| Step |
Hyp |
Ref |
Expression |
| 1 |
|
carsgval.1 |
|- ( ph -> O e. V ) |
| 2 |
|
carsgval.2 |
|- ( ph -> M : ~P O --> ( 0 [,] +oo ) ) |
| 3 |
|
carsgsiga.1 |
|- ( ph -> ( M ` (/) ) = 0 ) |
| 4 |
|
carsgsiga.2 |
|- ( ( ph /\ x ~<_ _om /\ x C_ ~P O ) -> ( M ` U. x ) <_ sum* y e. x ( M ` y ) ) |
| 5 |
|
carsggect.0 |
|- ( ph -> -. (/) e. A ) |
| 6 |
|
carsggect.1 |
|- ( ph -> A ~<_ _om ) |
| 7 |
|
carsggect.2 |
|- ( ph -> A C_ ( toCaraSiga ` M ) ) |
| 8 |
|
carsggect.3 |
|- ( ph -> Disj_ y e. A y ) |
| 9 |
|
carsggect.4 |
|- ( ( ph /\ x C_ y /\ y e. ~P O ) -> ( M ` x ) <_ ( M ` y ) ) |
| 10 |
|
0ex |
|- (/) e. _V |
| 11 |
10
|
a1i |
|- ( ph -> (/) e. _V ) |
| 12 |
|
padct |
|- ( ( A ~<_ _om /\ (/) e. _V /\ -. (/) e. A ) -> E. f ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) |
| 13 |
6 11 5 12
|
syl3anc |
|- ( ph -> E. f ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) |
| 14 |
|
nfv |
|- F/ z ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) |
| 15 |
|
simpr1 |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> f : NN --> ( A u. { (/) } ) ) |
| 16 |
15
|
feqmptd |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> f = ( k e. NN |-> ( f ` k ) ) ) |
| 17 |
16
|
rneqd |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> ran f = ran ( k e. NN |-> ( f ` k ) ) ) |
| 18 |
14 17
|
esumeq1d |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> sum* z e. ran f ( M ` z ) = sum* z e. ran ( k e. NN |-> ( f ` k ) ) ( M ` z ) ) |
| 19 |
|
fvex |
|- ( toCaraSiga ` M ) e. _V |
| 20 |
19
|
a1i |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> ( toCaraSiga ` M ) e. _V ) |
| 21 |
7
|
adantr |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> A C_ ( toCaraSiga ` M ) ) |
| 22 |
1
|
adantr |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> O e. V ) |
| 23 |
2
|
adantr |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> M : ~P O --> ( 0 [,] +oo ) ) |
| 24 |
3
|
adantr |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> ( M ` (/) ) = 0 ) |
| 25 |
22 23 24
|
0elcarsg |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> (/) e. ( toCaraSiga ` M ) ) |
| 26 |
25
|
snssd |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> { (/) } C_ ( toCaraSiga ` M ) ) |
| 27 |
21 26
|
unssd |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> ( A u. { (/) } ) C_ ( toCaraSiga ` M ) ) |
| 28 |
20 27
|
ssexd |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> ( A u. { (/) } ) e. _V ) |
| 29 |
23
|
adantr |
|- ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ z e. ( A u. { (/) } ) ) -> M : ~P O --> ( 0 [,] +oo ) ) |
| 30 |
1 2
|
carsgcl |
|- ( ph -> ( toCaraSiga ` M ) C_ ~P O ) |
| 31 |
7 30
|
sstrd |
|- ( ph -> A C_ ~P O ) |
| 32 |
31
|
adantr |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> A C_ ~P O ) |
| 33 |
|
0elpw |
|- (/) e. ~P O |
| 34 |
33
|
a1i |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> (/) e. ~P O ) |
| 35 |
34
|
snssd |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> { (/) } C_ ~P O ) |
| 36 |
32 35
|
unssd |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> ( A u. { (/) } ) C_ ~P O ) |
| 37 |
36
|
sselda |
|- ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ z e. ( A u. { (/) } ) ) -> z e. ~P O ) |
| 38 |
29 37
|
ffvelcdmd |
|- ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ z e. ( A u. { (/) } ) ) -> ( M ` z ) e. ( 0 [,] +oo ) ) |
