Metamath Proof Explorer


Theorem carsggect

Description: The outer measure is countably superadditive on Caratheodory measurable sets. (Contributed by Thierry Arnoux, 31-May-2020)

Ref Expression
Hypotheses carsgval.1 φ O V
carsgval.2 φ M : 𝒫 O 0 +∞
carsgsiga.1 φ M = 0
carsgsiga.2 φ x ω x 𝒫 O M x * y x M y
carsggect.0 φ ¬ A
carsggect.1 φ A ω
carsggect.2 φ A toCaraSiga M
carsggect.3 φ Disj y A y
carsggect.4 φ x y y 𝒫 O M x M y
Assertion carsggect φ * z A M z M A

Proof

Step Hyp Ref Expression
1 carsgval.1 φ O V
2 carsgval.2 φ M : 𝒫 O 0 +∞
3 carsgsiga.1 φ M = 0
4 carsgsiga.2 φ x ω x 𝒫 O M x * y x M y
5 carsggect.0 φ ¬ A
6 carsggect.1 φ A ω
7 carsggect.2 φ A toCaraSiga M
8 carsggect.3 φ Disj y A y
9 carsggect.4 φ x y y 𝒫 O M x M y
10 0ex V
11 10 a1i φ V
12 padct A ω V ¬ A f f : A A ran f Fun f -1 A
13 6 11 5 12 syl3anc φ f f : A A ran f Fun f -1 A
14 nfv z φ f : A A ran f Fun f -1 A
15 simpr1 φ f : A A ran f Fun f -1 A f : A
16 15 feqmptd φ f : A A ran f Fun f -1 A f = k f k
17 16 rneqd φ f : A A ran f Fun f -1 A ran f = ran k f k
18 14 17 esumeq1d φ f : A A ran f Fun f -1 A * z ran f M z = * z ran k f k M z
19 fvex toCaraSiga M V
20 19 a1i φ f : A A ran f Fun f -1 A toCaraSiga M V
21 7 adantr φ f : A A ran f Fun f -1 A A toCaraSiga M
22 1 adantr φ f : A A ran f Fun f -1 A O V
23 2 adantr φ f : A A ran f Fun f -1 A M : 𝒫 O 0 +∞
24 3 adantr φ f : A A ran f Fun f -1 A M = 0
25 22 23 24 0elcarsg φ f : A A ran f Fun f -1 A toCaraSiga M
26 25 snssd φ f : A A ran f Fun f -1 A toCaraSiga M
27 21 26 unssd φ f : A A ran f Fun f -1 A A toCaraSiga M
28 20 27 ssexd φ f : A A ran f Fun f -1 A A V
29 23 adantr φ f : A A ran f Fun f -1 A z A M : 𝒫 O 0 +∞
30 1 2 carsgcl φ toCaraSiga M 𝒫 O
31 7 30 sstrd φ A 𝒫 O
32 31 adantr φ f : A A ran f Fun f -1 A A 𝒫 O
33 0elpw 𝒫 O
34 33 a1i φ f : A A ran f Fun f -1 A 𝒫 O
35 34 snssd φ f : A A ran f Fun f -1 A 𝒫 O
36 32 35 unssd φ f : A A ran f Fun f -1 A A 𝒫 O
37 36 sselda φ f : A A ran f Fun f -1 A z A z 𝒫 O
38 29 37 ffvelrnd φ f : A A ran f Fun f -1 A z A M z 0 +∞
39 15 frnd φ f : A A ran f Fun f -1 A ran f A
40 14 28 38 39 esummono φ f : A A ran f Fun f -1 A * z ran f M z * z A M z
41 ctex A ω A V
42 6 41 syl φ A V
43 42 adantr φ f : A A ran f Fun f -1 A A V
44 20 26 ssexd φ f : A A ran f Fun f -1 A V
45 23 adantr φ f : A A ran f Fun f -1 A z A M : 𝒫 O 0 +∞
46 32 sselda φ f : A A ran f Fun f -1 A z A z 𝒫 O
47 45 46 ffvelrnd φ f : A A ran f Fun f -1 A z A M z 0 +∞
48 elsni z z =
