Metamath Proof Explorer


Theorem carsggect

Description: The outer measure is countably superadditive on Caratheodory measurable sets. (Contributed by Thierry Arnoux, 31-May-2020)

Ref Expression
Hypotheses carsgval.1 ( 𝜑𝑂𝑉 )
carsgval.2 ( 𝜑𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) )
carsgsiga.1 ( 𝜑 → ( 𝑀 ‘ ∅ ) = 0 )
carsgsiga.2 ( ( 𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂 ) → ( 𝑀 𝑥 ) ≤ Σ* 𝑦𝑥 ( 𝑀𝑦 ) )
carsggect.0 ( 𝜑 → ¬ ∅ ∈ 𝐴 )
carsggect.1 ( 𝜑𝐴 ≼ ω )
carsggect.2 ( 𝜑𝐴 ⊆ ( toCaraSiga ‘ 𝑀 ) )
carsggect.3 ( 𝜑Disj 𝑦𝐴 𝑦 )
carsggect.4 ( ( 𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂 ) → ( 𝑀𝑥 ) ≤ ( 𝑀𝑦 ) )
Assertion carsggect ( 𝜑 → Σ* 𝑧𝐴 ( 𝑀𝑧 ) ≤ ( 𝑀 𝐴 ) )

Proof

Step Hyp Ref Expression
1 carsgval.1 ( 𝜑𝑂𝑉 )
2 carsgval.2 ( 𝜑𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) )
3 carsgsiga.1 ( 𝜑 → ( 𝑀 ‘ ∅ ) = 0 )
4 carsgsiga.2 ( ( 𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂 ) → ( 𝑀 𝑥 ) ≤ Σ* 𝑦𝑥 ( 𝑀𝑦 ) )
5 carsggect.0 ( 𝜑 → ¬ ∅ ∈ 𝐴 )
6 carsggect.1 ( 𝜑𝐴 ≼ ω )
7 carsggect.2 ( 𝜑𝐴 ⊆ ( toCaraSiga ‘ 𝑀 ) )
8 carsggect.3 ( 𝜑Disj 𝑦𝐴 𝑦 )
9 carsggect.4 ( ( 𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂 ) → ( 𝑀𝑥 ) ≤ ( 𝑀𝑦 ) )
10 0ex ∅ ∈ V
11 10 a1i ( 𝜑 → ∅ ∈ V )
12 padct ( ( 𝐴 ≼ ω ∧ ∅ ∈ V ∧ ¬ ∅ ∈ 𝐴 ) → ∃ 𝑓 ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) )
13 6 11 5 12 syl3anc ( 𝜑 → ∃ 𝑓 ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) )
14 nfv 𝑧 ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) )
15 simpr1 ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) )
16 15 feqmptd ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → 𝑓 = ( 𝑘 ∈ ℕ ↦ ( 𝑓𝑘 ) ) )
17 16 rneqd ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → ran 𝑓 = ran ( 𝑘 ∈ ℕ ↦ ( 𝑓𝑘 ) ) )
18 14 17 esumeq1d ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → Σ* 𝑧 ∈ ran 𝑓 ( 𝑀𝑧 ) = Σ* 𝑧 ∈ ran ( 𝑘 ∈ ℕ ↦ ( 𝑓𝑘 ) ) ( 𝑀𝑧 ) )
19 fvex ( toCaraSiga ‘ 𝑀 ) ∈ V
20 19 a1i ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → ( toCaraSiga ‘ 𝑀 ) ∈ V )
21 7 adantr ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → 𝐴 ⊆ ( toCaraSiga ‘ 𝑀 ) )
22 1 adantr ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → 𝑂𝑉 )
23 2 adantr ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → 𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) )
24 3 adantr ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → ( 𝑀 ‘ ∅ ) = 0 )
25 22 23 24 0elcarsg ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → ∅ ∈ ( toCaraSiga ‘ 𝑀 ) )
26 25 snssd ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → { ∅ } ⊆ ( toCaraSiga ‘ 𝑀 ) )
27 21 26 unssd ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → ( 𝐴 ∪ { ∅ } ) ⊆ ( toCaraSiga ‘ 𝑀 ) )
28 20 27 ssexd ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → ( 𝐴 ∪ { ∅ } ) ∈ V )
