| Step |
Hyp |
Ref |
Expression |
| 1 |
|
carsgval.1 |
⊢ ( 𝜑 → 𝑂 ∈ 𝑉 ) |
| 2 |
|
carsgval.2 |
⊢ ( 𝜑 → 𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) ) |
| 3 |
|
carsgsiga.1 |
⊢ ( 𝜑 → ( 𝑀 ‘ ∅ ) = 0 ) |
| 4 |
|
carsgsiga.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂 ) → ( 𝑀 ‘ ∪ 𝑥 ) ≤ Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) |
| 5 |
|
carsggect.0 |
⊢ ( 𝜑 → ¬ ∅ ∈ 𝐴 ) |
| 6 |
|
carsggect.1 |
⊢ ( 𝜑 → 𝐴 ≼ ω ) |
| 7 |
|
carsggect.2 |
⊢ ( 𝜑 → 𝐴 ⊆ ( toCaraSiga ‘ 𝑀 ) ) |
| 8 |
|
carsggect.3 |
⊢ ( 𝜑 → Disj 𝑦 ∈ 𝐴 𝑦 ) |
| 9 |
|
carsggect.4 |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂 ) → ( 𝑀 ‘ 𝑥 ) ≤ ( 𝑀 ‘ 𝑦 ) ) |
| 10 |
|
0ex |
⊢ ∅ ∈ V |
| 11 |
10
|
a1i |
⊢ ( 𝜑 → ∅ ∈ V ) |
| 12 |
|
padct |
⊢ ( ( 𝐴 ≼ ω ∧ ∅ ∈ V ∧ ¬ ∅ ∈ 𝐴 ) → ∃ 𝑓 ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) |
| 13 |
6 11 5 12
|
syl3anc |
⊢ ( 𝜑 → ∃ 𝑓 ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) |
| 14 |
|
nfv |
⊢ Ⅎ 𝑧 ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) |
| 15 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ) |
| 16 |
15
|
feqmptd |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → 𝑓 = ( 𝑘 ∈ ℕ ↦ ( 𝑓 ‘ 𝑘 ) ) ) |
| 17 |
16
|
rneqd |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → ran 𝑓 = ran ( 𝑘 ∈ ℕ ↦ ( 𝑓 ‘ 𝑘 ) ) ) |
| 18 |
14 17
|
esumeq1d |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → Σ* 𝑧 ∈ ran 𝑓 ( 𝑀 ‘ 𝑧 ) = Σ* 𝑧 ∈ ran ( 𝑘 ∈ ℕ ↦ ( 𝑓 ‘ 𝑘 ) ) ( 𝑀 ‘ 𝑧 ) ) |
| 19 |
|
fvex |
⊢ ( toCaraSiga ‘ 𝑀 ) ∈ V |
| 20 |
19
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → ( toCaraSiga ‘ 𝑀 ) ∈ V ) |
| 21 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → 𝐴 ⊆ ( toCaraSiga ‘ 𝑀 ) ) |
| 22 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → 𝑂 ∈ 𝑉 ) |
| 23 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → 𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) ) |
| 24 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → ( 𝑀 ‘ ∅ ) = 0 ) |
| 25 |
22 23 24
|
0elcarsg |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → ∅ ∈ ( toCaraSiga ‘ 𝑀 ) ) |
| 26 |
25
|
snssd |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → { ∅ } ⊆ ( toCaraSiga ‘ 𝑀 ) ) |
| 27 |
21 26
|
unssd |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → ( 𝐴 ∪ { ∅ } ) ⊆ ( toCaraSiga ‘ 𝑀 ) ) |
| 28 |
20 27
|
ssexd |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → ( 𝐴 ∪ { ∅ } ) ∈ V ) |
| 29 |
23
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑧 ∈ ( 𝐴 ∪ { ∅ } ) ) → 𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) ) |
| 30 |
1 2
|
carsgcl |
⊢ ( 𝜑 → ( toCaraSiga ‘ 𝑀 ) ⊆ 𝒫 𝑂 ) |
| 31 |
7 30
|
sstrd |
⊢ ( 𝜑 → 𝐴 ⊆ 𝒫 𝑂 ) |
| 32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → 𝐴 ⊆ 𝒫 𝑂 ) |
| 33 |
|
0elpw |
⊢ ∅ ∈ 𝒫 𝑂 |
| 34 |
33
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → ∅ ∈ 𝒫 𝑂 ) |
| 35 |
34
|
snssd |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → { ∅ } ⊆ 𝒫 𝑂 ) |
| 36 |
32 35
|
unssd |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → ( 𝐴 ∪ { ∅ } ) ⊆ 𝒫 𝑂 ) |
| 37 |
36
|
sselda |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑧 ∈ ( 𝐴 ∪ { ∅ } ) ) → 𝑧 ∈ 𝒫 𝑂 ) |
| 38 |
29 37
