| Step | Hyp | Ref | Expression | 
						
							| 1 |  | carsgval.1 | ⊢ ( 𝜑  →  𝑂  ∈  𝑉 ) | 
						
							| 2 |  | carsgval.2 | ⊢ ( 𝜑  →  𝑀 : 𝒫  𝑂 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 3 |  | carsgsiga.1 | ⊢ ( 𝜑  →  ( 𝑀 ‘ ∅ )  =  0 ) | 
						
							| 4 |  | carsgsiga.2 | ⊢ ( ( 𝜑  ∧  𝑥  ≼  ω  ∧  𝑥  ⊆  𝒫  𝑂 )  →  ( 𝑀 ‘ ∪  𝑥 )  ≤  Σ* 𝑦  ∈  𝑥 ( 𝑀 ‘ 𝑦 ) ) | 
						
							| 5 |  | carsgsiga.3 | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  𝑦  ∧  𝑦  ∈  𝒫  𝑂 )  →  ( 𝑀 ‘ 𝑥 )  ≤  ( 𝑀 ‘ 𝑦 ) ) | 
						
							| 6 | 1 2 | carsgcl | ⊢ ( 𝜑  →  ( toCaraSiga ‘ 𝑀 )  ⊆  𝒫  𝑂 ) | 
						
							| 7 | 1 2 3 | baselcarsg | ⊢ ( 𝜑  →  𝑂  ∈  ( toCaraSiga ‘ 𝑀 ) ) | 
						
							| 8 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( toCaraSiga ‘ 𝑀 ) )  →  𝑂  ∈  𝑉 ) | 
						
							| 9 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( toCaraSiga ‘ 𝑀 ) )  →  𝑀 : 𝒫  𝑂 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 10 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( toCaraSiga ‘ 𝑀 ) )  →  𝑔  ∈  ( toCaraSiga ‘ 𝑀 ) ) | 
						
							| 11 | 8 9 10 | difelcarsg | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( toCaraSiga ‘ 𝑀 ) )  →  ( 𝑂  ∖  𝑔 )  ∈  ( toCaraSiga ‘ 𝑀 ) ) | 
						
							| 12 | 11 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑔  ∈  ( toCaraSiga ‘ 𝑀 ) ( 𝑂  ∖  𝑔 )  ∈  ( toCaraSiga ‘ 𝑀 ) ) | 
						
							| 13 | 1 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  𝒫  ( toCaraSiga ‘ 𝑀 ) )  ∧  𝑔  ≼  ω )  →  𝑂  ∈  𝑉 ) | 
						
							| 14 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  𝒫  ( toCaraSiga ‘ 𝑀 ) )  ∧  𝑔  ≼  ω )  →  𝑀 : 𝒫  𝑂 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 15 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  𝒫  ( toCaraSiga ‘ 𝑀 ) )  ∧  𝑔  ≼  ω )  →  ( 𝑀 ‘ ∅ )  =  0 ) | 
						
							| 16 | 4 | 3adant1r | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  𝒫  ( toCaraSiga ‘ 𝑀 ) )  ∧  𝑥  ≼  ω  ∧  𝑥  ⊆  𝒫  𝑂 )  →  ( 𝑀 ‘ ∪  𝑥 )  ≤  Σ* 𝑦  ∈  𝑥 ( 𝑀 ‘ 𝑦 ) ) | 
						
							| 17 | 16 | 3adant1r | ⊢ ( ( ( ( 𝜑  ∧  𝑔  ∈  𝒫  ( toCaraSiga ‘ 𝑀 ) )  ∧  𝑔  ≼  ω )  ∧  𝑥  ≼  ω  ∧  𝑥  ⊆  𝒫  𝑂 )  →  ( 𝑀 ‘ ∪  𝑥 )  ≤  Σ* 𝑦  ∈  𝑥 ( 𝑀 ‘ 𝑦 ) ) | 
						
							| 18 | 5 | 3adant1r | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  𝒫  ( toCaraSiga ‘ 𝑀 ) )  ∧  𝑥  ⊆  𝑦  ∧  𝑦  ∈  𝒫  𝑂 )  →  ( 𝑀 ‘ 𝑥 )  ≤  ( 𝑀 ‘ 𝑦 ) ) | 
						
							| 19 | 18 | 3adant1r | ⊢ ( ( ( ( 𝜑  ∧  𝑔  ∈  𝒫  ( toCaraSiga ‘ 𝑀 ) )  ∧  𝑔  ≼  ω )  ∧  𝑥  ⊆  𝑦  ∧  𝑦  ∈  𝒫  𝑂 )  →  ( 𝑀 ‘ 𝑥 )  ≤  ( 𝑀 ‘ 𝑦 ) ) | 
						
							| 20 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  𝒫  ( toCaraSiga ‘ 𝑀 ) )  ∧  𝑔  ≼  ω )  →  𝑔  ≼  ω ) | 
						