29 23 adantr ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑧 ∈ ( 𝐴 ∪ { ∅ } ) ) → 𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) )
30 1 2 carsgcl ( 𝜑 → ( toCaraSiga ‘ 𝑀 ) ⊆ 𝒫 𝑂 )
31 7 30 sstrd ( 𝜑𝐴 ⊆ 𝒫 𝑂 )
32 31 adantr ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → 𝐴 ⊆ 𝒫 𝑂 )
33 0elpw ∅ ∈ 𝒫 𝑂
34 33 a1i ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → ∅ ∈ 𝒫 𝑂 )
35 34 snssd ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → { ∅ } ⊆ 𝒫 𝑂 )
36 32 35 unssd ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → ( 𝐴 ∪ { ∅ } ) ⊆ 𝒫 𝑂 )
37 36 sselda ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑧 ∈ ( 𝐴 ∪ { ∅ } ) ) → 𝑧 ∈ 𝒫 𝑂 )
38 29 37 ffvelrnd ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑧 ∈ ( 𝐴 ∪ { ∅ } ) ) → ( 𝑀𝑧 ) ∈ ( 0 [,] +∞ ) )
39 15 frnd ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → ran 𝑓 ⊆ ( 𝐴 ∪ { ∅ } ) )
40 14 28 38 39 esummono ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → Σ* 𝑧 ∈ ran 𝑓 ( 𝑀𝑧 ) ≤ Σ* 𝑧 ∈ ( 𝐴 ∪ { ∅ } ) ( 𝑀𝑧 ) )
41 ctex ( 𝐴 ≼ ω → 𝐴 ∈ V )
42 6 41 syl ( 𝜑𝐴 ∈ V )
43 42 adantr ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → 𝐴 ∈ V )
44 20 26 ssexd ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → { ∅ } ∈ V )
45 23 adantr ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑧𝐴 ) → 𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) )
46 32 sselda ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑧𝐴 ) → 𝑧 ∈ 𝒫 𝑂 )
47 45 46 ffvelrnd ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑧𝐴 ) → ( 𝑀𝑧 ) ∈ ( 0 [,] +∞ ) )
48 elsni ( 𝑧 ∈ { ∅ } → 𝑧 = ∅ )
49 48 adantl ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑧 ∈ { ∅ } ) → 𝑧 = ∅ )
50 49 fveq2d ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑧 ∈ { ∅ } ) → ( 𝑀𝑧 ) = ( 𝑀 ‘ ∅ ) )
51 24 adantr ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑧 ∈ { ∅ } ) → ( 𝑀 ‘ ∅ ) = 0 )
52 50 51 eqtrd ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑧 ∈ { ∅ } ) → ( 𝑀𝑧 ) = 0 )
53 43 44 47 52 esumpad ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → Σ* 𝑧 ∈ ( 𝐴 ∪ { ∅ } ) ( 𝑀𝑧 ) = Σ* 𝑧𝐴 ( 𝑀𝑧 ) )
54 40 53 breqtrd ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → Σ* 𝑧 ∈ ran 𝑓 ( 𝑀𝑧 ) ≤ Σ* 𝑧𝐴 ( 𝑀𝑧 ) )
55 39 27 sstrd ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → ran 𝑓 ⊆ ( toCaraSiga ‘ 𝑀 ) )
56 ssexg ( ( ran 𝑓 ⊆ ( toCaraSiga ‘ 𝑀 ) ∧ ( toCaraSiga ‘ 𝑀 ) ∈ V ) → ran 𝑓 ∈ V )
57 55 19 56 sylancl ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → ran 𝑓 ∈ V )
58 23 adantr ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) → 𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) )
59 39 36 sstrd ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → ran 𝑓 ⊆ 𝒫 𝑂 )
60 59 sselda ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) → 𝑧 ∈ 𝒫 𝑂 )
61 58 60 ffvelrnd ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) → ( 𝑀𝑧 ) ∈ ( 0 [,] +∞ ) )
