| Step | Hyp | Ref | Expression | 
						
							| 1 |  | carsgval.1 |  |-  ( ph -> O e. V ) | 
						
							| 2 |  | carsgval.2 |  |-  ( ph -> M : ~P O --> ( 0 [,] +oo ) ) | 
						
							| 3 |  | carsgsiga.1 |  |-  ( ph -> ( M ` (/) ) = 0 ) | 
						
							| 4 |  | carsgsiga.2 |  |-  ( ( ph /\ x ~<_ _om /\ x C_ ~P O ) -> ( M ` U. x ) <_ sum* y e. x ( M ` y ) ) | 
						
							| 5 |  | fiunelcarsg.1 |  |-  ( ph -> A e. Fin ) | 
						
							| 6 |  | fiunelcarsg.2 |  |-  ( ph -> A C_ ( toCaraSiga ` M ) ) | 
						
							| 7 |  | carsgclctunlem1.1 |  |-  ( ph -> Disj_ y e. A y ) | 
						
							| 8 |  | carsgclctunlem1.2 |  |-  ( ph -> E e. ~P O ) | 
						
							| 9 |  | unieq |  |-  ( a = (/) -> U. a = U. (/) ) | 
						
							| 10 | 9 | ineq2d |  |-  ( a = (/) -> ( E i^i U. a ) = ( E i^i U. (/) ) ) | 
						
							| 11 | 10 | fveq2d |  |-  ( a = (/) -> ( M ` ( E i^i U. a ) ) = ( M ` ( E i^i U. (/) ) ) ) | 
						
							| 12 |  | esumeq1 |  |-  ( a = (/) -> sum* y e. a ( M ` ( E i^i y ) ) = sum* y e. (/) ( M ` ( E i^i y ) ) ) | 
						
							| 13 | 11 12 | eqeq12d |  |-  ( a = (/) -> ( ( M ` ( E i^i U. a ) ) = sum* y e. a ( M ` ( E i^i y ) ) <-> ( M ` ( E i^i U. (/) ) ) = sum* y e. (/) ( M ` ( E i^i y ) ) ) ) | 
						
							| 14 |  | unieq |  |-  ( a = b -> U. a = U. b ) | 
						
							| 15 | 14 | ineq2d |  |-  ( a = b -> ( E i^i U. a ) = ( E i^i U. b ) ) | 
						
							| 16 | 15 | fveq2d |  |-  ( a = b -> ( M ` ( E i^i U. a ) ) = ( M ` ( E i^i U. b ) ) ) | 
						
							| 17 |  | esumeq1 |  |-  ( a = b -> sum* y e. a ( M ` ( E i^i y ) ) = sum* y e. b ( M ` ( E i^i y ) ) ) | 
						
							| 18 | 16 17 | eqeq12d |  |-  ( a = b -> ( ( M ` ( E i^i U. a ) ) = sum* y e. a ( M ` ( E i^i y ) ) <-> ( M ` ( E i^i U. b ) ) = sum* y e. b ( M ` ( E i^i y ) ) ) ) | 
						
							| 19 |  | unieq |  |-  ( a = ( b u. { x } ) -> U. a = U. ( b u. { x } ) ) | 
						
							| 20 | 19 | ineq2d |  |-  ( a = ( b u. { x } ) -> ( E i^i U. a ) = ( E i^i U. ( b u. { x } ) ) ) | 
						
							| 21 | 20 | fveq2d |  |-  ( a = ( b u. { x } ) -> ( M ` ( E i^i U. a ) ) = ( M ` ( E i^i U. ( b u. { x } ) ) ) ) | 
						
							| 22 |  | esumeq1 |  |-  ( a = ( b u. { x } ) -> sum* y e. a ( M ` ( E i^i y ) ) = sum* y e. ( b u. { x } ) ( M ` ( E i^i y ) ) ) | 
						
							| 23 | 21 22 | eqeq12d |  |-  ( a = ( b u. { x } ) -> ( ( M ` ( E i^i U. a ) ) = sum* y e. a ( M ` ( E i^i y ) ) <-> ( M ` ( E i^i U. ( b u. { x } ) ) ) = sum* y e. ( b u. { x } ) ( M ` ( E i^i y ) ) ) ) | 
						