| 39 |
15
|
frnd |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> ran f C_ ( A u. { (/) } ) ) |
| 40 |
14 28 38 39
|
esummono |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> sum* z e. ran f ( M ` z ) <_ sum* z e. ( A u. { (/) } ) ( M ` z ) ) |
| 41 |
|
ctex |
|- ( A ~<_ _om -> A e. _V ) |
| 42 |
6 41
|
syl |
|- ( ph -> A e. _V ) |
| 43 |
42
|
adantr |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> A e. _V ) |
| 44 |
20 26
|
ssexd |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> { (/) } e. _V ) |
| 45 |
23
|
adantr |
|- ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ z e. A ) -> M : ~P O --> ( 0 [,] +oo ) ) |
| 46 |
32
|
sselda |
|- ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ z e. A ) -> z e. ~P O ) |
| 47 |
45 46
|
ffvelcdmd |
|- ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ z e. A ) -> ( M ` z ) e. ( 0 [,] +oo ) ) |
| 48 |
|
elsni |
|- ( z e. { (/) } -> z = (/) ) |
| 49 |
48
|
adantl |
|- ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ z e. { (/) } ) -> z = (/) ) |
| 50 |
49
|
fveq2d |
|- ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ z e. { (/) } ) -> ( M ` z ) = ( M ` (/) ) ) |
| 51 |
24
|
adantr |
|- ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ z e. { (/) } ) -> ( M ` (/) ) = 0 ) |
| 52 |
50 51
|
eqtrd |
|- ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ z e. { (/) } ) -> ( M ` z ) = 0 ) |
| 53 |
43 44 47 52
|
esumpad |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> sum* z e. ( A u. { (/) } ) ( M ` z ) = sum* z e. A ( M ` z ) ) |
| 54 |
40 53
|
breqtrd |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> sum* z e. ran f ( M ` z ) <_ sum* z e. A ( M ` z ) ) |
| 55 |
39 27
|
sstrd |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> ran f C_ ( toCaraSiga ` M ) ) |
| 56 |
|
ssexg |
|- ( ( ran f C_ ( toCaraSiga ` M ) /\ ( toCaraSiga ` M ) e. _V ) -> ran f e. _V ) |
| 57 |
55 19 56
|
sylancl |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> ran f e. _V ) |
| 58 |
23
|
adantr |
|- ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ z e. ran f ) -> M : ~P O --> ( 0 [,] +oo ) ) |
| 59 |
39 36
|
sstrd |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> ran f C_ ~P O ) |
| 60 |
59
|
sselda |
|- ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ z e. ran f ) -> z e. ~P O ) |
| 61 |
58 60
|
ffvelcdmd |
|- ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ z e. ran f ) -> ( M ` z ) e. ( 0 [,] +oo ) ) |
| 62 |
|
simpr2 |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> A C_ ran f ) |
| 63 |
14 57 61 62
|
esummono |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> sum* z e. A ( M ` z ) <_ sum* z e. ran f ( M ` z ) ) |
| 64 |
54 63
|
jca |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> ( sum* z e. ran f ( M ` z ) <_ sum* z e. A ( M ` z ) /\ sum* z e. A ( M ` z ) <_ sum* z e. ran f ( M ` z ) ) ) |
| 65 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
| 66 |
61
|
ralrimiva |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> A. z e. ran f ( M ` z ) e. ( 0 [,] +oo ) ) |
| 67 |
|
nfcv |
|- F/_ z ran f |
| 68 |
67
|
esumcl |
|- ( ( ran f e. _V /\ A. z e. ran f ( M ` z ) e. ( 0 [,] +oo ) ) -> sum* z e. ran f ( M ` z ) e. ( 0 [,] +oo ) ) |
| 69 |
57 66 68
|
syl2anc |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> sum* z e. ran f ( M ` z ) e. ( 0 [,] +oo ) ) |