62 simpr2 ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → 𝐴 ⊆ ran 𝑓 )
63 14 57 61 62 esummono ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → Σ* 𝑧𝐴 ( 𝑀𝑧 ) ≤ Σ* 𝑧 ∈ ran 𝑓 ( 𝑀𝑧 ) )
64 54 63 jca ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → ( Σ* 𝑧 ∈ ran 𝑓 ( 𝑀𝑧 ) ≤ Σ* 𝑧𝐴 ( 𝑀𝑧 ) ∧ Σ* 𝑧𝐴 ( 𝑀𝑧 ) ≤ Σ* 𝑧 ∈ ran 𝑓 ( 𝑀𝑧 ) ) )
65 iccssxr ( 0 [,] +∞ ) ⊆ ℝ*
66 61 ralrimiva ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → ∀ 𝑧 ∈ ran 𝑓 ( 𝑀𝑧 ) ∈ ( 0 [,] +∞ ) )
67 nfcv 𝑧 ran 𝑓
68 67 esumcl ( ( ran 𝑓 ∈ V ∧ ∀ 𝑧 ∈ ran 𝑓 ( 𝑀𝑧 ) ∈ ( 0 [,] +∞ ) ) → Σ* 𝑧 ∈ ran 𝑓 ( 𝑀𝑧 ) ∈ ( 0 [,] +∞ ) )
69 57 66 68 syl2anc ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → Σ* 𝑧 ∈ ran 𝑓 ( 𝑀𝑧 ) ∈ ( 0 [,] +∞ ) )
70 65 69 sseldi ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → Σ* 𝑧 ∈ ran 𝑓 ( 𝑀𝑧 ) ∈ ℝ* )
71 47 ralrimiva ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → ∀ 𝑧𝐴 ( 𝑀𝑧 ) ∈ ( 0 [,] +∞ ) )
72 nfcv 𝑧 𝐴
73 72 esumcl ( ( 𝐴 ∈ V ∧ ∀ 𝑧𝐴 ( 𝑀𝑧 ) ∈ ( 0 [,] +∞ ) ) → Σ* 𝑧𝐴 ( 𝑀𝑧 ) ∈ ( 0 [,] +∞ ) )
74 43 71 73 syl2anc ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → Σ* 𝑧𝐴 ( 𝑀𝑧 ) ∈ ( 0 [,] +∞ ) )
75 65 74 sseldi ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → Σ* 𝑧𝐴 ( 𝑀𝑧 ) ∈ ℝ* )
76 xrletri3 ( ( Σ* 𝑧 ∈ ran 𝑓 ( 𝑀𝑧 ) ∈ ℝ* ∧ Σ* 𝑧𝐴 ( 𝑀𝑧 ) ∈ ℝ* ) → ( Σ* 𝑧 ∈ ran 𝑓 ( 𝑀𝑧 ) = Σ* 𝑧𝐴 ( 𝑀𝑧 ) ↔ ( Σ* 𝑧 ∈ ran 𝑓 ( 𝑀𝑧 ) ≤ Σ* 𝑧𝐴 ( 𝑀𝑧 ) ∧ Σ* 𝑧𝐴 ( 𝑀𝑧 ) ≤ Σ* 𝑧 ∈ ran 𝑓 ( 𝑀𝑧 ) ) ) )
77 70 75 76 syl2anc ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → ( Σ* 𝑧 ∈ ran 𝑓 ( 𝑀𝑧 ) = Σ* 𝑧𝐴 ( 𝑀𝑧 ) ↔ ( Σ* 𝑧 ∈ ran 𝑓 ( 𝑀𝑧 ) ≤ Σ* 𝑧𝐴 ( 𝑀𝑧 ) ∧ Σ* 𝑧𝐴 ( 𝑀𝑧 ) ≤ Σ* 𝑧 ∈ ran 𝑓 ( 𝑀𝑧 ) ) ) )
78 64 77 mpbird ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → Σ* 𝑧 ∈ ran 𝑓 ( 𝑀𝑧 ) = Σ* 𝑧𝐴 ( 𝑀𝑧 ) )
79 fveq2 ( 𝑧 = ( 𝑓𝑘 ) → ( 𝑀𝑧 ) = ( 𝑀 ‘ ( 𝑓𝑘 ) ) )
80 nnex ℕ ∈ V
81 80 a1i ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → ℕ ∈ V )
82 23 adantr ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑘 ∈ ℕ ) → 𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) )
83 36 adantr ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝐴 ∪ { ∅ } ) ⊆ 𝒫 𝑂 )
84 15 adantr ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑘 ∈ ℕ ) → 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) )
85 simpr ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ )
86 84 85 ffvelrnd ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑓𝑘 ) ∈ ( 𝐴 ∪ { ∅ } ) )
87 83 86 sseldd ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑓𝑘 ) ∈ 𝒫 𝑂 )
88 82 87 ffvelrnd ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑀 ‘ ( 𝑓𝑘 ) ) ∈ ( 0 [,] +∞ ) )
89 simpr ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑓𝑘 ) = ∅ ) → ( 𝑓𝑘 ) = ∅ )
90 89 fveq2d ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑓𝑘 ) = ∅ ) → ( 𝑀 ‘ ( 𝑓𝑘 ) ) = ( 𝑀 ‘ ∅ ) )
91 24 ad2antrr ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑓𝑘 ) = ∅ ) → ( 𝑀 ‘ ∅ ) = 0 )