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑧 ∈ ( 𝐴 ∪ { ∅ } ) ) → ( 𝑀 ‘ 𝑧 ) ∈ ( 0 [,] +∞ ) ) |
| 39 |
15
|
frnd |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → ran 𝑓 ⊆ ( 𝐴 ∪ { ∅ } ) ) |
| 40 |
14 28 38 39
|
esummono |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → Σ* 𝑧 ∈ ran 𝑓 ( 𝑀 ‘ 𝑧 ) ≤ Σ* 𝑧 ∈ ( 𝐴 ∪ { ∅ } ) ( 𝑀 ‘ 𝑧 ) ) |
| 41 |
|
ctex |
⊢ ( 𝐴 ≼ ω → 𝐴 ∈ V ) |
| 42 |
6 41
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 43 |
42
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → 𝐴 ∈ V ) |
| 44 |
20 26
|
ssexd |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → { ∅ } ∈ V ) |
| 45 |
23
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑧 ∈ 𝐴 ) → 𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) ) |
| 46 |
32
|
sselda |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ 𝒫 𝑂 ) |
| 47 |
45 46
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝑀 ‘ 𝑧 ) ∈ ( 0 [,] +∞ ) ) |
| 48 |
|
elsni |
⊢ ( 𝑧 ∈ { ∅ } → 𝑧 = ∅ ) |
| 49 |
48
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑧 ∈ { ∅ } ) → 𝑧 = ∅ ) |
| 50 |
49
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑧 ∈ { ∅ } ) → ( 𝑀 ‘ 𝑧 ) = ( 𝑀 ‘ ∅ ) ) |
| 51 |
24
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑧 ∈ { ∅ } ) → ( 𝑀 ‘ ∅ ) = 0 ) |
| 52 |
50 51
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑧 ∈ { ∅ } ) → ( 𝑀 ‘ 𝑧 ) = 0 ) |
| 53 |
43 44 47 52
|
esumpad |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → Σ* 𝑧 ∈ ( 𝐴 ∪ { ∅ } ) ( 𝑀 ‘ 𝑧 ) = Σ* 𝑧 ∈ 𝐴 ( 𝑀 ‘ 𝑧 ) ) |
| 54 |
40 53
|
breqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → Σ* 𝑧 ∈ ran 𝑓 ( 𝑀 ‘ 𝑧 ) ≤ Σ* 𝑧 ∈ 𝐴 ( 𝑀 ‘ 𝑧 ) ) |
| 55 |
39 27
|
sstrd |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → ran 𝑓 ⊆ ( toCaraSiga ‘ 𝑀 ) ) |
| 56 |
|
ssexg |
⊢ ( ( ran 𝑓 ⊆ ( toCaraSiga ‘ 𝑀 ) ∧ ( toCaraSiga ‘ 𝑀 ) ∈ V ) → ran 𝑓 ∈ V ) |
| 57 |
55 19 56
|
sylancl |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → ran 𝑓 ∈ V ) |
| 58 |
23
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) → 𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) ) |
| 59 |
39 36
|
sstrd |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → ran 𝑓 ⊆ 𝒫 𝑂 ) |
| 60 |
59
|
sselda |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) → 𝑧 ∈ 𝒫 𝑂 ) |
| 61 |
58 60
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) → ( 𝑀 ‘ 𝑧 ) ∈ ( 0 [,] +∞ ) ) |
| 62 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → 𝐴 ⊆ ran 𝑓 ) |
| 63 |
14 57 61 62
|
esummono |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → Σ* 𝑧 ∈ 𝐴 ( 𝑀 ‘ 𝑧 ) ≤ Σ* 𝑧 ∈ ran 𝑓 ( 𝑀 ‘ 𝑧 ) ) |
| 64 |
54 63
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → ( Σ* 𝑧 ∈ ran 𝑓 ( 𝑀 ‘ 𝑧 ) ≤ Σ* 𝑧 ∈ 𝐴 ( 𝑀 ‘ 𝑧 ) ∧ Σ* 𝑧 ∈ 𝐴 ( 𝑀 ‘ 𝑧 ) ≤ Σ* 𝑧 ∈ ran 𝑓 ( 𝑀 ‘ 𝑧 ) ) ) |
| 65 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
| 66 |
61
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → ∀ 𝑧 ∈ ran 𝑓 ( 𝑀 ‘ 𝑧 ) ∈ ( 0 [,] +∞ ) ) |
| 67 |
|
nfcv |
⊢ Ⅎ 𝑧 ran 𝑓 |
| 68 |
67
|
esumcl |
⊢ ( ( ran 𝑓 ∈ V ∧ ∀ 𝑧 ∈ ran 𝑓 ( 𝑀 ‘ 𝑧 ) ∈ ( 0 [,] +∞ ) ) → Σ* 𝑧 ∈ ran 𝑓 ( 𝑀 ‘ 𝑧 ) ∈ ( 0 [,] +∞ ) ) |
| 69 |
57 66 68
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → Σ* 𝑧 ∈ ran 𝑓 ( 𝑀 ‘ 𝑧 ) ∈ ( 0 [,] +∞ ) ) |
| 70 |
65 69
|