| 70 |
65 69
|
sselid |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> sum* z e. ran f ( M ` z ) e. RR* ) |
| 71 |
47
|
ralrimiva |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> A. z e. A ( M ` z ) e. ( 0 [,] +oo ) ) |
| 72 |
|
nfcv |
|- F/_ z A |
| 73 |
72
|
esumcl |
|- ( ( A e. _V /\ A. z e. A ( M ` z ) e. ( 0 [,] +oo ) ) -> sum* z e. A ( M ` z ) e. ( 0 [,] +oo ) ) |
| 74 |
43 71 73
|
syl2anc |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> sum* z e. A ( M ` z ) e. ( 0 [,] +oo ) ) |
| 75 |
65 74
|
sselid |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> sum* z e. A ( M ` z ) e. RR* ) |
| 76 |
|
xrletri3 |
|- ( ( sum* z e. ran f ( M ` z ) e. RR* /\ sum* z e. A ( M ` z ) e. RR* ) -> ( sum* z e. ran f ( M ` z ) = sum* z e. A ( M ` z ) <-> ( sum* z e. ran f ( M ` z ) <_ sum* z e. A ( M ` z ) /\ sum* z e. A ( M ` z ) <_ sum* z e. ran f ( M ` z ) ) ) ) |
| 77 |
70 75 76
|
syl2anc |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> ( sum* z e. ran f ( M ` z ) = sum* z e. A ( M ` z ) <-> ( sum* z e. ran f ( M ` z ) <_ sum* z e. A ( M ` z ) /\ sum* z e. A ( M ` z ) <_ sum* z e. ran f ( M ` z ) ) ) ) |
| 78 |
64 77
|
mpbird |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> sum* z e. ran f ( M ` z ) = sum* z e. A ( M ` z ) ) |
| 79 |
|
fveq2 |
|- ( z = ( f ` k ) -> ( M ` z ) = ( M ` ( f ` k ) ) ) |
| 80 |
|
nnex |
|- NN e. _V |
| 81 |
80
|
a1i |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> NN e. _V ) |
| 82 |
23
|
adantr |
|- ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ k e. NN ) -> M : ~P O --> ( 0 [,] +oo ) ) |
| 83 |
36
|
adantr |
|- ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ k e. NN ) -> ( A u. { (/) } ) C_ ~P O ) |
| 84 |
15
|
adantr |
|- ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ k e. NN ) -> f : NN --> ( A u. { (/) } ) ) |
| 85 |
|
simpr |
|- ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ k e. NN ) -> k e. NN ) |
| 86 |
84 85
|
ffvelcdmd |
|- ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ k e. NN ) -> ( f ` k ) e. ( A u. { (/) } ) ) |
| 87 |
83 86
|
sseldd |
|- ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ k e. NN ) -> ( f ` k ) e. ~P O ) |
| 88 |
82 87
|
ffvelcdmd |
|- ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ k e. NN ) -> ( M ` ( f ` k ) ) e. ( 0 [,] +oo ) ) |
| 89 |
|
simpr |
|- ( ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ k e. NN ) /\ ( f ` k ) = (/) ) -> ( f ` k ) = (/) ) |
| 90 |
89
|
fveq2d |
|- ( ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ k e. NN ) /\ ( f ` k ) = (/) ) -> ( M ` ( f ` k ) ) = ( M ` (/) ) ) |
| 91 |
24
|
ad2antrr |
|- ( ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ k e. NN ) /\ ( f ` k ) = (/) ) -> ( M ` (/) ) = 0 ) |
| 92 |
90 91
|
eqtrd |
|- ( ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ k e. NN ) /\ ( f ` k ) = (/) ) -> ( M ` ( f ` k ) ) = 0 ) |
| 93 |
|
cnvimass |
|- ( `' f " A ) C_ dom f |
| 94 |
93 15
|
fssdm |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> ( `' f " A ) C_ NN ) |
| 95 |
|
ffun |
|- ( f : NN --> ( A u. { (/) } ) -> Fun f ) |
| 96 |
15 95
|
syl |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> Fun f ) |
| 97 |
96
|
adantr |
|- ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ k e. ( NN \ ( `' f " A ) ) ) -> Fun f ) |
| 98 |
|