							| 24 |  | unieq |  |-  ( a = A -> U. a = U. A ) | 
						
							| 25 | 24 | ineq2d |  |-  ( a = A -> ( E i^i U. a ) = ( E i^i U. A ) ) | 
						
							| 26 | 25 | fveq2d |  |-  ( a = A -> ( M ` ( E i^i U. a ) ) = ( M ` ( E i^i U. A ) ) ) | 
						
							| 27 |  | esumeq1 |  |-  ( a = A -> sum* y e. a ( M ` ( E i^i y ) ) = sum* y e. A ( M ` ( E i^i y ) ) ) | 
						
							| 28 | 26 27 | eqeq12d |  |-  ( a = A -> ( ( M ` ( E i^i U. a ) ) = sum* y e. a ( M ` ( E i^i y ) ) <-> ( M ` ( E i^i U. A ) ) = sum* y e. A ( M ` ( E i^i y ) ) ) ) | 
						
							| 29 |  | uni0 |  |-  U. (/) = (/) | 
						
							| 30 | 29 | ineq2i |  |-  ( E i^i U. (/) ) = ( E i^i (/) ) | 
						
							| 31 |  | in0 |  |-  ( E i^i (/) ) = (/) | 
						
							| 32 | 30 31 | eqtri |  |-  ( E i^i U. (/) ) = (/) | 
						
							| 33 | 32 | fveq2i |  |-  ( M ` ( E i^i U. (/) ) ) = ( M ` (/) ) | 
						
							| 34 |  | esumnul |  |-  sum* y e. (/) ( M ` ( E i^i y ) ) = 0 | 
						
							| 35 | 3 33 34 | 3eqtr4g |  |-  ( ph -> ( M ` ( E i^i U. (/) ) ) = sum* y e. (/) ( M ` ( E i^i y ) ) ) | 
						
							| 36 |  | simpr |  |-  ( ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) /\ ( M ` ( E i^i U. b ) ) = sum* y e. b ( M ` ( E i^i y ) ) ) -> ( M ` ( E i^i U. b ) ) = sum* y e. b ( M ` ( E i^i y ) ) ) | 
						
							| 37 | 36 | eqcomd |  |-  ( ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) /\ ( M ` ( E i^i U. b ) ) = sum* y e. b ( M ` ( E i^i y ) ) ) -> sum* y e. b ( M ` ( E i^i y ) ) = ( M ` ( E i^i U. b ) ) ) | 
						
							| 38 |  | simpr |  |-  ( ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) /\ y = x ) -> y = x ) | 
						
							| 39 | 38 | ineq2d |  |-  ( ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) /\ y = x ) -> ( E i^i y ) = ( E i^i x ) ) | 
						
							| 40 | 39 | fveq2d |  |-  ( ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) /\ y = x ) -> ( M ` ( E i^i y ) ) = ( M ` ( E i^i x ) ) ) | 
						
							| 41 |  | simprr |  |-  ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) -> x e. ( A \ b ) ) | 
						
							| 42 | 2 | adantr |  |-  ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) -> M : ~P O --> ( 0 [,] +oo ) ) | 
						
							| 43 | 8 | adantr |  |-  ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) -> E e. ~P O ) | 
						
							| 44 | 43 | elpwincl1 |  |-  ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) -> ( E i^i x ) e. ~P O ) | 
						
							| 45 | 42 44 | ffvelcdmd |  |-  ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) -> ( M ` ( E i^i x ) ) e. ( 0 [,] +oo ) ) | 
						
							| 46 | 40 41 45 | esumsn |  |-  ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) -> sum* y e. { x } ( M ` ( E i^i y ) ) = ( M ` ( E i^i x ) ) ) | 
						
							| 47 | 46 | adantr |  |-  ( ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) /\ ( M ` ( E i^i U. b ) ) = sum* y e. b ( M ` ( E i^i y ) ) ) -> sum* y e. { x } ( M ` ( E i^i y ) ) = ( M ` ( E i^i x ) ) ) | 
						
							| 48 | 37 47 | oveq12d |  |-  ( ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) /\ ( M ` ( E i^i U. b ) ) = sum* y e. b ( M ` ( E i^i y ) ) ) -> ( sum* y e. b ( M ` ( E i^i y ) ) +e sum* y e. { x } ( M ` ( E i^i y ) ) ) = ( ( M ` ( E i^i U. b ) ) +e ( M ` ( E i^i x ) ) ) ) | 
						