sselid |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → Σ* 𝑧 ∈ ran 𝑓 ( 𝑀 ‘ 𝑧 ) ∈ ℝ* ) |
| 71 |
47
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → ∀ 𝑧 ∈ 𝐴 ( 𝑀 ‘ 𝑧 ) ∈ ( 0 [,] +∞ ) ) |
| 72 |
|
nfcv |
⊢ Ⅎ 𝑧 𝐴 |
| 73 |
72
|
esumcl |
⊢ ( ( 𝐴 ∈ V ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑀 ‘ 𝑧 ) ∈ ( 0 [,] +∞ ) ) → Σ* 𝑧 ∈ 𝐴 ( 𝑀 ‘ 𝑧 ) ∈ ( 0 [,] +∞ ) ) |
| 74 |
43 71 73
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → Σ* 𝑧 ∈ 𝐴 ( 𝑀 ‘ 𝑧 ) ∈ ( 0 [,] +∞ ) ) |
| 75 |
65 74
|
sselid |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → Σ* 𝑧 ∈ 𝐴 ( 𝑀 ‘ 𝑧 ) ∈ ℝ* ) |
| 76 |
|
xrletri3 |
⊢ ( ( Σ* 𝑧 ∈ ran 𝑓 ( 𝑀 ‘ 𝑧 ) ∈ ℝ* ∧ Σ* 𝑧 ∈ 𝐴 ( 𝑀 ‘ 𝑧 ) ∈ ℝ* ) → ( Σ* 𝑧 ∈ ran 𝑓 ( 𝑀 ‘ 𝑧 ) = Σ* 𝑧 ∈ 𝐴 ( 𝑀 ‘ 𝑧 ) ↔ ( Σ* 𝑧 ∈ ran 𝑓 ( 𝑀 ‘ 𝑧 ) ≤ Σ* 𝑧 ∈ 𝐴 ( 𝑀 ‘ 𝑧 ) ∧ Σ* 𝑧 ∈ 𝐴 ( 𝑀 ‘ 𝑧 ) ≤ Σ* 𝑧 ∈ ran 𝑓 ( 𝑀 ‘ 𝑧 ) ) ) ) |
| 77 |
70 75 76
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → ( Σ* 𝑧 ∈ ran 𝑓 ( 𝑀 ‘ 𝑧 ) = Σ* 𝑧 ∈ 𝐴 ( 𝑀 ‘ 𝑧 ) ↔ ( Σ* 𝑧 ∈ ran 𝑓 ( 𝑀 ‘ 𝑧 ) ≤ Σ* 𝑧 ∈ 𝐴 ( 𝑀 ‘ 𝑧 ) ∧ Σ* 𝑧 ∈ 𝐴 ( 𝑀 ‘ 𝑧 ) ≤ Σ* 𝑧 ∈ ran 𝑓 ( 𝑀 ‘ 𝑧 ) ) ) ) |
| 78 |
64 77
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → Σ* 𝑧 ∈ ran 𝑓 ( 𝑀 ‘ 𝑧 ) = Σ* 𝑧 ∈ 𝐴 ( 𝑀 ‘ 𝑧 ) ) |
| 79 |
|
fveq2 |
⊢ ( 𝑧 = ( 𝑓 ‘ 𝑘 ) → ( 𝑀 ‘ 𝑧 ) = ( 𝑀 ‘ ( 𝑓 ‘ 𝑘 ) ) ) |
| 80 |
|
nnex |
⊢ ℕ ∈ V |
| 81 |
80
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → ℕ ∈ V ) |
| 82 |
23
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑘 ∈ ℕ ) → 𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) ) |
| 83 |
36
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝐴 ∪ { ∅ } ) ⊆ 𝒫 𝑂 ) |
| 84 |
15
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑘 ∈ ℕ ) → 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ) |
| 85 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ ) |
| 86 |
84 85
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑓 ‘ 𝑘 ) ∈ ( 𝐴 ∪ { ∅ } ) ) |
| 87 |
83 86
|
sseldd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑓 ‘ 𝑘 ) ∈ 𝒫 𝑂 ) |
| 88 |
82 87
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑀 ‘ ( 𝑓 ‘ 𝑘 ) ) ∈ ( 0 [,] +∞ ) ) |
| 89 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑓 ‘ 𝑘 ) = ∅ ) → ( 𝑓 ‘ 𝑘 ) = ∅ ) |
| 90 |
89
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑓 ‘ 𝑘 ) = ∅ ) → ( 𝑀 ‘ ( 𝑓 ‘ 𝑘 ) ) = ( 𝑀 ‘ ∅ ) ) |
| 91 |
24
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑓 ‘ 𝑘 ) = ∅ ) → ( 𝑀 ‘ ∅ ) = 0 ) |
| 92 |
90 91
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑓 ‘ 𝑘 ) = ∅ ) → ( 𝑀 ‘ ( 𝑓 ‘ 𝑘 ) ) = 0 ) |
| 93 |
|
cnvimass |
⊢ ( ◡ 𝑓 “ 𝐴 ) ⊆ dom 𝑓 |
| 94 |
93 15
|
fssdm |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → ( ◡ 𝑓 “ 𝐴 ) ⊆ ℕ ) |
| 95 |
|
ffun |
⊢ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) → Fun 𝑓 ) |
| 96 |
15 95
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → Fun 𝑓 ) |
| 97 |
96
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑘 ∈ ( ℕ ∖ ( ◡ 𝑓 “ 𝐴 ) ) ) → Fun 𝑓 ) |
| 98 |
|
difpreima |
⊢ ( Fun 𝑓 → ( ◡ 𝑓 “ ( ( 𝐴 ∪ { ∅ } ) ∖ 𝐴 ) ) = ( ( ◡ 𝑓 “ ( 𝐴 ∪ { ∅ } ) ) ∖ ( ◡ 𝑓 “ 𝐴 ) ) ) |
| 99 |
15 95 98
|
3syl |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → ( ◡ 𝑓 “ ( ( 𝐴 ∪ { ∅ } ) ∖ 𝐴 ) ) = ( ( ◡ 𝑓 “ ( 𝐴 ∪ { ∅ } ) ) ∖ ( ◡ 𝑓 “ 𝐴 ) ) ) |
| 100 |
|
fimacnv |
