Step |
Hyp |
Ref |
Expression |
1 |
|
carsgval.1 |
|
2 |
|
carsgval.2 |
|
3 |
|
carsgsiga.1 |
|
4 |
|
carsgsiga.2 |
|
5 |
|
fiunelcarsg.1 |
|
6 |
|
fiunelcarsg.2 |
|
7 |
|
carsgclctunlem1.1 |
|
8 |
|
carsgclctunlem1.2 |
|
9 |
|
unieq |
|
10 |
9
|
ineq2d |
|
11 |
10
|
fveq2d |
|
12 |
|
esumeq1 |
|
13 |
11 12
|
eqeq12d |
|
14 |
|
unieq |
|
15 |
14
|
ineq2d |
|
16 |
15
|
fveq2d |
|
17 |
|
esumeq1 |
|
18 |
16 17
|
eqeq12d |
|
19 |
|
unieq |
|
20 |
19
|
ineq2d |
|
21 |
20
|
fveq2d |
|
22 |
|
esumeq1 |
|
23 |
21 22
|
eqeq12d |
|
24 |
|
unieq |
|
25 |
24
|
ineq2d |
|
26 |
25
|
fveq2d |
|
27 |
|
esumeq1 |
|
28 |
26 27
|
eqeq12d |
|
29 |
|
uni0 |
|
30 |
29
|
ineq2i |
|
31 |
|
in0 |
|
32 |
30 31
|
eqtri |
|
33 |
32
|
fveq2i |
|
34 |
|
esumnul |
|
35 |
3 33 34
|
3eqtr4g |
|
36 |
|
simpr |
|
37 |
36
|
eqcomd |
|
38 |
|
simpr |
|
39 |
38
|
ineq2d |
|
40 |
39
|
fveq2d |
|
41 |
|
simprr |
|
42 |
2
|
adantr |
|
43 |
8
|
adantr |
|
44 |
43
|
elpwincl1 |
|
45 |
42 44
|
ffvelcdmd |
|
46 |
40 41 45
|
esumsn |
|
47 |
46
|
adantr |
|
48 |
37 47
|
oveq12d |
|
49 |
|
nfv |
|
50 |
|
nfcv |
|
51 |
|
nfcv |
|
52 |
|
vex |
|
53 |
52
|
a1i |
|
54 |
|
vsnex |
|
55 |
54
|
a1i |
|
56 |
41
|
eldifbd |
|
57 |
|
disjsn |
|
58 |
56 57
|
sylibr |
|
59 |
2
|
ad2antrr |
|
60 |
8
|
ad2antrr |
|
61 |
60
|
elpwincl1 |
|
62 |
59 61
|
ffvelcdmd |
|
63 |
2
|
ad2antrr |
|
64 |
8
|
ad2antrr |
|
65 |
64
|
elpwincl1 |
|
66 |
63 65
|
ffvelcdmd |
|
67 |
49 50 51 53 55 58 62 66
|
esumsplit |
|
68 |
67
|
adantr |
|
69 |
|
uniun |
|
70 |
|
unisnv |
|
71 |
70
|
uneq2i |
|
72 |
69 71
|
eqtri |
|
73 |
72
|
ineq2i |
|
74 |
73
|
fveq2i |
|
75 |
|
inass |
|
76 |
|
indir |
|
77 |
|
inidm |
|
78 |
77
|
a1i |
|
79 |
|
incom |
|
80 |
7
|
adantr |
|
81 |
|
simpr |
|
82 |
81
|
adantrr |
|
83 |
80 82 41
|
disjuniel |
|
84 |
79 83
|
eqtr3id |
|
85 |
78 84
|
uneq12d |
|
86 |
|
un0 |
|
87 |
85 86
|
eqtrdi |
|
88 |
76 87
|
eqtrid |
|
89 |
88
|
ineq2d |
|
90 |
75 89
|
eqtrid |
|
91 |
90
|
fveq2d |
|
92 |
|
indif2 |
|
93 |
|
uncom |
|
94 |
93
|
difeq1i |
|
95 |
|
difun2 |
|
96 |
|
disj3 |
|
97 |
96
|
biimpi |
|
98 |
95 97
|
eqtr4id |
|
99 |
94 98
|
eqtrid |
|
100 |
84 99
|
syl |
|
101 |
100
|
ineq2d |
|
102 |
92 101
|
eqtr3id |
|
103 |
102
|
fveq2d |
|
104 |
91 103
|
oveq12d |
|
105 |
1
|
adantr |
|
106 |
2
|
adantr |
|
107 |
3
|
adantr |
|
108 |
4
|
3adant1r |
|
109 |
|
ssfi |
|
110 |
5 109
|
sylan |
|
111 |
6
|
adantr |
|
112 |
81 111
|
sstrd |
|
113 |
105 106 107 108 110 112
|
fiunelcarsg |
|
114 |
1 2
|
elcarsg |
|
115 |
114
|
adantr |
|
116 |
113 115
|
mpbid |
|
117 |
116
|
simprd |
|
118 |
117
|
adantrr |
|
119 |
43
|
elpwincl1 |
|
120 |
|
simpr |
|
121 |
120
|
ineq1d |
|
122 |
121
|
fveq2d |
|
123 |
120
|
difeq1d |
|
124 |
123
|
fveq2d |
|
125 |
122 124
|
oveq12d |
|
126 |
120
|
fveq2d |
|
127 |
125 126
|
eqeq12d |
|
128 |
119 127
|
rspcdv |
|
129 |
118 128
|
mpd |
|
130 |
104 129
|
eqtr3d |
|
131 |
130
|
adantr |
|
132 |
74 131
|
eqtr4id |
|
133 |
48 68 132
|
3eqtr4rd |
|
134 |
133
|
ex |
|
135 |
13 18 23 28 35 134 5
|
findcard2d |
|