							| 21 |  | elpwi | ⊢ ( 𝑔  ∈  𝒫  ( toCaraSiga ‘ 𝑀 )  →  𝑔  ⊆  ( toCaraSiga ‘ 𝑀 ) ) | 
						
							| 22 | 21 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  𝒫  ( toCaraSiga ‘ 𝑀 ) )  ∧  𝑔  ≼  ω )  →  𝑔  ⊆  ( toCaraSiga ‘ 𝑀 ) ) | 
						
							| 23 | 13 14 15 17 19 20 22 | carsgclctun | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  𝒫  ( toCaraSiga ‘ 𝑀 ) )  ∧  𝑔  ≼  ω )  →  ∪  𝑔  ∈  ( toCaraSiga ‘ 𝑀 ) ) | 
						
							| 24 | 23 | ex | ⊢ ( ( 𝜑  ∧  𝑔  ∈  𝒫  ( toCaraSiga ‘ 𝑀 ) )  →  ( 𝑔  ≼  ω  →  ∪  𝑔  ∈  ( toCaraSiga ‘ 𝑀 ) ) ) | 
						
							| 25 | 24 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑔  ∈  𝒫  ( toCaraSiga ‘ 𝑀 ) ( 𝑔  ≼  ω  →  ∪  𝑔  ∈  ( toCaraSiga ‘ 𝑀 ) ) ) | 
						
							| 26 | 7 12 25 | 3jca | ⊢ ( 𝜑  →  ( 𝑂  ∈  ( toCaraSiga ‘ 𝑀 )  ∧  ∀ 𝑔  ∈  ( toCaraSiga ‘ 𝑀 ) ( 𝑂  ∖  𝑔 )  ∈  ( toCaraSiga ‘ 𝑀 )  ∧  ∀ 𝑔  ∈  𝒫  ( toCaraSiga ‘ 𝑀 ) ( 𝑔  ≼  ω  →  ∪  𝑔  ∈  ( toCaraSiga ‘ 𝑀 ) ) ) ) | 
						
							| 27 | 6 26 | jca | ⊢ ( 𝜑  →  ( ( toCaraSiga ‘ 𝑀 )  ⊆  𝒫  𝑂  ∧  ( 𝑂  ∈  ( toCaraSiga ‘ 𝑀 )  ∧  ∀ 𝑔  ∈  ( toCaraSiga ‘ 𝑀 ) ( 𝑂  ∖  𝑔 )  ∈  ( toCaraSiga ‘ 𝑀 )  ∧  ∀ 𝑔  ∈  𝒫  ( toCaraSiga ‘ 𝑀 ) ( 𝑔  ≼  ω  →  ∪  𝑔  ∈  ( toCaraSiga ‘ 𝑀 ) ) ) ) ) | 
						
							| 28 |  | fvex | ⊢ ( toCaraSiga ‘ 𝑀 )  ∈  V | 
						
							| 29 |  | issiga | ⊢ ( ( toCaraSiga ‘ 𝑀 )  ∈  V  →  ( ( toCaraSiga ‘ 𝑀 )  ∈  ( sigAlgebra ‘ 𝑂 )  ↔  ( ( toCaraSiga ‘ 𝑀 )  ⊆  𝒫  𝑂  ∧  ( 𝑂  ∈  ( toCaraSiga ‘ 𝑀 )  ∧  ∀ 𝑔  ∈  ( toCaraSiga ‘ 𝑀 ) ( 𝑂  ∖  𝑔 )  ∈  ( toCaraSiga ‘ 𝑀 )  ∧  ∀ 𝑔  ∈  𝒫  ( toCaraSiga ‘ 𝑀 ) ( 𝑔  ≼  ω  →  ∪  𝑔  ∈  ( toCaraSiga ‘ 𝑀 ) ) ) ) ) ) | 
						
							| 30 | 28 29 | ax-mp | ⊢ ( ( toCaraSiga ‘ 𝑀 )  ∈  ( sigAlgebra ‘ 𝑂 )  ↔  ( ( toCaraSiga ‘ 𝑀 )  ⊆  𝒫  𝑂  ∧  ( 𝑂  ∈  ( toCaraSiga ‘ 𝑀 )  ∧  ∀ 𝑔  ∈  ( toCaraSiga ‘ 𝑀 ) ( 𝑂  ∖  𝑔 )  ∈  ( toCaraSiga ‘ 𝑀 )  ∧  ∀ 𝑔  ∈  𝒫  ( toCaraSiga ‘ 𝑀 ) ( 𝑔  ≼  ω  →  ∪  𝑔  ∈  ( toCaraSiga ‘ 𝑀 ) ) ) ) ) | 
						
							| 31 | 27 30 | sylibr | ⊢ ( 𝜑  →  ( toCaraSiga ‘ 𝑀 )  ∈  ( sigAlgebra ‘ 𝑂 ) ) |