⊢ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) → ( ◡ 𝑓 “ ( 𝐴 ∪ { ∅ } ) ) = ℕ ) |
| 101 |
15 100
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → ( ◡ 𝑓 “ ( 𝐴 ∪ { ∅ } ) ) = ℕ ) |
| 102 |
101
|
difeq1d |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → ( ( ◡ 𝑓 “ ( 𝐴 ∪ { ∅ } ) ) ∖ ( ◡ 𝑓 “ 𝐴 ) ) = ( ℕ ∖ ( ◡ 𝑓 “ 𝐴 ) ) ) |
| 103 |
99 102
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → ( ◡ 𝑓 “ ( ( 𝐴 ∪ { ∅ } ) ∖ 𝐴 ) ) = ( ℕ ∖ ( ◡ 𝑓 “ 𝐴 ) ) ) |
| 104 |
|
uncom |
⊢ ( { ∅ } ∪ 𝐴 ) = ( 𝐴 ∪ { ∅ } ) |
| 105 |
104
|
difeq1i |
⊢ ( ( { ∅ } ∪ 𝐴 ) ∖ 𝐴 ) = ( ( 𝐴 ∪ { ∅ } ) ∖ 𝐴 ) |
| 106 |
|
difun2 |
⊢ ( ( { ∅ } ∪ 𝐴 ) ∖ 𝐴 ) = ( { ∅ } ∖ 𝐴 ) |
| 107 |
105 106
|
eqtr3i |
⊢ ( ( 𝐴 ∪ { ∅ } ) ∖ 𝐴 ) = ( { ∅ } ∖ 𝐴 ) |
| 108 |
|
difss |
⊢ ( { ∅ } ∖ 𝐴 ) ⊆ { ∅ } |
| 109 |
107 108
|
eqsstri |
⊢ ( ( 𝐴 ∪ { ∅ } ) ∖ 𝐴 ) ⊆ { ∅ } |
| 110 |
109
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → ( ( 𝐴 ∪ { ∅ } ) ∖ 𝐴 ) ⊆ { ∅ } ) |
| 111 |
|
sspreima |
⊢ ( ( Fun 𝑓 ∧ ( ( 𝐴 ∪ { ∅ } ) ∖ 𝐴 ) ⊆ { ∅ } ) → ( ◡ 𝑓 “ ( ( 𝐴 ∪ { ∅ } ) ∖ 𝐴 ) ) ⊆ ( ◡ 𝑓 “ { ∅ } ) ) |
| 112 |
96 110 111
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → ( ◡ 𝑓 “ ( ( 𝐴 ∪ { ∅ } ) ∖ 𝐴 ) ) ⊆ ( ◡ 𝑓 “ { ∅ } ) ) |
| 113 |
103 112
|
eqsstrrd |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → ( ℕ ∖ ( ◡ 𝑓 “ 𝐴 ) ) ⊆ ( ◡ 𝑓 “ { ∅ } ) ) |
| 114 |
113
|
sselda |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑘 ∈ ( ℕ ∖ ( ◡ 𝑓 “ 𝐴 ) ) ) → 𝑘 ∈ ( ◡ 𝑓 “ { ∅ } ) ) |
| 115 |
|
fvimacnvi |
⊢ ( ( Fun 𝑓 ∧ 𝑘 ∈ ( ◡ 𝑓 “ { ∅ } ) ) → ( 𝑓 ‘ 𝑘 ) ∈ { ∅ } ) |
| 116 |
97 114 115
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑘 ∈ ( ℕ ∖ ( ◡ 𝑓 “ 𝐴 ) ) ) → ( 𝑓 ‘ 𝑘 ) ∈ { ∅ } ) |
| 117 |
|
elsni |
⊢ ( ( 𝑓 ‘ 𝑘 ) ∈ { ∅ } → ( 𝑓 ‘ 𝑘 ) = ∅ ) |
| 118 |
116 117
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑘 ∈ ( ℕ ∖ ( ◡ 𝑓 “ 𝐴 ) ) ) → ( 𝑓 ‘ 𝑘 ) = ∅ ) |
| 119 |
118
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → ∀ 𝑘 ∈ ( ℕ ∖ ( ◡ 𝑓 “ 𝐴 ) ) ( 𝑓 ‘ 𝑘 ) = ∅ ) |
| 120 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → Disj 𝑦 ∈ 𝐴 𝑦 ) |
| 121 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → Fun ( ◡ 𝑓 ↾ 𝐴 ) ) |
| 122 |
|
fresf1o |
⊢ ( ( Fun 𝑓 ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) → ( 𝑓 ↾ ( ◡ 𝑓 “ 𝐴 ) ) : ( ◡ 𝑓 “ 𝐴 ) –1-1-onto→ 𝐴 ) |
| 123 |
96 62 121 122
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → ( 𝑓 ↾ ( ◡ 𝑓 “ 𝐴 ) ) : ( ◡ 𝑓 “ 𝐴 ) –1-1-onto→ 𝐴 ) |
| 124 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑦 = ( ( 𝑓 ↾ ( ◡ 𝑓 “ 𝐴 ) ) ‘ 𝑘 ) ) → 𝑦 = ( ( 𝑓 ↾ ( ◡ 𝑓 “ 𝐴 ) ) ‘ 𝑘 ) ) |
| 125 |
123 124
|
disjrdx |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → ( Disj 𝑘 ∈ ( ◡ 𝑓 “ 𝐴 ) ( ( 𝑓 ↾ ( ◡ 𝑓 “ 𝐴 ) ) ‘ 𝑘 ) ↔ Disj 𝑦 ∈ 𝐴 𝑦 ) ) |
| 126 |
|
fvres |
⊢ ( 𝑘 ∈ ( ◡ 𝑓 “ 𝐴 ) → ( ( 𝑓 ↾ ( ◡ 𝑓 “ 𝐴 ) ) ‘ 𝑘 ) = ( 𝑓 ‘ 𝑘 ) ) |
| 127 |
126
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑘 ∈ ( ◡ 𝑓 “ 𝐴 ) ) → ( ( 𝑓 ↾ ( ◡ 𝑓 “ 𝐴 ) ) ‘ 𝑘 ) = ( 𝑓 ‘ 𝑘 ) ) |
| 128 |
127
|
disjeq2dv |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → ( Disj 𝑘 ∈ ( ◡ 𝑓 “ 𝐴 ) ( ( 𝑓 ↾ ( ◡ 𝑓 “ 𝐴 ) ) ‘ 𝑘 ) ↔ Disj 𝑘 ∈ ( ◡ 𝑓 “ 𝐴 ) ( 𝑓 ‘ 𝑘 ) ) ) |
| 129 |
125 128
|
bitr3d |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → ( Disj 𝑦 ∈ 𝐴 𝑦 ↔ Disj 𝑘 ∈ ( ◡ 𝑓 “ 𝐴 ) ( 𝑓 ‘ 𝑘 ) ) ) |