							| 49 |  | nfv |  |-  F/ y ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) | 
						
							| 50 |  | nfcv |  |-  F/_ y b | 
						
							| 51 |  | nfcv |  |-  F/_ y { x } | 
						
							| 52 |  | vex |  |-  b e. _V | 
						
							| 53 | 52 | a1i |  |-  ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) -> b e. _V ) | 
						
							| 54 |  | vsnex |  |-  { x } e. _V | 
						
							| 55 | 54 | a1i |  |-  ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) -> { x } e. _V ) | 
						
							| 56 | 41 | eldifbd |  |-  ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) -> -. x e. b ) | 
						
							| 57 |  | disjsn |  |-  ( ( b i^i { x } ) = (/) <-> -. x e. b ) | 
						
							| 58 | 56 57 | sylibr |  |-  ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) -> ( b i^i { x } ) = (/) ) | 
						
							| 59 | 2 | ad2antrr |  |-  ( ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) /\ y e. b ) -> M : ~P O --> ( 0 [,] +oo ) ) | 
						
							| 60 | 8 | ad2antrr |  |-  ( ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) /\ y e. b ) -> E e. ~P O ) | 
						
							| 61 | 60 | elpwincl1 |  |-  ( ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) /\ y e. b ) -> ( E i^i y ) e. ~P O ) | 
						
							| 62 | 59 61 | ffvelcdmd |  |-  ( ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) /\ y e. b ) -> ( M ` ( E i^i y ) ) e. ( 0 [,] +oo ) ) | 
						
							| 63 | 2 | ad2antrr |  |-  ( ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) /\ y e. { x } ) -> M : ~P O --> ( 0 [,] +oo ) ) | 
						
							| 64 | 8 | ad2antrr |  |-  ( ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) /\ y e. { x } ) -> E e. ~P O ) | 
						
							| 65 | 64 | elpwincl1 |  |-  ( ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) /\ y e. { x } ) -> ( E i^i y ) e. ~P O ) | 
						
							| 66 | 63 65 | ffvelcdmd |  |-  ( ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) /\ y e. { x } ) -> ( M ` ( E i^i y ) ) e. ( 0 [,] +oo ) ) | 
						
							| 67 | 49 50 51 53 55 58 62 66 | esumsplit |  |-  ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) -> sum* y e. ( b u. { x } ) ( M ` ( E i^i y ) ) = ( sum* y e. b ( M ` ( E i^i y ) ) +e sum* y e. { x } ( M ` ( E i^i y ) ) ) ) | 
						
							| 68 | 67 | adantr |  |-  ( ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) /\ ( M ` ( E i^i U. b ) ) = sum* y e. b ( M ` ( E i^i y ) ) ) -> sum* y e. ( b u. { x } ) ( M ` ( E i^i y ) ) = ( sum* y e. b ( M ` ( E i^i y ) ) +e sum* y e. { x } ( M ` ( E i^i y ) ) ) ) | 
						
							| 69 |  | uniun |  |-  U. ( b u. { x } ) = ( U. b u. U. { x } ) | 
						
							| 70 |  | unisnv |  |-  U. { x } = x | 
						
							| 71 | 70 | uneq2i |  |-  ( U. b u. U. { x } ) = ( U. b u. x ) | 
						
							| 72 | 69 71 | eqtri |  |-  U. ( b u. { x } ) = ( U. b u. x ) | 
						
							| 73 | 72 | ineq2i |  |-  ( E i^i U. ( b u. { x } ) ) = ( E i^i ( U. b u. x ) ) | 
						
							| 74 | 73 | fveq2i |  |-  ( M ` ( E i^i U. ( b u. { x } ) ) ) = ( M ` ( E i^i ( U. b u. x ) ) ) | 
						
							| 75 |  | inass |  |-  ( ( E i^i ( U. b u. x ) ) i^i U. b ) = ( E i^i ( ( U. b u. x ) i^i U. b ) ) | 
						
							| 76 |  | indir |  |-  ( ( U. b u. x ) i^i U. b ) = ( ( U. b i^i U. b ) u. ( x i^i U. b ) ) | 
						