difpreima |
|- ( Fun f -> ( `' f " ( ( A u. { (/) } ) \ A ) ) = ( ( `' f " ( A u. { (/) } ) ) \ ( `' f " A ) ) ) |
| 99 |
15 95 98
|
3syl |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> ( `' f " ( ( A u. { (/) } ) \ A ) ) = ( ( `' f " ( A u. { (/) } ) ) \ ( `' f " A ) ) ) |
| 100 |
|
fimacnv |
|- ( f : NN --> ( A u. { (/) } ) -> ( `' f " ( A u. { (/) } ) ) = NN ) |
| 101 |
15 100
|
syl |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> ( `' f " ( A u. { (/) } ) ) = NN ) |
| 102 |
101
|
difeq1d |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> ( ( `' f " ( A u. { (/) } ) ) \ ( `' f " A ) ) = ( NN \ ( `' f " A ) ) ) |
| 103 |
99 102
|
eqtrd |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> ( `' f " ( ( A u. { (/) } ) \ A ) ) = ( NN \ ( `' f " A ) ) ) |
| 104 |
|
uncom |
|- ( { (/) } u. A ) = ( A u. { (/) } ) |
| 105 |
104
|
difeq1i |
|- ( ( { (/) } u. A ) \ A ) = ( ( A u. { (/) } ) \ A ) |
| 106 |
|
difun2 |
|- ( ( { (/) } u. A ) \ A ) = ( { (/) } \ A ) |
| 107 |
105 106
|
eqtr3i |
|- ( ( A u. { (/) } ) \ A ) = ( { (/) } \ A ) |
| 108 |
|
difss |
|- ( { (/) } \ A ) C_ { (/) } |
| 109 |
107 108
|
eqsstri |
|- ( ( A u. { (/) } ) \ A ) C_ { (/) } |
| 110 |
109
|
a1i |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> ( ( A u. { (/) } ) \ A ) C_ { (/) } ) |
| 111 |
|
sspreima |
|- ( ( Fun f /\ ( ( A u. { (/) } ) \ A ) C_ { (/) } ) -> ( `' f " ( ( A u. { (/) } ) \ A ) ) C_ ( `' f " { (/) } ) ) |
| 112 |
96 110 111
|
syl2anc |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> ( `' f " ( ( A u. { (/) } ) \ A ) ) C_ ( `' f " { (/) } ) ) |
| 113 |
103 112
|
eqsstrrd |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> ( NN \ ( `' f " A ) ) C_ ( `' f " { (/) } ) ) |
| 114 |
113
|
sselda |
|- ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ k e. ( NN \ ( `' f " A ) ) ) -> k e. ( `' f " { (/) } ) ) |
| 115 |
|
fvimacnvi |
|- ( ( Fun f /\ k e. ( `' f " { (/) } ) ) -> ( f ` k ) e. { (/) } ) |
| 116 |
97 114 115
|
syl2anc |
|- ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ k e. ( NN \ ( `' f " A ) ) ) -> ( f ` k ) e. { (/) } ) |
| 117 |
|
elsni |
|- ( ( f ` k ) e. { (/) } -> ( f ` k ) = (/) ) |
| 118 |
116 117
|
syl |
|- ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ k e. ( NN \ ( `' f " A ) ) ) -> ( f ` k ) = (/) ) |
| 119 |
118
|
ralrimiva |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> A. k e. ( NN \ ( `' f " A ) ) ( f ` k ) = (/) ) |
| 120 |
8
|
adantr |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> Disj_ y e. A y ) |
| 121 |
|
simpr3 |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> Fun ( `' f |` A ) ) |
| 122 |
|
fresf1o |
|- ( ( Fun f /\ A C_ ran f /\ Fun ( `' f |` A ) ) -> ( f |` ( `' f " A ) ) : ( `' f " A ) -1-1-onto-> A ) |
| 123 |
96 62 121 122
|
syl3anc |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> ( f |` ( `' f " A ) ) : ( `' f " A ) -1-1-onto-> A ) |
| 124 |
|
simpr |
|- ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ y = ( ( f |` ( `' f " A ) ) ` k ) ) -> y = ( ( f |` ( `' f " A ) ) ` k ) ) |
| 125 |
123 124
|
disjrdx |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> ( Disj_ k e. ( `' f " A ) ( ( f |` ( `' f " A ) ) ` k ) <-> Disj_ y e. A y ) ) |
| 126 |
|
fvres |
|- ( k e. ( `' f " A ) -> ( ( f |` ( `' f " A ) ) ` k ) = ( f ` k ) ) |
| 127 |
126
|
adantl |
|- ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ k e. ( `' f " A ) ) -> ( ( f |` ( `' f " A ) ) ` k ) = ( f ` k ) ) |
| 128 |
127
|
disjeq2dv |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> ( Disj_ k e. ( `' f " A ) ( ( f |` ( `' f " A ) ) ` k ) <-> Disj_ k e. ( `' f " A ) ( f ` k ) ) ) |
| 129 |
125 128
|
bitr3d |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> ( Disj_ y e. A y <-> Disj_ k e. ( `' f " A ) ( f ` k ) ) ) |
| 130 |
120 129
|
mpbid |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> Disj_ k e. ( `' f " A ) ( f ` k ) ) |
| 131 |
|
disjss3 |
|- ( ( ( `' f " A ) C_ NN /\ A. k e. ( NN \ ( `' f " A ) ) ( f ` k ) = (/) ) -> ( Disj_ k e. ( `' f " A ) ( f ` k ) <-> Disj_ k e. NN ( f ` k ) ) ) |
| 132 |
131
|
biimpa |
|- ( ( ( ( `' f " A ) C_ NN /\ A. k e. ( NN \ ( `' f " A ) ) ( f ` k ) = (/) ) /\ Disj_ k e. ( `' f " A ) ( f ` k ) ) -> Disj_ k e. NN ( f ` k ) ) |
| 133 |
94 119 130 132
|
syl21anc |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> Disj_ k e. NN ( f ` k ) ) |
| 134 |
79 81 88 87 92 133
|
esumrnmpt2 |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> sum* z e. ran ( k e. NN |-> ( f ` k ) ) ( M ` z ) = sum* k e. NN ( M ` ( f ` k ) ) ) |
| 135 |
18 78 134
|
3eqtr3rd |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> sum* k e. NN ( M ` ( f ` k ) ) = sum* z e. A ( M ` z ) ) |
| 136 |
|
uniiun |
|- U. A = U_ x e. A x |
| 137 |
31
|
sselda |
|- ( ( ph /\ x e. A ) -> x e. ~P O ) |
| 138 |
42 137
|
elpwiuncl |
|- ( ph -> U_ x e. A x e. ~P O ) |
| 139 |
136 138
|
eqeltrid |
|- ( ph -> U. A e. ~P O ) |
| 140 |
139
|
adantr |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> U. A e. ~P O ) |
| 141 |
23 140
|
ffvelcdmd |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> ( M ` U. A ) e. ( 0 [,] +oo ) ) |
| 142 |
4
|
3adant1r |
|- ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ x ~<_ _om /\ x C_ ~P O ) -> ( M ` U. x ) <_ sum* y e. x ( M ` y ) ) |
| 143 |
|
fveq2 |
|- ( y = z -> ( M ` y ) = ( M ` z ) ) |
| 144 |
|
nfcv |
|- F/_ z x |
| 145 |
|
nfcv |
|- F/_ y x |
| 146 |
|
nfcv |
|- F/_ z ( M ` y ) |
| 147 |
|
nfcv |
|- F/_ y ( M ` z ) |
| 148 |
143 144 145 146 147
|
cbvesum |
|- sum* y e. x ( M ` y ) = sum* z e. x ( M ` z ) |
| 149 |
142 148
|
breqtrdi |
|- ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ x ~<_ _om /\ x C_ ~P O ) -> ( M ` U. x ) <_ sum* z e. x ( M ` z ) ) |
| 150 |
|
ffn |
|- ( f : NN --> ( A u. { (/) } ) -> f Fn NN ) |
| 151 |
|
fz1ssnn |
|- ( 1 ... n ) C_ NN |
| 152 |
|
fnssres |
|- ( ( f Fn NN /\ ( 1 ... n ) C_ NN ) -> ( f |` ( 1 ... n ) ) Fn ( 1 ... n ) ) |
| 153 |
151 152
|
mpan2 |
|- ( f Fn NN -> ( f |` ( 1 ... n ) ) Fn ( 1 ... n ) ) |
| 154 |
15 150 153
|
3syl |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> ( f |` ( 1 ... n ) ) Fn ( 1 ... n ) ) |
| 155 |
|
fzfi |
|- ( 1 ... n ) e. Fin |
| 156 |
|
fnfi |
|- ( ( ( f |` ( 1 ... n ) ) Fn ( 1 ... n ) /\ ( 1 ... n ) e. Fin ) -> ( f |` ( 1 ... n ) ) e. Fin ) |
| 157 |
155 156
|
mpan2 |
|- ( ( f |` ( 1 ... n ) ) Fn ( 1 ... n ) -> ( f |` ( 1 ... n ) ) e. Fin ) |
| 158 |
|
rnfi |
|- ( ( f |` ( 1 ... n ) ) e. Fin -> ran ( f |` ( 1 ... n ) ) e. Fin ) |
| 159 |
154 157 158
|
3syl |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> ran ( f |` ( 1 ... n ) ) e. Fin ) |
| 160 |
|
resss |
|- ( f |` ( 1 ... n ) ) C_ f |
| 161 |
|
rnss |