| 130 |
120 129
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → Disj 𝑘 ∈ ( ◡ 𝑓 “ 𝐴 ) ( 𝑓 ‘ 𝑘 ) ) |
| 131 |
|
disjss3 |
⊢ ( ( ( ◡ 𝑓 “ 𝐴 ) ⊆ ℕ ∧ ∀ 𝑘 ∈ ( ℕ ∖ ( ◡ 𝑓 “ 𝐴 ) ) ( 𝑓 ‘ 𝑘 ) = ∅ ) → ( Disj 𝑘 ∈ ( ◡ 𝑓 “ 𝐴 ) ( 𝑓 ‘ 𝑘 ) ↔ Disj 𝑘 ∈ ℕ ( 𝑓 ‘ 𝑘 ) ) ) |
| 132 |
131
|
biimpa |
⊢ ( ( ( ( ◡ 𝑓 “ 𝐴 ) ⊆ ℕ ∧ ∀ 𝑘 ∈ ( ℕ ∖ ( ◡ 𝑓 “ 𝐴 ) ) ( 𝑓 ‘ 𝑘 ) = ∅ ) ∧ Disj 𝑘 ∈ ( ◡ 𝑓 “ 𝐴 ) ( 𝑓 ‘ 𝑘 ) ) → Disj 𝑘 ∈ ℕ ( 𝑓 ‘ 𝑘 ) ) |
| 133 |
94 119 130 132
|
syl21anc |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → Disj 𝑘 ∈ ℕ ( 𝑓 ‘ 𝑘 ) ) |
| 134 |
79 81 88 87 92 133
|
esumrnmpt2 |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → Σ* 𝑧 ∈ ran ( 𝑘 ∈ ℕ ↦ ( 𝑓 ‘ 𝑘 ) ) ( 𝑀 ‘ 𝑧 ) = Σ* 𝑘 ∈ ℕ ( 𝑀 ‘ ( 𝑓 ‘ 𝑘 ) ) ) |
| 135 |
18 78 134
|
3eqtr3rd |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → Σ* 𝑘 ∈ ℕ ( 𝑀 ‘ ( 𝑓 ‘ 𝑘 ) ) = Σ* 𝑧 ∈ 𝐴 ( 𝑀 ‘ 𝑧 ) ) |
| 136 |
|
uniiun |
⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 |
| 137 |
31
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝒫 𝑂 ) |
| 138 |
42 137
|
elpwiuncl |
⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 𝑥 ∈ 𝒫 𝑂 ) |
| 139 |
136 138
|
eqeltrid |
⊢ ( 𝜑 → ∪ 𝐴 ∈ 𝒫 𝑂 ) |
| 140 |
139
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → ∪ 𝐴 ∈ 𝒫 𝑂 ) |
| 141 |
23 140
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → ( 𝑀 ‘ ∪ 𝐴 ) ∈ ( 0 [,] +∞ ) ) |
| 142 |
4
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂 ) → ( 𝑀 ‘ ∪ 𝑥 ) ≤ Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) |
| 143 |
|
fveq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑀 ‘ 𝑦 ) = ( 𝑀 ‘ 𝑧 ) ) |
| 144 |
|
nfcv |
⊢ Ⅎ 𝑧 𝑥 |
| 145 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑥 |
| 146 |
|
nfcv |
⊢ Ⅎ 𝑧 ( 𝑀 ‘ 𝑦 ) |
| 147 |
|
nfcv |
⊢ Ⅎ 𝑦 ( 𝑀 ‘ 𝑧 ) |
| 148 |
143 144 145 146 147
|
cbvesum |
⊢ Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) = Σ* 𝑧 ∈ 𝑥 ( 𝑀 ‘ 𝑧 ) |
| 149 |
142 148
|
breqtrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂 ) → ( 𝑀 ‘ ∪ 𝑥 ) ≤ Σ* 𝑧 ∈ 𝑥 ( 𝑀 ‘ 𝑧 ) ) |
| 150 |
|
ffn |
⊢ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) → 𝑓 Fn ℕ ) |
| 151 |
|
fz1ssnn |
⊢ ( 1 ... 𝑛 ) ⊆ ℕ |
| 152 |
|
fnssres |
⊢ ( ( 𝑓 Fn ℕ ∧ ( 1 ... 𝑛 ) ⊆ ℕ ) → ( 𝑓 ↾ ( 1 ... 𝑛 ) ) Fn ( 1 ... 𝑛 ) ) |
| 153 |
151 152
|
mpan2 |
⊢ ( 𝑓 Fn ℕ → ( 𝑓 ↾ ( 1 ... 𝑛 ) ) Fn ( 1 ... 𝑛 ) ) |
| 154 |
15 150 153
|
3syl |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → ( 𝑓 ↾ ( 1 ... 𝑛 ) ) Fn ( 1 ... 𝑛 ) ) |
| 155 |
|
fzfi |
⊢ ( 1 ... 𝑛 ) ∈ Fin |
| 156 |
|
fnfi |
⊢ ( ( ( 𝑓 ↾ ( 1 ... 𝑛 ) ) Fn ( 1 ... 𝑛 ) ∧ ( 1 ... 𝑛 ) ∈ Fin ) → ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ∈ Fin ) |
| 157 |
155 156
|
mpan2 |
⊢ ( ( 𝑓 ↾ ( 1 ... 𝑛 ) ) Fn ( 1 ... 𝑛 ) → ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ∈ Fin ) |
| 158 |
|
rnfi |
⊢ ( ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ∈ Fin → ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ∈ Fin ) |
| 159 |
154 157 158
|
3syl |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ∈ Fin ) |
| 160 |
|
resss |
⊢ ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ⊆ 𝑓 |
| 161 |
|
rnss |
⊢ ( ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ⊆ 𝑓 → ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ⊆ ran 𝑓 ) |