49 48 adantl φ f : A A ran f Fun f -1 A z z =
50 49 fveq2d φ f : A A ran f Fun f -1 A z M z = M
51 24 adantr φ f : A A ran f Fun f -1 A z M = 0
52 50 51 eqtrd φ f : A A ran f Fun f -1 A z M z = 0
53 43 44 47 52 esumpad φ f : A A ran f Fun f -1 A * z A M z = * z A M z
54 40 53 breqtrd φ f : A A ran f Fun f -1 A * z ran f M z * z A M z
55 39 27 sstrd φ f : A A ran f Fun f -1 A ran f toCaraSiga M
56 ssexg ran f toCaraSiga M toCaraSiga M V ran f V
57 55 19 56 sylancl φ f : A A ran f Fun f -1 A ran f V
58 23 adantr φ f : A A ran f Fun f -1 A z ran f M : 𝒫 O 0 +∞
59 39 36 sstrd φ f : A A ran f Fun f -1 A ran f 𝒫 O
60 59 sselda φ f : A A ran f Fun f -1 A z ran f z 𝒫 O
61 58 60 ffvelrnd φ f : A A ran f Fun f -1 A z ran f M z 0 +∞
62 simpr2 φ f : A A ran f Fun f -1 A A ran f
63 14 57 61 62 esummono φ f : A A ran f Fun f -1 A * z A M z * z ran f M z
64 54 63 jca φ f : A A ran f Fun f -1 A * z ran f M z * z A M z * z A M z * z ran f M z
65 iccssxr 0 +∞ *
66 61 ralrimiva φ f : A A ran f Fun f -1 A z ran f M z 0 +∞
67 nfcv _ z ran f
68 67 esumcl ran f V z ran f M z 0 +∞ * z ran f M z 0 +∞
69 57 66 68 syl2anc φ f : A A ran f Fun f -1 A * z ran f M z 0 +∞
70 65 69 sselid φ f : A A ran f Fun f -1 A * z ran f M z *
71 47 ralrimiva φ f : A A ran f Fun f -1 A z A M z 0 +∞
72 nfcv _ z A
73 72 esumcl A V z A M z 0 +∞ * z A M z 0 +∞
74 43 71 73 syl2anc φ f : A A ran f Fun f -1 A * z A M z 0 +∞
75 65 74 sselid φ f : A A ran f Fun f -1 A * z A M z *
76 xrletri3 * z ran f M z * * z A M z * * z ran f M z = * z A M z * z ran f M z * z A M z * z A M z * z ran f M z
77 70 75 76 syl2anc φ f : A A ran f Fun f -1 A * z ran f M z = * z A M z * z ran f M z * z A M z * z A M z * z ran f M z
78 64 77 mpbird φ f : A A ran f Fun f -1 A * z ran f M z = * z A M z
79 fveq2 z = f k M z = M f k
80 nnex V
81 80 a1i φ f : A A ran f Fun f -1 A V
82 23 adantr φ f : A A ran f Fun f -1 A k M : 𝒫 O 0 +∞
83 36 adantr φ f : A A ran f Fun f -1 A k A 𝒫 O
84 15 adantr φ f : A A ran f Fun f -1 A k f : A
85 simpr φ f : A A ran f Fun f -1 A k k
86 84 85 ffvelrnd φ f : A A ran f Fun f -1 A k f k A
87 83 86 sseldd φ f : A A ran f Fun f -1 A k f k 𝒫 O
88 82 87 ffvelrnd φ f : A A ran f Fun f -1 A k M f k 0 +∞
89 simpr φ f : A A ran f Fun f -1 A k f k = f k =
90 89 fveq2d φ f : A A ran f Fun f -1 A k f k = M f k = M
91 24 ad2antrr φ f : A A ran f Fun f -1 A k f k = M = 0
92 90 91 eqtrd φ f : A A ran f Fun f -1 A k f k = M f k = 0
93 cnvimass f -1 A dom f
94 93 15 fssdm φ f : A A ran f Fun f -1 A f -1 A