92 90 91 eqtrd ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑓𝑘 ) = ∅ ) → ( 𝑀 ‘ ( 𝑓𝑘 ) ) = 0 )
93 cnvimass ( 𝑓𝐴 ) ⊆ dom 𝑓
94 93 15 fssdm ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → ( 𝑓𝐴 ) ⊆ ℕ )
95 ffun ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) → Fun 𝑓 )
96 15 95 syl ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → Fun 𝑓 )
97 96 adantr ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑘 ∈ ( ℕ ∖ ( 𝑓𝐴 ) ) ) → Fun 𝑓 )
98 difpreima ( Fun 𝑓 → ( 𝑓 “ ( ( 𝐴 ∪ { ∅ } ) ∖ 𝐴 ) ) = ( ( 𝑓 “ ( 𝐴 ∪ { ∅ } ) ) ∖ ( 𝑓𝐴 ) ) )
99 15 95 98 3syl ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → ( 𝑓 “ ( ( 𝐴 ∪ { ∅ } ) ∖ 𝐴 ) ) = ( ( 𝑓 “ ( 𝐴 ∪ { ∅ } ) ) ∖ ( 𝑓𝐴 ) ) )
100 fimacnv ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) → ( 𝑓 “ ( 𝐴 ∪ { ∅ } ) ) = ℕ )
101 15 100 syl ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → ( 𝑓 “ ( 𝐴 ∪ { ∅ } ) ) = ℕ )
102 101 difeq1d ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → ( ( 𝑓 “ ( 𝐴 ∪ { ∅ } ) ) ∖ ( 𝑓𝐴 ) ) = ( ℕ ∖ ( 𝑓𝐴 ) ) )
103 99 102 eqtrd ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → ( 𝑓 “ ( ( 𝐴 ∪ { ∅ } ) ∖ 𝐴 ) ) = ( ℕ ∖ ( 𝑓𝐴 ) ) )
104 uncom ( { ∅ } ∪ 𝐴 ) = ( 𝐴 ∪ { ∅ } )
105 104 difeq1i ( ( { ∅ } ∪ 𝐴 ) ∖ 𝐴 ) = ( ( 𝐴 ∪ { ∅ } ) ∖ 𝐴 )
106 difun2 ( ( { ∅ } ∪ 𝐴 ) ∖ 𝐴 ) = ( { ∅ } ∖ 𝐴 )
107 105 106 eqtr3i ( ( 𝐴 ∪ { ∅ } ) ∖ 𝐴 ) = ( { ∅ } ∖ 𝐴 )
108 difss ( { ∅ } ∖ 𝐴 ) ⊆ { ∅ }
109 107 108 eqsstri ( ( 𝐴 ∪ { ∅ } ) ∖ 𝐴 ) ⊆ { ∅ }
110 109 a1i ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → ( ( 𝐴 ∪ { ∅ } ) ∖ 𝐴 ) ⊆ { ∅ } )
111 sspreima ( ( Fun 𝑓 ∧ ( ( 𝐴 ∪ { ∅ } ) ∖ 𝐴 ) ⊆ { ∅ } ) → ( 𝑓 “ ( ( 𝐴 ∪ { ∅ } ) ∖ 𝐴 ) ) ⊆ ( 𝑓 “ { ∅ } ) )
112 96 110 111 syl2anc ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → ( 𝑓 “ ( ( 𝐴 ∪ { ∅ } ) ∖ 𝐴 ) ) ⊆ ( 𝑓 “ { ∅ } ) )
113 103 112 eqsstrrd ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → ( ℕ ∖ ( 𝑓𝐴 ) ) ⊆ ( 𝑓 “ { ∅ } ) )
114 113 sselda ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑘 ∈ ( ℕ ∖ ( 𝑓𝐴 ) ) ) → 𝑘 ∈ ( 𝑓 “ { ∅ } ) )
115 fvimacnvi ( ( Fun 𝑓𝑘 ∈ ( 𝑓 “ { ∅ } ) ) → ( 𝑓𝑘 ) ∈ { ∅ } )
116 97 114 115 syl2anc ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑘 ∈ ( ℕ ∖ ( 𝑓𝐴 ) ) ) → ( 𝑓𝑘 ) ∈ { ∅ } )
117 elsni ( ( 𝑓𝑘 ) ∈ { ∅ } → ( 𝑓𝑘 ) = ∅ )
118 116 117 syl ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑘 ∈ ( ℕ ∖ ( 𝑓𝐴 ) ) ) → ( 𝑓𝑘 ) = ∅ )
119 118 ralrimiva ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → ∀ 𝑘 ∈ ( ℕ ∖ ( 𝑓𝐴 ) ) ( 𝑓𝑘 ) = ∅ )
120 8 adantr ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → Disj 𝑦𝐴 𝑦 )
121 simpr3 ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → Fun ( 𝑓𝐴 ) )
122 fresf1o ( ( Fun 𝑓𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) → ( 𝑓 ↾ ( 𝑓𝐴 ) ) : ( 𝑓𝐴 ) –1-1-onto𝐴 )
123 96 62 121 122 syl3anc ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → ( 𝑓 ↾ ( 𝑓𝐴 ) ) : ( 𝑓𝐴 ) –1-1-onto𝐴 )