| 162 |
160 161
|
ax-mp |
⊢ ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ⊆ ran 𝑓 |
| 163 |
162
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ⊆ ran 𝑓 ) |
| 164 |
163 55
|
sstrd |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ⊆ ( toCaraSiga ‘ 𝑀 ) ) |
| 165 |
163 39
|
sstrd |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ⊆ ( 𝐴 ∪ { ∅ } ) ) |
| 166 |
|
nfcv |
⊢ Ⅎ 𝑧 𝑦 |
| 167 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑧 |
| 168 |
|
id |
⊢ ( 𝑦 = 𝑧 → 𝑦 = 𝑧 ) |
| 169 |
166 167 168
|
cbvdisj |
⊢ ( Disj 𝑦 ∈ 𝐴 𝑦 ↔ Disj 𝑧 ∈ 𝐴 𝑧 ) |
| 170 |
|
disjun0 |
⊢ ( Disj 𝑧 ∈ 𝐴 𝑧 → Disj 𝑧 ∈ ( 𝐴 ∪ { ∅ } ) 𝑧 ) |
| 171 |
169 170
|
sylbi |
⊢ ( Disj 𝑦 ∈ 𝐴 𝑦 → Disj 𝑧 ∈ ( 𝐴 ∪ { ∅ } ) 𝑧 ) |
| 172 |
8 171
|
syl |
⊢ ( 𝜑 → Disj 𝑧 ∈ ( 𝐴 ∪ { ∅ } ) 𝑧 ) |
| 173 |
172
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → Disj 𝑧 ∈ ( 𝐴 ∪ { ∅ } ) 𝑧 ) |
| 174 |
|
disjss1 |
⊢ ( ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ⊆ ( 𝐴 ∪ { ∅ } ) → ( Disj 𝑧 ∈ ( 𝐴 ∪ { ∅ } ) 𝑧 → Disj 𝑧 ∈ ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) 𝑧 ) ) |
| 175 |
165 173 174
|
sylc |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → Disj 𝑧 ∈ ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) 𝑧 ) |
| 176 |
|
pwidg |
⊢ ( 𝑂 ∈ 𝑉 → 𝑂 ∈ 𝒫 𝑂 ) |
| 177 |
22 176
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → 𝑂 ∈ 𝒫 𝑂 ) |
| 178 |
22 23 24 149 159 164 175 177
|
carsgclctunlem1 |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → ( 𝑀 ‘ ( 𝑂 ∩ ∪ ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ) ) = Σ* 𝑧 ∈ ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ( 𝑀 ‘ ( 𝑂 ∩ 𝑧 ) ) ) |
| 179 |
178
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ‘ ( 𝑂 ∩ ∪ ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ) ) = Σ* 𝑧 ∈ ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ( 𝑀 ‘ ( 𝑂 ∩ 𝑧 ) ) ) |
| 180 |
165
|
unissd |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → ∪ ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ⊆ ∪ ( 𝐴 ∪ { ∅ } ) ) |
| 181 |
|
uniun |
⊢ ∪ ( 𝐴 ∪ { ∅ } ) = ( ∪ 𝐴 ∪ ∪ { ∅ } ) |
| 182 |
10
|
unisn |
⊢ ∪ { ∅ } = ∅ |
| 183 |
182
|
uneq2i |
⊢ ( ∪ 𝐴 ∪ ∪ { ∅ } ) = ( ∪ 𝐴 ∪ ∅ ) |
| 184 |
|
un0 |
⊢ ( ∪ 𝐴 ∪ ∅ ) = ∪ 𝐴 |
| 185 |
181 183 184
|
3eqtri |
⊢ ∪ ( 𝐴 ∪ { ∅ } ) = ∪ 𝐴 |
| 186 |
180 185
|
sseqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → ∪ ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ⊆ ∪ 𝐴 ) |
| 187 |
186
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → ∪ ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ⊆ ∪ 𝐴 ) |
| 188 |
|
uniss |
⊢ ( 𝐴 ⊆ 𝒫 𝑂 → ∪ 𝐴 ⊆ ∪ 𝒫 𝑂 ) |
| 189 |
|
unipw |
⊢ ∪ 𝒫 𝑂 = 𝑂 |
| 190 |
188 189
|
sseqtrdi |
⊢ ( 𝐴 ⊆ 𝒫 𝑂 → ∪ 𝐴 ⊆ 𝑂 ) |
| 191 |
31 190
|
syl |
⊢ ( 𝜑 → ∪ 𝐴 ⊆ 𝑂 ) |
| 192 |
191
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → ∪ 𝐴 ⊆ 𝑂 ) |
| 193 |
187 192
|
sstrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → ∪ ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ⊆ 𝑂 ) |
| 194 |
|
sseqin2 |
⊢ ( ∪ ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ⊆ 𝑂 ↔ ( 𝑂 ∩ ∪ ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ) = ∪ ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ) |
| 195 |
193 194
|