							| 77 |  | inidm |  |-  ( U. b i^i U. b ) = U. b | 
						
							| 78 | 77 | a1i |  |-  ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) -> ( U. b i^i U. b ) = U. b ) | 
						
							| 79 |  | incom |  |-  ( U. b i^i x ) = ( x i^i U. b ) | 
						
							| 80 | 7 | adantr |  |-  ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) -> Disj_ y e. A y ) | 
						
							| 81 |  | simpr |  |-  ( ( ph /\ b C_ A ) -> b C_ A ) | 
						
							| 82 | 81 | adantrr |  |-  ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) -> b C_ A ) | 
						
							| 83 | 80 82 41 | disjuniel |  |-  ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) -> ( U. b i^i x ) = (/) ) | 
						
							| 84 | 79 83 | eqtr3id |  |-  ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) -> ( x i^i U. b ) = (/) ) | 
						
							| 85 | 78 84 | uneq12d |  |-  ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) -> ( ( U. b i^i U. b ) u. ( x i^i U. b ) ) = ( U. b u. (/) ) ) | 
						
							| 86 |  | un0 |  |-  ( U. b u. (/) ) = U. b | 
						
							| 87 | 85 86 | eqtrdi |  |-  ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) -> ( ( U. b i^i U. b ) u. ( x i^i U. b ) ) = U. b ) | 
						
							| 88 | 76 87 | eqtrid |  |-  ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) -> ( ( U. b u. x ) i^i U. b ) = U. b ) | 
						
							| 89 | 88 | ineq2d |  |-  ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) -> ( E i^i ( ( U. b u. x ) i^i U. b ) ) = ( E i^i U. b ) ) | 
						
							| 90 | 75 89 | eqtrid |  |-  ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) -> ( ( E i^i ( U. b u. x ) ) i^i U. b ) = ( E i^i U. b ) ) | 
						
							| 91 | 90 | fveq2d |  |-  ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) -> ( M ` ( ( E i^i ( U. b u. x ) ) i^i U. b ) ) = ( M ` ( E i^i U. b ) ) ) | 
						
							| 92 |  | indif2 |  |-  ( E i^i ( ( U. b u. x ) \ U. b ) ) = ( ( E i^i ( U. b u. x ) ) \ U. b ) | 
						
							| 93 |  | uncom |  |-  ( U. b u. x ) = ( x u. U. b ) | 
						
							| 94 | 93 | difeq1i |  |-  ( ( U. b u. x ) \ U. b ) = ( ( x u. U. b ) \ U. b ) | 
						
							| 95 |  | difun2 |  |-  ( ( x u. U. b ) \ U. b ) = ( x \ U. b ) | 
						
							| 96 |  | disj3 |  |-  ( ( x i^i U. b ) = (/) <-> x = ( x \ U. b ) ) | 
						
							| 97 | 96 | biimpi |  |-  ( ( x i^i U. b ) = (/) -> x = ( x \ U. b ) ) | 
						
							| 98 | 95 97 | eqtr4id |  |-  ( ( x i^i U. b ) = (/) -> ( ( x u. U. b ) \ U. b ) = x ) | 
						
							| 99 | 94 98 | eqtrid |  |-  ( ( x i^i U. b ) = (/) -> ( ( U. b u. x ) \ U. b ) = x ) | 
						
							| 100 | 84 99 | syl |  |-  ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) -> ( ( U. b u. x ) \ U. b ) = x ) | 
						
							| 101 | 100 | ineq2d |  |-  ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) -> ( E i^i ( ( U. b u. x ) \ U. b ) ) = ( E i^i x ) ) | 
						
							| 102 | 92 101 | eqtr3id |  |-  ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) -> ( ( E i^i ( U. b u. x ) ) \ U. b ) = ( E i^i x ) ) | 
						
							| 103 | 102 | fveq2d |  |-  ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) -> ( M ` ( ( E i^i ( U. b u. x ) ) \ U. b ) ) = ( M ` ( E i^i x ) ) ) | 
						
							| 104 | 91 103 | oveq12d |  |-  ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) -> ( ( M ` ( ( E i^i ( U. b u. x ) ) i^i U. b ) ) +e ( M ` ( ( E i^i ( U. b u. x ) ) \ U. b ) ) ) = ( ( M ` ( E i^i U. b ) ) +e ( M ` ( E i^i x ) ) ) ) | 
						