124 simpr ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑦 = ( ( 𝑓 ↾ ( 𝑓𝐴 ) ) ‘ 𝑘 ) ) → 𝑦 = ( ( 𝑓 ↾ ( 𝑓𝐴 ) ) ‘ 𝑘 ) )
125 123 124 disjrdx ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → ( Disj 𝑘 ∈ ( 𝑓𝐴 ) ( ( 𝑓 ↾ ( 𝑓𝐴 ) ) ‘ 𝑘 ) ↔ Disj 𝑦𝐴 𝑦 ) )
126 fvres ( 𝑘 ∈ ( 𝑓𝐴 ) → ( ( 𝑓 ↾ ( 𝑓𝐴 ) ) ‘ 𝑘 ) = ( 𝑓𝑘 ) )
127 126 adantl ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑘 ∈ ( 𝑓𝐴 ) ) → ( ( 𝑓 ↾ ( 𝑓𝐴 ) ) ‘ 𝑘 ) = ( 𝑓𝑘 ) )
128 127 disjeq2dv ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → ( Disj 𝑘 ∈ ( 𝑓𝐴 ) ( ( 𝑓 ↾ ( 𝑓𝐴 ) ) ‘ 𝑘 ) ↔ Disj 𝑘 ∈ ( 𝑓𝐴 ) ( 𝑓𝑘 ) ) )
129 125 128 bitr3d ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → ( Disj 𝑦𝐴 𝑦Disj 𝑘 ∈ ( 𝑓𝐴 ) ( 𝑓𝑘 ) ) )
130 120 129 mpbid ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → Disj 𝑘 ∈ ( 𝑓𝐴 ) ( 𝑓𝑘 ) )
131 disjss3 ( ( ( 𝑓𝐴 ) ⊆ ℕ ∧ ∀ 𝑘 ∈ ( ℕ ∖ ( 𝑓𝐴 ) ) ( 𝑓𝑘 ) = ∅ ) → ( Disj 𝑘 ∈ ( 𝑓𝐴 ) ( 𝑓𝑘 ) ↔ Disj 𝑘 ∈ ℕ ( 𝑓𝑘 ) ) )
132 131 biimpa ( ( ( ( 𝑓𝐴 ) ⊆ ℕ ∧ ∀ 𝑘 ∈ ( ℕ ∖ ( 𝑓𝐴 ) ) ( 𝑓𝑘 ) = ∅ ) ∧ Disj 𝑘 ∈ ( 𝑓𝐴 ) ( 𝑓𝑘 ) ) → Disj 𝑘 ∈ ℕ ( 𝑓𝑘 ) )
133 94 119 130 132 syl21anc ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → Disj 𝑘 ∈ ℕ ( 𝑓𝑘 ) )
134 79 81 88 87 92 133 esumrnmpt2 ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → Σ* 𝑧 ∈ ran ( 𝑘 ∈ ℕ ↦ ( 𝑓𝑘 ) ) ( 𝑀𝑧 ) = Σ* 𝑘 ∈ ℕ ( 𝑀 ‘ ( 𝑓𝑘 ) ) )
135 18 78 134 3eqtr3rd ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → Σ* 𝑘 ∈ ℕ ( 𝑀 ‘ ( 𝑓𝑘 ) ) = Σ* 𝑧𝐴 ( 𝑀𝑧 ) )
136 uniiun 𝐴 = 𝑥𝐴 𝑥
137 31 sselda ( ( 𝜑𝑥𝐴 ) → 𝑥 ∈ 𝒫 𝑂 )
138 42 137 elpwiuncl ( 𝜑 𝑥𝐴 𝑥 ∈ 𝒫 𝑂 )
139 136 138 eqeltrid ( 𝜑 𝐴 ∈ 𝒫 𝑂 )
140 139 adantr ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → 𝐴 ∈ 𝒫 𝑂 )
141 23 140 ffvelrnd ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → ( 𝑀 𝐴 ) ∈ ( 0 [,] +∞ ) )
142 4 3adant1r ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂 ) → ( 𝑀 𝑥 ) ≤ Σ* 𝑦𝑥 ( 𝑀𝑦 ) )
143 fveq2 ( 𝑦 = 𝑧 → ( 𝑀𝑦 ) = ( 𝑀𝑧 ) )
144 nfcv 𝑧 𝑥
145 nfcv 𝑦 𝑥
146 nfcv 𝑧 ( 𝑀𝑦 )
147 nfcv 𝑦 ( 𝑀𝑧 )
148 143 144 145 146 147 cbvesum Σ* 𝑦𝑥 ( 𝑀𝑦 ) = Σ* 𝑧𝑥 ( 𝑀𝑧 )
149 142 148 breqtrdi ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂 ) → ( 𝑀 𝑥 ) ≤ Σ* 𝑧𝑥 ( 𝑀𝑧 ) )
150 ffn ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) → 𝑓 Fn ℕ )
151 fz1ssnn ( 1 ... 𝑛 ) ⊆ ℕ
152 fnssres ( ( 𝑓 Fn ℕ ∧ ( 1 ... 𝑛 ) ⊆ ℕ ) → ( 𝑓 ↾ ( 1 ... 𝑛 ) ) Fn ( 1 ... 𝑛 ) )
153 151 152 mpan2 ( 𝑓 Fn ℕ → ( 𝑓 ↾ ( 1 ... 𝑛 ) ) Fn ( 1 ... 𝑛 ) )
154 15 150 153 3syl ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → ( 𝑓 ↾ ( 1 ... 𝑛 ) ) Fn ( 1 ... 𝑛 ) )
155 fzfi ( 1 ... 𝑛 ) ∈ Fin
156 fnfi ( ( ( 𝑓 ↾ ( 1 ... 𝑛 ) ) Fn ( 1 ... 𝑛 ) ∧ ( 1 ... 𝑛 ) ∈ Fin ) → ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ∈ Fin )
157 155 156 mpan2 ( ( 𝑓 ↾ ( 1 ... 𝑛 ) ) Fn ( 1 ... 𝑛 ) → ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ∈ Fin )
158 rnfi ( ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ∈ Fin → ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ∈ Fin )