sylib |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑂 ∩ ∪ ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ) = ∪ ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ) |
| 196 |
195
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ‘ ( 𝑂 ∩ ∪ ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ) ) = ( 𝑀 ‘ ∪ ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ) ) |
| 197 |
|
nfv |
⊢ Ⅎ 𝑧 ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) |
| 198 |
165
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ⊆ ( 𝐴 ∪ { ∅ } ) ) |
| 199 |
31
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → 𝐴 ⊆ 𝒫 𝑂 ) |
| 200 |
33
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → ∅ ∈ 𝒫 𝑂 ) |
| 201 |
200
|
snssd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → { ∅ } ⊆ 𝒫 𝑂 ) |
| 202 |
199 201
|
unssd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝐴 ∪ { ∅ } ) ⊆ 𝒫 𝑂 ) |
| 203 |
198 202
|
sstrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ⊆ 𝒫 𝑂 ) |
| 204 |
203
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑧 ∈ ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ) → 𝑧 ∈ 𝒫 𝑂 ) |
| 205 |
204
|
elpwid |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑧 ∈ ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ) → 𝑧 ⊆ 𝑂 ) |
| 206 |
|
sseqin2 |
⊢ ( 𝑧 ⊆ 𝑂 ↔ ( 𝑂 ∩ 𝑧 ) = 𝑧 ) |
| 207 |
205 206
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑧 ∈ ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ) → ( 𝑂 ∩ 𝑧 ) = 𝑧 ) |
| 208 |
207
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑧 ∈ ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ) → ( 𝑀 ‘ ( 𝑂 ∩ 𝑧 ) ) = ( 𝑀 ‘ 𝑧 ) ) |
| 209 |
208
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → ∀ 𝑧 ∈ ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ( 𝑀 ‘ ( 𝑂 ∩ 𝑧 ) ) = ( 𝑀 ‘ 𝑧 ) ) |
| 210 |
197 209
|
esumeq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → Σ* 𝑧 ∈ ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ( 𝑀 ‘ ( 𝑂 ∩ 𝑧 ) ) = Σ* 𝑧 ∈ ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ( 𝑀 ‘ 𝑧 ) ) |
| 211 |
16
|
reseq1d |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → ( 𝑓 ↾ ( 1 ... 𝑛 ) ) = ( ( 𝑘 ∈ ℕ ↦ ( 𝑓 ‘ 𝑘 ) ) ↾ ( 1 ... 𝑛 ) ) ) |
| 212 |
211
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑓 ↾ ( 1 ... 𝑛 ) ) = ( ( 𝑘 ∈ ℕ ↦ ( 𝑓 ‘ 𝑘 ) ) ↾ ( 1 ... 𝑛 ) ) ) |
| 213 |
|
resmpt |
⊢ ( ( 1 ... 𝑛 ) ⊆ ℕ → ( ( 𝑘 ∈ ℕ ↦ ( 𝑓 ‘ 𝑘 ) ) ↾ ( 1 ... 𝑛 ) ) = ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ ( 𝑓 ‘ 𝑘 ) ) ) |
| 214 |
151 213
|
ax-mp |
⊢ ( ( 𝑘 ∈ ℕ ↦ ( 𝑓 ‘ 𝑘 ) ) ↾ ( 1 ... 𝑛 ) ) = ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ ( 𝑓 ‘ 𝑘 ) ) |
| 215 |
212 214
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑓 ↾ ( 1 ... 𝑛 ) ) = ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ ( 𝑓 ‘ 𝑘 ) ) ) |
| 216 |
215
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ ( 𝑓 ‘ 𝑘 ) ) = ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ) |
| 217 |
216
|
rneqd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ ( 𝑓 ‘ 𝑘 ) ) = ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ) |
| 218 |
197 217
|