							| 105 | 1 | adantr |  |-  ( ( ph /\ b C_ A ) -> O e. V ) | 
						
							| 106 | 2 | adantr |  |-  ( ( ph /\ b C_ A ) -> M : ~P O --> ( 0 [,] +oo ) ) | 
						
							| 107 | 3 | adantr |  |-  ( ( ph /\ b C_ A ) -> ( M ` (/) ) = 0 ) | 
						
							| 108 | 4 | 3adant1r |  |-  ( ( ( ph /\ b C_ A ) /\ x ~<_ _om /\ x C_ ~P O ) -> ( M ` U. x ) <_ sum* y e. x ( M ` y ) ) | 
						
							| 109 |  | ssfi |  |-  ( ( A e. Fin /\ b C_ A ) -> b e. Fin ) | 
						
							| 110 | 5 109 | sylan |  |-  ( ( ph /\ b C_ A ) -> b e. Fin ) | 
						
							| 111 | 6 | adantr |  |-  ( ( ph /\ b C_ A ) -> A C_ ( toCaraSiga ` M ) ) | 
						
							| 112 | 81 111 | sstrd |  |-  ( ( ph /\ b C_ A ) -> b C_ ( toCaraSiga ` M ) ) | 
						
							| 113 | 105 106 107 108 110 112 | fiunelcarsg |  |-  ( ( ph /\ b C_ A ) -> U. b e. ( toCaraSiga ` M ) ) | 
						
							| 114 | 1 2 | elcarsg |  |-  ( ph -> ( U. b e. ( toCaraSiga ` M ) <-> ( U. b C_ O /\ A. e e. ~P O ( ( M ` ( e i^i U. b ) ) +e ( M ` ( e \ U. b ) ) ) = ( M ` e ) ) ) ) | 
						
							| 115 | 114 | adantr |  |-  ( ( ph /\ b C_ A ) -> ( U. b e. ( toCaraSiga ` M ) <-> ( U. b C_ O /\ A. e e. ~P O ( ( M ` ( e i^i U. b ) ) +e ( M ` ( e \ U. b ) ) ) = ( M ` e ) ) ) ) | 
						
							| 116 | 113 115 | mpbid |  |-  ( ( ph /\ b C_ A ) -> ( U. b C_ O /\ A. e e. ~P O ( ( M ` ( e i^i U. b ) ) +e ( M ` ( e \ U. b ) ) ) = ( M ` e ) ) ) | 
						
							| 117 | 116 | simprd |  |-  ( ( ph /\ b C_ A ) -> A. e e. ~P O ( ( M ` ( e i^i U. b ) ) +e ( M ` ( e \ U. b ) ) ) = ( M ` e ) ) | 
						
							| 118 | 117 | adantrr |  |-  ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) -> A. e e. ~P O ( ( M ` ( e i^i U. b ) ) +e ( M ` ( e \ U. b ) ) ) = ( M ` e ) ) | 
						
							| 119 | 43 | elpwincl1 |  |-  ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) -> ( E i^i ( U. b u. x ) ) e. ~P O ) | 
						
							| 120 |  | simpr |  |-  ( ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) /\ e = ( E i^i ( U. b u. x ) ) ) -> e = ( E i^i ( U. b u. x ) ) ) | 
						
							| 121 | 120 | ineq1d |  |-  ( ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) /\ e = ( E i^i ( U. b u. x ) ) ) -> ( e i^i U. b ) = ( ( E i^i ( U. b u. x ) ) i^i U. b ) ) | 
						
							| 122 | 121 | fveq2d |  |-  ( ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) /\ e = ( E i^i ( U. b u. x ) ) ) -> ( M ` ( e i^i U. b ) ) = ( M ` ( ( E i^i ( U. b u. x ) ) i^i U. b ) ) ) | 
						
							| 123 | 120 | difeq1d |  |-  ( ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) /\ e = ( E i^i ( U. b u. x ) ) ) -> ( e \ U. b ) = ( ( E i^i ( U. b u. x ) ) \ U. b ) ) | 
						