159 154 157 158 3syl ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ∈ Fin )
160 resss ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ⊆ 𝑓
161 rnss ( ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ⊆ 𝑓 → ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ⊆ ran 𝑓 )
162 160 161 ax-mp ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ⊆ ran 𝑓
163 162 a1i ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ⊆ ran 𝑓 )
164 163 55 sstrd ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ⊆ ( toCaraSiga ‘ 𝑀 ) )
165 163 39 sstrd ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ⊆ ( 𝐴 ∪ { ∅ } ) )
166 nfcv 𝑧 𝑦
167 nfcv 𝑦 𝑧
168 id ( 𝑦 = 𝑧𝑦 = 𝑧 )
169 166 167 168 cbvdisj ( Disj 𝑦𝐴 𝑦Disj 𝑧𝐴 𝑧 )
170 disjun0 ( Disj 𝑧𝐴 𝑧Disj 𝑧 ∈ ( 𝐴 ∪ { ∅ } ) 𝑧 )
171 169 170 sylbi ( Disj 𝑦𝐴 𝑦Disj 𝑧 ∈ ( 𝐴 ∪ { ∅ } ) 𝑧 )
172 8 171 syl ( 𝜑Disj 𝑧 ∈ ( 𝐴 ∪ { ∅ } ) 𝑧 )
173 172 adantr ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → Disj 𝑧 ∈ ( 𝐴 ∪ { ∅ } ) 𝑧 )
174 disjss1 ( ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ⊆ ( 𝐴 ∪ { ∅ } ) → ( Disj 𝑧 ∈ ( 𝐴 ∪ { ∅ } ) 𝑧Disj 𝑧 ∈ ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) 𝑧 ) )
175 165 173 174 sylc ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → Disj 𝑧 ∈ ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) 𝑧 )
176 pwidg ( 𝑂𝑉𝑂 ∈ 𝒫 𝑂 )
177 22 176 syl ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → 𝑂 ∈ 𝒫 𝑂 )
178 22 23 24 149 159 164 175 177 carsgclctunlem1 ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → ( 𝑀 ‘ ( 𝑂 ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ) ) = Σ* 𝑧 ∈ ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ( 𝑀 ‘ ( 𝑂𝑧 ) ) )
179 178 adantr ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ‘ ( 𝑂 ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ) ) = Σ* 𝑧 ∈ ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ( 𝑀 ‘ ( 𝑂𝑧 ) ) )
180 165 unissd ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ⊆ ( 𝐴 ∪ { ∅ } ) )
181 uniun ( 𝐴 ∪ { ∅ } ) = ( 𝐴 { ∅ } )
182 10 unisn { ∅ } = ∅
183 182 uneq2i ( 𝐴 { ∅ } ) = ( 𝐴 ∪ ∅ )
184 un0 ( 𝐴 ∪ ∅ ) = 𝐴
185 181 183 184 3eqtri ( 𝐴 ∪ { ∅ } ) = 𝐴
186 180 185 sseqtrdi ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ⊆ 𝐴 )
187 186 adantr ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ⊆ 𝐴 )
188 uniss ( 𝐴 ⊆ 𝒫 𝑂 𝐴 𝒫 𝑂 )
189 unipw 𝒫 𝑂 = 𝑂
190 188 189 sseqtrdi ( 𝐴 ⊆ 𝒫 𝑂 𝐴𝑂 )
191 31 190 syl ( 𝜑 𝐴𝑂 )
192 191 ad2antrr ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → 𝐴𝑂 )
193 187 192 sstrd ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ⊆ 𝑂 )
194 sseqin2 ( ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ⊆ 𝑂 ↔ ( 𝑂 ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ) = ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) )
195 193 194 sylib ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑂 ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ) = ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) )