esumeq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → Σ* 𝑧 ∈ ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ ( 𝑓 ‘ 𝑘 ) ) ( 𝑀 ‘ 𝑧 ) = Σ* 𝑧 ∈ ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ( 𝑀 ‘ 𝑧 ) ) |
| 219 |
155
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → ( 1 ... 𝑛 ) ∈ Fin ) |
| 220 |
23
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) ) |
| 221 |
151
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → ( 1 ... 𝑛 ) ⊆ ℕ ) |
| 222 |
221
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝑘 ∈ ℕ ) |
| 223 |
87
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ℕ ) → ( 𝑓 ‘ 𝑘 ) ∈ 𝒫 𝑂 ) |
| 224 |
222 223
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( 𝑓 ‘ 𝑘 ) ∈ 𝒫 𝑂 ) |
| 225 |
220 224
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( 𝑀 ‘ ( 𝑓 ‘ 𝑘 ) ) ∈ ( 0 [,] +∞ ) ) |
| 226 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) ∧ ( 𝑓 ‘ 𝑘 ) = ∅ ) → ( 𝑓 ‘ 𝑘 ) = ∅ ) |
| 227 |
226
|
fveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) ∧ ( 𝑓 ‘ 𝑘 ) = ∅ ) → ( 𝑀 ‘ ( 𝑓 ‘ 𝑘 ) ) = ( 𝑀 ‘ ∅ ) ) |
| 228 |
24
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) ∧ ( 𝑓 ‘ 𝑘 ) = ∅ ) → ( 𝑀 ‘ ∅ ) = 0 ) |
| 229 |
227 228
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) ∧ ( 𝑓 ‘ 𝑘 ) = ∅ ) → ( 𝑀 ‘ ( 𝑓 ‘ 𝑘 ) ) = 0 ) |
| 230 |
|
disjss1 |
⊢ ( ( 1 ... 𝑛 ) ⊆ ℕ → ( Disj 𝑘 ∈ ℕ ( 𝑓 ‘ 𝑘 ) → Disj 𝑘 ∈ ( 1 ... 𝑛 ) ( 𝑓 ‘ 𝑘 ) ) ) |
| 231 |
151 230
|
ax-mp |
⊢ ( Disj 𝑘 ∈ ℕ ( 𝑓 ‘ 𝑘 ) → Disj 𝑘 ∈ ( 1 ... 𝑛 ) ( 𝑓 ‘ 𝑘 ) ) |
| 232 |
133 231
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → Disj 𝑘 ∈ ( 1 ... 𝑛 ) ( 𝑓 ‘ 𝑘 ) ) |
| 233 |
232
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → Disj 𝑘 ∈ ( 1 ... 𝑛 ) ( 𝑓 ‘ 𝑘 ) ) |
| 234 |
79 219 225 224 229 233
|
esumrnmpt2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → Σ* 𝑧 ∈ ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ ( 𝑓 ‘ 𝑘 ) ) ( 𝑀 ‘ 𝑧 ) = Σ* 𝑘 ∈ ( 1 ... 𝑛 ) ( 𝑀 ‘ ( 𝑓 ‘ 𝑘 ) ) ) |
| 235 |
210 218 234
|
3eqtr2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → Σ* 𝑧 ∈ ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ( 𝑀 ‘ ( 𝑂 ∩ 𝑧 ) ) = Σ* 𝑘 ∈ ( 1 ... 𝑛 ) ( 𝑀 ‘ ( 𝑓 ‘ 𝑘 ) ) ) |
| 236 |
179 196 235
|
3eqtr3d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ‘ ∪ ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ) = Σ* 𝑘 ∈ ( 1 ... 𝑛 ) ( 𝑀 ‘ ( 𝑓 ‘ 𝑘 ) ) ) |
| 237 |
9
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂 ) → ( 𝑀 ‘ 𝑥 ) ≤ ( 𝑀 ‘ 𝑦 ) ) |
| 238 |
22 23 186 140 237
|
carsgmon |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → ( 𝑀 ‘ ∪ ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ) ≤ ( 𝑀 ‘ ∪ 𝐴 ) ) |
| 239 |
238
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ‘ ∪ ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ) ≤ ( 𝑀 ‘ ∪ 𝐴 ) ) |
| 240 |
236 239
|
eqbrtrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → Σ* 𝑘 ∈ ( 1 ... 𝑛 ) ( 𝑀 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ ( 𝑀 ‘ ∪ 𝐴 ) ) |
| 241 |
141 88 240
|
esumgect |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → Σ* 𝑘 ∈ ℕ ( 𝑀 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ ( 𝑀 ‘ ∪ 𝐴 ) ) |
| 242 |
135 241
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( ◡ 𝑓 ↾ 𝐴 ) ) ) → Σ* 𝑧 ∈ 𝐴 ( 𝑀 ‘ 𝑧 ) ≤ ( 𝑀 ‘ ∪ 𝐴 ) ) |
| 243 |
13 242
|
exlimddv |
⊢ ( 𝜑 → Σ* 𝑧 ∈ 𝐴 ( 𝑀 ‘ 𝑧 ) ≤ ( 𝑀 ‘ ∪ 𝐴 ) ) |