95 ffun f : A Fun f
96 15 95 syl φ f : A A ran f Fun f -1 A Fun f
97 96 adantr φ f : A A ran f Fun f -1 A k f -1 A Fun f
98 difpreima Fun f f -1 A A = f -1 A f -1 A
99 15 95 98 3syl φ f : A A ran f Fun f -1 A f -1 A A = f -1 A f -1 A
100 fimacnv f : A f -1 A =
101 15 100 syl φ f : A A ran f Fun f -1 A f -1 A =
102 101 difeq1d φ f : A A ran f Fun f -1 A f -1 A f -1 A = f -1 A
103 99 102 eqtrd φ f : A A ran f Fun f -1 A f -1 A A = f -1 A
104 uncom A = A
105 104 difeq1i A A = A A
106 difun2 A A = A
107 105 106 eqtr3i A A = A
108 difss A
109 107 108 eqsstri A A
110 109 a1i φ f : A A ran f Fun f -1 A A A
111 sspreima Fun f A A f -1 A A f -1
112 96 110 111 syl2anc φ f : A A ran f Fun f -1 A f -1 A A f -1
113 103 112 eqsstrrd φ f : A A ran f Fun f -1 A f -1 A f -1
114 113 sselda φ f : A A ran f Fun f -1 A k f -1 A k f -1
115 fvimacnvi Fun f k f -1 f k
116 97 114 115 syl2anc φ f : A A ran f Fun f -1 A k f -1 A f k
117 elsni f k f k =
118 116 117 syl φ f : A A ran f Fun f -1 A k f -1 A f k =
119 118 ralrimiva φ f : A A ran f Fun f -1 A k f -1 A f k =
120 8 adantr φ f : A A ran f Fun f -1 A Disj y A y
121 simpr3 φ f : A A ran f Fun f -1 A Fun f -1 A
122 fresf1o Fun f A ran f Fun f -1 A f f -1 A : f -1 A 1-1 onto A
123 96 62 121 122 syl3anc φ f : A A ran f Fun f -1 A f f -1 A : f -1 A 1-1 onto A
124 simpr φ f : A A ran f Fun f -1 A y = f f -1 A k y = f f -1 A k
125 123 124 disjrdx φ f : A A ran f Fun f -1 A Disj k f -1 A f f -1 A k Disj y A y
126 fvres k f -1 A f f -1 A k = f k
127 126 adantl φ f : A A ran f Fun f -1 A k f -1 A f f -1 A k = f k
128 127 disjeq2dv φ f : A A ran f Fun f -1 A Disj k f -1 A f f -1 A k Disj k f -1 A f k
129 125 128 bitr3d φ f : A A ran f Fun f -1 A Disj y A y Disj k f -1 A f k
130 120 129 mpbid φ f : A A ran f Fun f -1 A Disj k f -1 A f k
131 disjss3 f -1 A k f -1 A f k = Disj k f -1 A f k Disj k f k
132 131 biimpa f -1 A k f -1 A f k = Disj k f -1 A f k Disj k f k
133 94 119 130 132 syl21anc φ f : A A ran f Fun f -1 A Disj k f k
134 79 81 88 87 92 133 esumrnmpt2 φ f : A A ran f Fun f -1 A * z ran k f k M z = * k M f k
135 18 78 134 3eqtr3rd φ f : A A ran f Fun f -1 A * k M f k = * z A M z
136 uniiun A = x A x
137 31 sselda φ x A x 𝒫 O
138 42 137 elpwiuncl φ x A x 𝒫 O
139 136 138 eqeltrid φ A 𝒫 O
140 139 adantr φ f : A A ran f Fun f -1 A A 𝒫 O
141 23 140 ffvelrnd φ f : A A ran f Fun f -1 A M A 0 +∞
142 4 3adant1r φ f : A A ran f Fun f -1 A x ω x 𝒫 O M x * y x M y
143 fveq2 y = z M y = M z
144 nfcv _ z x