							| 124 | 123 | fveq2d |  |-  ( ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) /\ e = ( E i^i ( U. b u. x ) ) ) -> ( M ` ( e \ U. b ) ) = ( M ` ( ( E i^i ( U. b u. x ) ) \ U. b ) ) ) | 
						
							| 125 | 122 124 | oveq12d |  |-  ( ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) /\ e = ( E i^i ( U. b u. x ) ) ) -> ( ( M ` ( e i^i U. b ) ) +e ( M ` ( e \ U. b ) ) ) = ( ( M ` ( ( E i^i ( U. b u. x ) ) i^i U. b ) ) +e ( M ` ( ( E i^i ( U. b u. x ) ) \ U. b ) ) ) ) | 
						
							| 126 | 120 | fveq2d |  |-  ( ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) /\ e = ( E i^i ( U. b u. x ) ) ) -> ( M ` e ) = ( M ` ( E i^i ( U. b u. x ) ) ) ) | 
						
							| 127 | 125 126 | eqeq12d |  |-  ( ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) /\ e = ( E i^i ( U. b u. x ) ) ) -> ( ( ( M ` ( e i^i U. b ) ) +e ( M ` ( e \ U. b ) ) ) = ( M ` e ) <-> ( ( M ` ( ( E i^i ( U. b u. x ) ) i^i U. b ) ) +e ( M ` ( ( E i^i ( U. b u. x ) ) \ U. b ) ) ) = ( M ` ( E i^i ( U. b u. x ) ) ) ) ) | 
						
							| 128 | 119 127 | rspcdv |  |-  ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) -> ( A. e e. ~P O ( ( M ` ( e i^i U. b ) ) +e ( M ` ( e \ U. b ) ) ) = ( M ` e ) -> ( ( M ` ( ( E i^i ( U. b u. x ) ) i^i U. b ) ) +e ( M ` ( ( E i^i ( U. b u. x ) ) \ U. b ) ) ) = ( M ` ( E i^i ( U. b u. x ) ) ) ) ) | 
						
							| 129 | 118 128 | mpd |  |-  ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) -> ( ( M ` ( ( E i^i ( U. b u. x ) ) i^i U. b ) ) +e ( M ` ( ( E i^i ( U. b u. x ) ) \ U. b ) ) ) = ( M ` ( E i^i ( U. b u. x ) ) ) ) | 
						
							| 130 | 104 129 | eqtr3d |  |-  ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) -> ( ( M ` ( E i^i U. b ) ) +e ( M ` ( E i^i x ) ) ) = ( M ` ( E i^i ( U. b u. x ) ) ) ) | 
						
							| 131 | 130 | adantr |  |-  ( ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) /\ ( M ` ( E i^i U. b ) ) = sum* y e. b ( M ` ( E i^i y ) ) ) -> ( ( M ` ( E i^i U. b ) ) +e ( M ` ( E i^i x ) ) ) = ( M ` ( E i^i ( U. b u. x ) ) ) ) | 
						
							| 132 | 74 131 | eqtr4id |  |-  ( ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) /\ ( M ` ( E i^i U. b ) ) = sum* y e. b ( M ` ( E i^i y ) ) ) -> ( M ` ( E i^i U. ( b u. { x } ) ) ) = ( ( M ` ( E i^i U. b ) ) +e ( M ` ( E i^i x ) ) ) ) | 
						
							| 133 | 48 68 132 | 3eqtr4rd |  |-  ( ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) /\ ( M ` ( E i^i U. b ) ) = sum* y e. b ( M ` ( E i^i y ) ) ) -> ( M ` ( E i^i U. ( b u. { x } ) ) ) = sum* y e. ( b u. { x } ) ( M ` ( E i^i y ) ) ) | 
						
							| 134 | 133 | ex |  |-  ( ( ph /\ ( b C_ A /\ x e. ( A \ b ) ) ) -> ( ( M ` ( E i^i U. b ) ) = sum* y e. b ( M ` ( E i^i y ) ) -> ( M ` ( E i^i U. ( b u. { x } ) ) ) = sum* y e. ( b u. { x } ) ( M ` ( E i^i y ) ) ) ) | 
						
							| 135 | 13 18 23 28 35 134 5 | findcard2d |  |-  ( ph -> ( M ` ( E i^i U. A ) ) = sum* y e. A ( M ` ( E i^i y ) ) ) |