fveq2d a = A M E a = M E A
27 esumeq1 a = A * y a M E y = * y A M E y
28 26 27 eqeq12d a = A M E a = * y a M E y M E A = * y A M E y
29 uni0 =
30 29 ineq2i E = E
31 in0 E =
32 30 31 eqtri E =
33 32 fveq2i M E = M
34 esumnul * y M E y = 0
35 3 33 34 3eqtr4g φ M E = * y M E y
36 simpr φ b A x A b M E b = * y b M E y M E b = * y b M E y
37 36 eqcomd φ b A x A b M E b = * y b M E y * y b M E y = M E b
38 simpr φ b A x A b y = x y = x
39 38 ineq2d φ b A x A b y = x E y = E x
40 39 fveq2d φ b A x A b y = x M E y = M E x
41 simprr φ b A x A b x A b
42 2 adantr φ b A x A b M : 𝒫 O 0 +∞
43 8 adantr φ b A x A b E 𝒫 O
44 43 elpwincl1 φ b A x A b E x 𝒫 O
45 42 44 ffvelcdmd φ b A x A b M E x 0 +∞
46 40 41 45 esumsn φ b A x A b * y x M E y = M E x
47 46 adantr φ b A x A b M E b = * y b M E y * y x M E y = M E x
48 37 47 oveq12d φ b A x A b M E b = * y b M E y * y b M E y + 𝑒 * y x M E y = M E b + 𝑒 M E x
49 nfv y φ b A x A b
50 nfcv _ y b
51 nfcv _ y x
52 vex b V
53 52 a1i φ b A x A b b V
54 vsnex x V
55 54 a1i φ b A x A b x V
56 41 eldifbd φ b A x A b ¬ x b
57 disjsn b x = ¬ x b
58 56 57 sylibr φ b A x A b b x =
59 2 ad2antrr φ b A x A b y b M : 𝒫 O 0 +∞
60 8 ad2antrr φ b A x A b y b E 𝒫 O
61 60 elpwincl1 φ b A x A b y b E y 𝒫 O
62 59 61 ffvelcdmd φ b A x A b y b M E y 0 +∞
63 2 ad2antrr φ b A x A b y x M : 𝒫 O 0 +∞
64 8 ad2antrr φ b A x A b y x E 𝒫 O
65 64 elpwincl1 φ b A x A b y x E y 𝒫 O
66 63 65 ffvelcdmd φ b A x A b y x M E y 0 +∞
67 49 50 51 53 55 58 62 66 esumsplit φ b A x A b * y b x M E y = * y b M E y + 𝑒 * y x M E y
68 67 adantr φ b A x A b M E b = * y b M E y * y b x M E y = * y b M E y + 𝑒 * y x M E y
69 uniun b x = b x
70 unisnv x = x
71 70 uneq2i b x = b x
72 69 71 eqtri b x = b x
73 72 ineq2i E b x = E b x
74 73 fveq2i M E b x = M E b x
75 inass E b x b = E b x b
76 indir b x b = b b x b
77 inidm b b = b
78 77 a1i φ b A x A b b b = b
79 incom b x = x b
80 7 adantr φ b A x A b Disj y A y
81 simpr φ b A b A
82 81 adantrr φ b A x A b b A
83 80 82 41 disjuniel φ b A x A b b x =
84 79 83 eqtr3id φ b A x A b x b =
85 78 84 uneq12d φ b A x A b b b x b = b
86 un0 b = b
87 85 86 eqtrdi φ b A x A b b b x b = b
88 76 87 eqtrid φ b A x A b b x b = b
89 88 ineq2d φ b A x A b E b x b = E b
90 75 89 eqtrid φ b A x A b E b x b = E b
91 90 fveq2d φ b A x A b M E b x b = M E b
92 indif2 E b x b = E b x b
93 uncom b x = x b
94 93 difeq1i b x b = x b b
95 difun2 x b b = x b
96 disj3 x b = x = x b
97 96 biimpi x b = x = x b
98 95 97 eqtr4id x b = x b b = x
99 94 98 eqtrid x b = b x b = x
100 84 99 syl φ b A x A b b x b = x
101 100 ineq2d φ b A x A b E b x b = E x
102 92 101 eqtr3id φ b A x A b E b x b = E x
103 102 fveq2d φ b A x A b M E b x b = M E x
104 91 103 oveq12d φ b A x A b M E b x b + 𝑒 M E b x b = M E b + 𝑒 M E x
105 1 adantr φ b A O V
106 2 adantr φ b A M : 𝒫 O 0 +∞
107 3 adantr φ b A M = 0
108 4 3adant1r φ b A x ω x 𝒫 O M x * y x M y
109 ssfi A Fin b A b Fin
110 5 109 sylan φ b A b Fin
111 6 adantr φ b A A toCaraSiga M
112 81 111 sstrd φ b A b toCaraSiga M
113 105 106 107 108 110 112 fiunelcarsg φ b A b toCaraSiga M
114 1 2 elcarsg φ b toCaraSiga M b O e 𝒫 O M e b + 𝑒 M e b = M e
115 114 adantr φ b A b toCaraSiga M b O e 𝒫 O M e b + 𝑒 M e b = M e
116 113 115 mpbid φ b A b O e 𝒫 O M e b + 𝑒 M e b = M e
117 116 simprd φ b A e 𝒫 O M e b + 𝑒 M e b = M e
118 117 adantrr φ b A x A b e 𝒫 O M e b + 𝑒 M e b = M e
119 43 elpwincl1 φ b A x A b E b x 𝒫 O
120 simpr φ b A x A b e = E b x e = E b x
121 120 ineq1d φ b A x A b e = E b x e b = E b x b
122 121 fveq2d φ b A x A b e = E b x M e b = M E b x b
123 120 difeq1d φ b A x A b e = E b x e b = E b x b
124 123 fveq2d φ b A x A b e = E b x M e b = M E b x b
125 122 124 oveq12d φ b A x A b e = E b x M e b + 𝑒 M e b = M E b x b + 𝑒 M E b x b
126 120 fveq2d φ b A x A b e = E b x M e = M E b x
127 125 126 eqeq12d φ b A x A b e = E b x M e b + 𝑒 M e b = M e M E b x b + 𝑒 M E b x b = M E b x
128 119 127 rspcdv φ b A x A b e 𝒫 O M e b + 𝑒 M e b = M e M E b x b + 𝑒 M E b x b = M E b x
129 118 128 mpd φ b A x A b M E b x b + 𝑒 M E b x b = M E b x
130 104 129 eqtr3d φ b A x A b M E b + 𝑒 M E x = M E b x
131 130 adantr φ b A x A b M E b = * y b M E y M E b + 𝑒 M E x = M E b x
132 74 131 eqtr4id φ b A x A b M E b = * y b M E y M E b x = M E b + 𝑒 M E x
133 48 68 132 3eqtr4rd φ b A x A b M E b = * y b M E y M E b x = * y b x M E y
134 133 ex φ b A x A b M E b = * y b M E y M E b x = * y b x M E y
135 13 18 23 28 35 134 5 findcard2d φ M E A = * y A M E y