145 nfcv _ y x
146 nfcv _ z M y
147 nfcv _ y M z
148 143 144 145 146 147 cbvesum * y x M y = * z x M z
149 142 148 breqtrdi φ f : A A ran f Fun f -1 A x ω x 𝒫 O M x * z x M z
150 ffn f : A f Fn
151 fz1ssnn 1 n
152 fnssres f Fn 1 n f 1 n Fn 1 n
153 151 152 mpan2 f Fn f 1 n Fn 1 n
154 15 150 153 3syl φ f : A A ran f Fun f -1 A f 1 n Fn 1 n
155 fzfi 1 n Fin
156 fnfi f 1 n Fn 1 n 1 n Fin f 1 n Fin
157 155 156 mpan2 f 1 n Fn 1 n f 1 n Fin
158 rnfi f 1 n Fin ran f 1 n Fin
159 154 157 158 3syl φ f : A A ran f Fun f -1 A ran f 1 n Fin
160 resss f 1 n f
161 rnss f 1 n f ran f 1 n ran f
162 160 161 ax-mp ran f 1 n ran f
163 162 a1i φ f : A A ran f Fun f -1 A ran f 1 n ran f
164 163 55 sstrd φ f : A A ran f Fun f -1 A ran f 1 n toCaraSiga M
165 163 39 sstrd φ f : A A ran f Fun f -1 A ran f 1 n A
166 nfcv _ z y
167 nfcv _ y z
168 id y = z y = z
169 166 167 168 cbvdisj Disj y A y Disj z A z
170 disjun0 Disj z A z Disj z A z
171 169 170 sylbi Disj y A y Disj z A z
172 8 171 syl φ Disj z A z
173 172 adantr φ f : A A ran f Fun f -1 A Disj z A z
174 disjss1 ran f 1 n A Disj z A z Disj z ran f 1 n z
175 165 173 174 sylc φ f : A A ran f Fun f -1 A Disj z ran f 1 n z
176 pwidg O V O 𝒫 O
177 22 176 syl φ f : A A ran f Fun f -1 A O 𝒫 O
178 22 23 24 149 159 164 175 177 carsgclctunlem1 φ f : A A ran f Fun f -1 A M O ran f 1 n = * z ran f 1 n M O z
179 178 adantr φ f : A A ran f Fun f -1 A n M O ran f 1 n = * z ran f 1 n M O z
180 165 unissd φ f : A A ran f Fun f -1 A ran f 1 n A
181 uniun A = A
182 10 unisn =
183 182 uneq2i A = A
184 un0 A = A
185 181 183 184 3eqtri A = A
186 180 185 sseqtrdi φ f : A A ran f Fun f -1 A ran f 1 n A
187 186 adantr φ f : A A ran f Fun f -1 A n ran f 1 n A
188 uniss A 𝒫 O A 𝒫 O
189 unipw 𝒫 O = O
190 188 189 sseqtrdi A 𝒫 O A O
191 31 190 syl φ A O
192 191 ad2antrr φ f : A A ran f Fun f -1 A n A O
193 187 192 sstrd φ f : A A ran f Fun f -1 A n ran f 1 n O
194 sseqin2 ran f 1 n O O ran f 1 n = ran f 1 n
195 193 194 sylib φ f : A A ran f Fun f -1 A n O ran f 1 n = ran f 1 n
196 195 fveq2d φ f : A A ran f Fun f -1 A n M O ran f 1 n = M ran f 1 n
197 nfv z φ f : A A ran f Fun f -1 A n
198 165 adantr φ f : A A ran f Fun f -1 A n ran f 1 n A
199 31 ad2antrr φ f : A A ran f Fun f -1 A n A 𝒫 O
200 33 a1i φ f : A A ran f Fun f -1 A n 𝒫 O
201 200 snssd φ f : A A ran f Fun f -1 A n 𝒫 O
202 199 201 unssd φ f : A A ran f Fun f -1 A n A 𝒫 O
203 198 202 sstrd φ f : A A ran f Fun f -1 A n ran f 1 n 𝒫 O
204 203 sselda φ f : A A ran f Fun f -1 A n z ran f 1 n z 𝒫 O