196 195 fveq2d ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ‘ ( 𝑂 ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ) ) = ( 𝑀 ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ) )
197 nfv 𝑧 ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑛 ∈ ℕ )
198 165 adantr ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ⊆ ( 𝐴 ∪ { ∅ } ) )
199 31 ad2antrr ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → 𝐴 ⊆ 𝒫 𝑂 )
200 33 a1i ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → ∅ ∈ 𝒫 𝑂 )
201 200 snssd ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → { ∅ } ⊆ 𝒫 𝑂 )
202 199 201 unssd ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝐴 ∪ { ∅ } ) ⊆ 𝒫 𝑂 )
203 198 202 sstrd ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ⊆ 𝒫 𝑂 )
204 203 sselda ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑧 ∈ ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ) → 𝑧 ∈ 𝒫 𝑂 )
205 204 elpwid ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑧 ∈ ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ) → 𝑧𝑂 )
206 sseqin2 ( 𝑧𝑂 ↔ ( 𝑂𝑧 ) = 𝑧 )
207 205 206 sylib ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑧 ∈ ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ) → ( 𝑂𝑧 ) = 𝑧 )
208 207 fveq2d ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑧 ∈ ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ) → ( 𝑀 ‘ ( 𝑂𝑧 ) ) = ( 𝑀𝑧 ) )
209 208 ralrimiva ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → ∀ 𝑧 ∈ ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ( 𝑀 ‘ ( 𝑂𝑧 ) ) = ( 𝑀𝑧 ) )
210 197 209 esumeq2d ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → Σ* 𝑧 ∈ ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ( 𝑀 ‘ ( 𝑂𝑧 ) ) = Σ* 𝑧 ∈ ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ( 𝑀𝑧 ) )
211 16 reseq1d ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → ( 𝑓 ↾ ( 1 ... 𝑛 ) ) = ( ( 𝑘 ∈ ℕ ↦ ( 𝑓𝑘 ) ) ↾ ( 1 ... 𝑛 ) ) )
212 211 adantr ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑓 ↾ ( 1 ... 𝑛 ) ) = ( ( 𝑘 ∈ ℕ ↦ ( 𝑓𝑘 ) ) ↾ ( 1 ... 𝑛 ) ) )
213 resmpt ( ( 1 ... 𝑛 ) ⊆ ℕ → ( ( 𝑘 ∈ ℕ ↦ ( 𝑓𝑘 ) ) ↾ ( 1 ... 𝑛 ) ) = ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ ( 𝑓𝑘 ) ) )
214 151 213 ax-mp ( ( 𝑘 ∈ ℕ ↦ ( 𝑓𝑘 ) ) ↾ ( 1 ... 𝑛 ) ) = ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ ( 𝑓𝑘 ) )
215 212 214 eqtrdi ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑓 ↾ ( 1 ... 𝑛 ) ) = ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ ( 𝑓𝑘 ) ) )
216 215 eqcomd ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ ( 𝑓𝑘 ) ) = ( 𝑓 ↾ ( 1 ... 𝑛 ) ) )
217 216 rneqd ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ ( 𝑓𝑘 ) ) = ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) )