|- ( ( f |` ( 1 ... n ) ) C_ f -> ran ( f |` ( 1 ... n ) ) C_ ran f ) |
| 162 |
160 161
|
ax-mp |
|- ran ( f |` ( 1 ... n ) ) C_ ran f |
| 163 |
162
|
a1i |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> ran ( f |` ( 1 ... n ) ) C_ ran f ) |
| 164 |
163 55
|
sstrd |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> ran ( f |` ( 1 ... n ) ) C_ ( toCaraSiga ` M ) ) |
| 165 |
163 39
|
sstrd |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> ran ( f |` ( 1 ... n ) ) C_ ( A u. { (/) } ) ) |
| 166 |
|
nfcv |
|- F/_ z y |
| 167 |
|
nfcv |
|- F/_ y z |
| 168 |
|
id |
|- ( y = z -> y = z ) |
| 169 |
166 167 168
|
cbvdisj |
|- ( Disj_ y e. A y <-> Disj_ z e. A z ) |
| 170 |
|
disjun0 |
|- ( Disj_ z e. A z -> Disj_ z e. ( A u. { (/) } ) z ) |
| 171 |
169 170
|
sylbi |
|- ( Disj_ y e. A y -> Disj_ z e. ( A u. { (/) } ) z ) |
| 172 |
8 171
|
syl |
|- ( ph -> Disj_ z e. ( A u. { (/) } ) z ) |
| 173 |
172
|
adantr |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> Disj_ z e. ( A u. { (/) } ) z ) |
| 174 |
|
disjss1 |
|- ( ran ( f |` ( 1 ... n ) ) C_ ( A u. { (/) } ) -> ( Disj_ z e. ( A u. { (/) } ) z -> Disj_ z e. ran ( f |` ( 1 ... n ) ) z ) ) |
| 175 |
165 173 174
|
sylc |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> Disj_ z e. ran ( f |` ( 1 ... n ) ) z ) |
| 176 |
|
pwidg |
|- ( O e. V -> O e. ~P O ) |
| 177 |
22 176
|
syl |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> O e. ~P O ) |
| 178 |
22 23 24 149 159 164 175 177
|
carsgclctunlem1 |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> ( M ` ( O i^i U. ran ( f |` ( 1 ... n ) ) ) ) = sum* z e. ran ( f |` ( 1 ... n ) ) ( M ` ( O i^i z ) ) ) |
| 179 |
178
|
adantr |
|- ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ n e. NN ) -> ( M ` ( O i^i U. ran ( f |` ( 1 ... n ) ) ) ) = sum* z e. ran ( f |` ( 1 ... n ) ) ( M ` ( O i^i z ) ) ) |
| 180 |
165
|
unissd |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> U. ran ( f |` ( 1 ... n ) ) C_ U. ( A u. { (/) } ) ) |
| 181 |
|
uniun |
|- U. ( A u. { (/) } ) = ( U. A u. U. { (/) } ) |
| 182 |
10
|
unisn |
|- U. { (/) } = (/) |
| 183 |
182
|
uneq2i |
|- ( U. A u. U. { (/) } ) = ( U. A u. (/) ) |
| 184 |
|
un0 |
|- ( U. A u. (/) ) = U. A |
| 185 |
181 183 184
|
3eqtri |
|- U. ( A u. { (/) } ) = U. A |
| 186 |
180 185
|
sseqtrdi |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> U. ran ( f |` ( 1 ... n ) ) C_ U. A ) |
| 187 |
186
|
adantr |
|- ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ n e. NN ) -> U. ran ( f |` ( 1 ... n ) ) C_ U. A ) |
| 188 |
|
uniss |
|- ( A C_ ~P O -> U. A C_ U. ~P O ) |
| 189 |
|
unipw |
|- U. ~P O = O |
| 190 |
188 189
|
sseqtrdi |
|- ( A C_ ~P O -> U. A C_ O ) |
| 191 |
31 190
|
syl |
|- ( ph -> U. A C_ O ) |
| 192 |
191
|
ad2antrr |
|- ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ n e. NN ) -> U. A C_ O ) |
| 193 |
187 192
|
sstrd |
|- ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ n e. NN ) -> U. ran ( f |` ( 1 ... n ) ) C_ O ) |
| 194 |
|
sseqin2 |
|- ( U. ran ( f |` ( 1 ... n ) ) C_ O <-> ( O i^i U. ran ( f |` ( 1 ... n ) ) ) = U. ran ( f |` ( 1 ... n ) ) ) |
| 195 |
193 194
|
sylib |
|- ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ n e. NN ) -> ( O i^i U. ran ( f |` ( 1 ... n ) ) ) = U. ran ( f |` ( 1 ... n ) ) ) |
| 196 |
195
|
fveq2d |
|- ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ n e. NN ) -> ( M ` ( O i^i U. ran ( f |` ( 1 ... n ) ) ) ) = ( M ` U. ran ( f |` ( 1 ... n ) ) ) ) |
| 197 |
|
nfv |
|- F/ z ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ n e. NN ) |
| 198 |
165
|
adantr |
|- ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ n e. NN ) -> ran ( f |` ( 1 ... n ) ) C_ ( A u. { (/) } ) ) |
| 199 |
31
|
ad2antrr |
|- ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ n e. NN ) -> A C_ ~P O ) |
| 200 |
33
|
a1i |
|- ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ n e. NN ) -> (/) e. ~P O ) |
| 201 |
200
|
snssd |
|- ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ n e. NN ) -> { (/) } C_ ~P O ) |
| 202 |
199 201
|
unssd |
|- ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ n e. NN ) -> ( A u. { (/) } ) C_ ~P O ) |
| 203 |
198 202
|
sstrd |
|- ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ n e. NN ) -> ran ( f |` ( 1 ... n ) ) C_ ~P O ) |
| 204 |
203
|
sselda |
|- ( ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ n e. NN ) /\ z e. ran ( f |` ( 1 ... n ) ) ) -> z e. ~P O ) |
| 205 |
204
|
elpwid |
|- ( ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ n e. NN ) /\ z e. ran ( f |` ( 1 ... n ) ) ) -> z C_ O ) |
| 206 |
|
sseqin2 |
|- ( z C_ O <-> ( O i^i z ) = z ) |
| 207 |
205 206
|
sylib |
|- ( ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ n e. NN ) /\ z e. ran ( f |` ( 1 ... n ) ) ) -> ( O i^i z ) = z ) |
| 208 |
207
|
fveq2d |
|- ( ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ n e. NN ) /\ z e. ran ( f |` ( 1 ... n ) ) ) -> ( M ` ( O i^i z ) ) = ( M ` z ) ) |
| 209 |
208
|
ralrimiva |
|- ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ n e. NN ) -> A. z e. ran ( f |` ( 1 ... n ) ) ( M ` ( O i^i z ) ) = ( M ` z ) ) |
| 210 |
197 209
|
esumeq2d |
|- ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ n e. NN ) -> sum* z e. ran ( f |` ( 1 ... n ) ) ( M ` ( O i^i z ) ) = sum* z e. ran ( f |` ( 1 ... n ) ) ( M ` z ) ) |
| 211 |
16
|
reseq1d |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> ( f |` ( 1 ... n ) ) = ( ( k e. NN |-> ( f ` k ) ) |` ( 1 ... n ) ) ) |
| 212 |
211
|
adantr |
|- ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ n e. NN ) -> ( f |` ( 1 ... n ) ) = ( ( k e. NN |-> ( f ` k ) ) |` ( 1 ... n ) ) ) |
| 213 |
|
resmpt |
|- ( ( 1 ... n ) C_ NN -> ( ( k e. NN |-> ( f ` k ) ) |` ( 1 ... n ) ) = ( k e. ( 1 ... n ) |-> ( f ` k ) ) ) |
| 214 |
151 213
|
ax-mp |
|- ( ( k e. NN |-> ( f ` k ) ) |` ( 1 ... n ) ) = ( k e. ( 1 ... n ) |-> ( f ` k ) ) |
| 215 |
212 214
|
eqtrdi |
|- ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ n e. NN ) -> ( f |` ( 1 ... n ) ) = ( k e. ( 1 ... n ) |-> ( f ` k ) ) ) |
| 216 |
215
|
eqcomd |
|- ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ n e. NN ) -> ( k e. ( 1 ... n ) |-> ( f ` k ) ) = ( f |` ( 1 ... n ) ) ) |
| 217 |
216
|
rneqd |
|- ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ n e. NN ) -> ran ( k e. ( 1 ... n ) |-> ( f ` k ) ) = ran ( f |` ( 1 ... n ) ) ) |
| 218 |
197 217
|
esumeq1d |
|- ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ n e. NN ) -> sum* z e. ran ( k e. ( 1 ... n ) |-> ( f ` k ) ) ( M ` z ) = sum* z e. ran ( f |` ( 1 ... n ) ) ( M ` z ) ) |
| 219 |
155
|
a1i |
|- ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ n e. NN ) -> ( 1 ... n ) e. Fin ) |
| 220 |
23
|
ad2antrr |
|- ( ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> M : ~P O --> ( 0 [,] +oo ) ) |
| 221 |
151
|
a1i |
|- ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ n e. NN ) -> ( 1 ... n ) C_ NN ) |
| 222 |
221
|
sselda |
|- ( ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> k e. NN ) |
| 223 |
87
|
adantlr |
|- ( ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ n e. NN ) /\ k e. NN ) -> ( f ` k ) e. ~P O ) |
| 224 |
222 223
|
syldan |
|- ( ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( f ` k ) e. ~P O ) |
| 225 |
220 224
|
ffvelcdmd |
|- ( ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( M ` ( f ` k ) ) e. ( 0 [,] +oo ) ) |
| 226 |
|
simpr |
|- ( ( ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ n e. NN ) /\ k e. ( 1 ... n ) ) /\ ( f ` k ) = (/) ) -> ( f ` k ) = (/) ) |
| 227 |
226
|
fveq2d |
|- ( ( ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ n e. NN ) /\ k e. ( 1 ... n ) ) /\ ( f ` k ) = (/) ) -> ( M ` ( f ` k ) ) = ( M ` (/) ) ) |
| 228 |
24
|
ad3antrrr |
|- ( ( ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ n e. NN ) /\ k e. ( 1 ... n ) ) /\ ( f ` k ) = (/) ) -> ( M ` (/) ) = 0 ) |
| 229 |
227 228
|
eqtrd |
|- ( ( ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ n e. NN ) /\ k e. ( 1 ... n ) ) /\ ( f ` k ) = (/) ) -> ( M ` ( f ` k ) ) = 0 ) |
| 230 |
|
disjss1 |
|- ( ( 1 ... n ) C_ NN -> ( Disj_ k e. NN ( f ` k ) -> Disj_ k e. ( 1 ... n ) ( f ` k ) ) ) |
| 231 |
151 230
|
ax-mp |
|- ( Disj_ k e. NN ( f ` k ) -> Disj_ k e. ( 1 ... n ) ( f ` k ) ) |
| 232 |
133 231
|
syl |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> Disj_ k e. ( 1 ... n ) ( f ` k ) ) |
| 233 |
232
|
adantr |
|- ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ n e. NN ) -> Disj_ k e. ( 1 ... n ) ( f ` k ) ) |
| 234 |
79 219 225 224 229 233
|
esumrnmpt2 |
|- ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ n e. NN ) -> sum* z e. ran ( k e. ( 1 ... n ) |-> ( f ` k ) ) ( M ` z ) = sum* k e. ( 1 ... n ) ( M ` ( f ` k ) ) ) |
| 235 |
210 218 234
|
3eqtr2d |
|- ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ n e. NN ) -> sum* z e. ran ( f |` ( 1 ... n ) ) ( M ` ( O i^i z ) ) = sum* k e. ( 1 ... n ) ( M ` ( f ` k ) ) ) |
| 236 |
179 196 235
|
3eqtr3d |
|- ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ n e. NN ) -> ( M ` U. ran ( f |` ( 1 ... n ) ) ) = sum* k e. ( 1 ... n ) ( M ` ( f ` k ) ) ) |
| 237 |
9
|
3adant1r |
|- ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ x C_ y /\ y e. ~P O ) -> ( M ` x ) <_ ( M ` y ) ) |
| 238 |
22 23 186 140 237
|
carsgmon |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> ( M ` U. ran ( f |` ( 1 ... n ) ) ) <_ ( M ` U. A ) ) |
| 239 |
238
|
adantr |
|- ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ n e. NN ) -> ( M ` U. ran ( f |` ( 1 ... n ) ) ) <_ ( M ` U. A ) ) |
| 240 |
236 239
|
eqbrtrrd |
|- ( ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) /\ n e. NN ) -> sum* k e. ( 1 ... n ) ( M ` ( f ` k ) ) <_ ( M ` U. A ) ) |
| 241 |
141 88 240
|
esumgect |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> sum* k e. NN ( M ` ( f ` k ) ) <_ ( M ` U. A ) ) |
| 242 |
135 241
|
eqbrtrrd |
|- ( ( ph /\ ( f : NN --> ( A u. { (/) } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) -> sum* z e. A ( M ` z ) <_ ( M ` U. A ) ) |
| 243 |
13 242
|
exlimddv |
|- ( ph -> sum* z e. A ( M ` z ) <_ ( M ` U. A ) ) |