205 204 elpwid φ f : A A ran f Fun f -1 A n z ran f 1 n z O
206 sseqin2 z O O z = z
207 205 206 sylib φ f : A A ran f Fun f -1 A n z ran f 1 n O z = z
208 207 fveq2d φ f : A A ran f Fun f -1 A n z ran f 1 n M O z = M z
209 208 ralrimiva φ f : A A ran f Fun f -1 A n z ran f 1 n M O z = M z
210 197 209 esumeq2d φ f : A A ran f Fun f -1 A n * z ran f 1 n M O z = * z ran f 1 n M z
211 16 reseq1d φ f : A A ran f Fun f -1 A f 1 n = k f k 1 n
212 211 adantr φ f : A A ran f Fun f -1 A n f 1 n = k f k 1 n
213 resmpt 1 n k f k 1 n = k 1 n f k
214 151 213 ax-mp k f k 1 n = k 1 n f k
215 212 214 eqtrdi φ f : A A ran f Fun f -1 A n f 1 n = k 1 n f k
216 215 eqcomd φ f : A A ran f Fun f -1 A n k 1 n f k = f 1 n
217 216 rneqd φ f : A A ran f Fun f -1 A n ran k 1 n f k = ran f 1 n
218 197 217 esumeq1d φ f : A A ran f Fun f -1 A n * z ran k 1 n f k M z = * z ran f 1 n M z
219 155 a1i φ f : A A ran f Fun f -1 A n 1 n Fin
220 23 ad2antrr φ f : A A ran f Fun f -1 A n k 1 n M : 𝒫 O 0 +∞
221 151 a1i φ f : A A ran f Fun f -1 A n 1 n
222 221 sselda φ f : A A ran f Fun f -1 A n k 1 n k
223 87 adantlr φ f : A A ran f Fun f -1 A n k f k 𝒫 O
224 222 223 syldan φ f : A A ran f Fun f -1 A n k 1 n f k 𝒫 O
225 220 224 ffvelrnd φ f : A A ran f Fun f -1 A n k 1 n M f k 0 +∞
226 simpr φ f : A A ran f Fun f -1 A n k 1 n f k = f k =
227 226 fveq2d φ f : A A ran f Fun f -1 A n k 1 n f k = M f k = M
228 24 ad3antrrr φ f : A A ran f Fun f -1 A n k 1 n f k = M = 0
229 227 228 eqtrd φ f : A A ran f Fun f -1 A n k 1 n f k = M f k = 0
230 disjss1 1 n Disj k f k Disj k = 1 n f k
231 151 230 ax-mp Disj k f k Disj k = 1 n f k
232 133 231 syl φ f : A A ran f Fun f -1 A Disj k = 1 n f k
233 232 adantr φ f : A A ran f Fun f -1 A n Disj k = 1 n f k
234 79 219 225 224 229 233 esumrnmpt2 φ f : A A ran f Fun f -1 A n * z ran k 1 n f k M z = * k = 1 n M f k
235 210 218 234 3eqtr2d φ f : A A ran f Fun f -1 A n * z ran f 1 n M O z = * k = 1 n M f k
236 179 196 235 3eqtr3d φ f : A A ran f Fun f -1 A n M ran f 1 n = * k = 1 n M f k
237 9 3adant1r φ f : A A ran f Fun f -1 A x y y 𝒫 O M x M y
238 22 23 186 140 237 carsgmon φ f : A A ran f Fun f -1 A M ran f 1 n M A
239 238 adantr φ f : A A ran f Fun f -1 A n M ran f 1 n M A
240 236 239 eqbrtrrd φ f : A A ran f Fun f -1 A n * k = 1 n M f k M A
241 141 88 240 esumgect φ f : A A ran f Fun f -1 A * k M f k M A
242 135 241 eqbrtrrd φ f : A A ran f Fun f -1 A * z A M z M A
243 13 242 exlimddv φ * z A M z M A