218 197 217 esumeq1d ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → Σ* 𝑧 ∈ ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ ( 𝑓𝑘 ) ) ( 𝑀𝑧 ) = Σ* 𝑧 ∈ ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ( 𝑀𝑧 ) )
219 155 a1i ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → ( 1 ... 𝑛 ) ∈ Fin )
220 23 ad2antrr ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) )
221 151 a1i ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → ( 1 ... 𝑛 ) ⊆ ℕ )
222 221 sselda ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝑘 ∈ ℕ )
223 87 adantlr ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ℕ ) → ( 𝑓𝑘 ) ∈ 𝒫 𝑂 )
224 222 223 syldan ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( 𝑓𝑘 ) ∈ 𝒫 𝑂 )
225 220 224 ffvelrnd ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( 𝑀 ‘ ( 𝑓𝑘 ) ) ∈ ( 0 [,] +∞ ) )
226 simpr ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) ∧ ( 𝑓𝑘 ) = ∅ ) → ( 𝑓𝑘 ) = ∅ )
227 226 fveq2d ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) ∧ ( 𝑓𝑘 ) = ∅ ) → ( 𝑀 ‘ ( 𝑓𝑘 ) ) = ( 𝑀 ‘ ∅ ) )
228 24 ad3antrrr ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) ∧ ( 𝑓𝑘 ) = ∅ ) → ( 𝑀 ‘ ∅ ) = 0 )
229 227 228 eqtrd ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) ∧ ( 𝑓𝑘 ) = ∅ ) → ( 𝑀 ‘ ( 𝑓𝑘 ) ) = 0 )
230 disjss1 ( ( 1 ... 𝑛 ) ⊆ ℕ → ( Disj 𝑘 ∈ ℕ ( 𝑓𝑘 ) → Disj 𝑘 ∈ ( 1 ... 𝑛 ) ( 𝑓𝑘 ) ) )
231 151 230 ax-mp ( Disj 𝑘 ∈ ℕ ( 𝑓𝑘 ) → Disj 𝑘 ∈ ( 1 ... 𝑛 ) ( 𝑓𝑘 ) )
232 133 231 syl ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → Disj 𝑘 ∈ ( 1 ... 𝑛 ) ( 𝑓𝑘 ) )
233 232 adantr ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → Disj 𝑘 ∈ ( 1 ... 𝑛 ) ( 𝑓𝑘 ) )
234 79 219 225 224 229 233 esumrnmpt2 ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → Σ* 𝑧 ∈ ran ( 𝑘 ∈ ( 1 ... 𝑛 ) ↦ ( 𝑓𝑘 ) ) ( 𝑀𝑧 ) = Σ* 𝑘 ∈ ( 1 ... 𝑛 ) ( 𝑀 ‘ ( 𝑓𝑘 ) ) )
235 210 218 234 3eqtr2d ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → Σ* 𝑧 ∈ ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ( 𝑀 ‘ ( 𝑂𝑧 ) ) = Σ* 𝑘 ∈ ( 1 ... 𝑛 ) ( 𝑀 ‘ ( 𝑓𝑘 ) ) )
236 179 196 235 3eqtr3d ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ) = Σ* 𝑘 ∈ ( 1 ... 𝑛 ) ( 𝑀 ‘ ( 𝑓𝑘 ) ) )
237 9 3adant1r ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑥𝑦𝑦 ∈ 𝒫 𝑂 ) → ( 𝑀𝑥 ) ≤ ( 𝑀𝑦 ) )
238 22 23 186 140 237 carsgmon ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → ( 𝑀 ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ) ≤ ( 𝑀 𝐴 ) )
239 238 adantr ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ) ≤ ( 𝑀 𝐴 ) )
240 236 239 eqbrtrrd ( ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → Σ* 𝑘 ∈ ( 1 ... 𝑛 ) ( 𝑀 ‘ ( 𝑓𝑘 ) ) ≤ ( 𝑀 𝐴 ) )
241 141 88 240 esumgect ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → Σ* 𝑘 ∈ ℕ ( 𝑀 ‘ ( 𝑓𝑘 ) ) ≤ ( 𝑀 𝐴 ) )
242 135 241 eqbrtrrd ( ( 𝜑 ∧ ( 𝑓 : ℕ ⟶ ( 𝐴 ∪ { ∅ } ) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun ( 𝑓𝐴 ) ) ) → Σ* 𝑧𝐴 ( 𝑀𝑧 ) ≤ ( 𝑀 𝐴 ) )
243 13 242 exlimddv ( 𝜑 → Σ* 𝑧𝐴 ( 𝑀𝑧 ) ≤ ( 𝑀 𝐴 ) )