Metamath Proof Explorer


Theorem carsgsiga

Description: The Caratheodory measurable sets constructed from outer measures form a Sigma-algebra. Statement (iii) of Theorem 1.11.4 of Bogachev p. 42. (Contributed by Thierry Arnoux, 17-May-2020)

Ref Expression
Hypotheses carsgval.1 ( 𝜑𝑂𝑉 )
carsgval.2 ( 𝜑𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) )
carsgsiga.1 ( 𝜑 → ( 𝑀 ‘ ∅ ) = 0 )
carsgsiga.2 ( ( 𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂 ) → ( 𝑀 𝑥 ) ≤ Σ* 𝑦𝑥 ( 𝑀𝑦 ) )
carsgsiga.3 ( ( 𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂 ) → ( 𝑀𝑥 ) ≤ ( 𝑀𝑦 ) )
Assertion carsgsiga ( 𝜑 → ( toCaraSiga ‘ 𝑀 ) ∈ ( sigAlgebra ‘ 𝑂 ) )

Proof

Step Hyp Ref Expression
1 carsgval.1 ( 𝜑𝑂𝑉 )
2 carsgval.2 ( 𝜑𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) )
3 carsgsiga.1 ( 𝜑 → ( 𝑀 ‘ ∅ ) = 0 )
4 carsgsiga.2 ( ( 𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂 ) → ( 𝑀 𝑥 ) ≤ Σ* 𝑦𝑥 ( 𝑀𝑦 ) )
5 carsgsiga.3 ( ( 𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂 ) → ( 𝑀𝑥 ) ≤ ( 𝑀𝑦 ) )
6 1 2 carsgcl ( 𝜑 → ( toCaraSiga ‘ 𝑀 ) ⊆ 𝒫 𝑂 )
7 1 2 3 baselcarsg ( 𝜑𝑂 ∈ ( toCaraSiga ‘ 𝑀 ) )
8 1 adantr ( ( 𝜑𝑔 ∈ ( toCaraSiga ‘ 𝑀 ) ) → 𝑂𝑉 )
9 2 adantr ( ( 𝜑𝑔 ∈ ( toCaraSiga ‘ 𝑀 ) ) → 𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) )
10 simpr ( ( 𝜑𝑔 ∈ ( toCaraSiga ‘ 𝑀 ) ) → 𝑔 ∈ ( toCaraSiga ‘ 𝑀 ) )
11 8 9 10 difelcarsg ( ( 𝜑𝑔 ∈ ( toCaraSiga ‘ 𝑀 ) ) → ( 𝑂𝑔 ) ∈ ( toCaraSiga ‘ 𝑀 ) )
12 11 ralrimiva ( 𝜑 → ∀ 𝑔 ∈ ( toCaraSiga ‘ 𝑀 ) ( 𝑂𝑔 ) ∈ ( toCaraSiga ‘ 𝑀 ) )
13 1 ad2antrr ( ( ( 𝜑𝑔 ∈ 𝒫 ( toCaraSiga ‘ 𝑀 ) ) ∧ 𝑔 ≼ ω ) → 𝑂𝑉 )
14 2 ad2antrr ( ( ( 𝜑𝑔 ∈ 𝒫 ( toCaraSiga ‘ 𝑀 ) ) ∧ 𝑔 ≼ ω ) → 𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) )
15 3 ad2antrr ( ( ( 𝜑𝑔 ∈ 𝒫 ( toCaraSiga ‘ 𝑀 ) ) ∧ 𝑔 ≼ ω ) → ( 𝑀 ‘ ∅ ) = 0 )
16 4 3adant1r ( ( ( 𝜑𝑔 ∈ 𝒫 ( toCaraSiga ‘ 𝑀 ) ) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂 ) → ( 𝑀 𝑥 ) ≤ Σ* 𝑦𝑥 ( 𝑀𝑦 ) )
17 16 3adant1r ( ( ( ( 𝜑𝑔 ∈ 𝒫 ( toCaraSiga ‘ 𝑀 ) ) ∧ 𝑔 ≼ ω ) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂 ) → ( 𝑀 𝑥 ) ≤ Σ* 𝑦𝑥 ( 𝑀𝑦 ) )
18 5 3adant1r ( ( ( 𝜑𝑔 ∈ 𝒫 ( toCaraSiga ‘ 𝑀 ) ) ∧ 𝑥𝑦𝑦 ∈ 𝒫 𝑂 ) → ( 𝑀𝑥 ) ≤ ( 𝑀𝑦 ) )
19 18 3adant1r ( ( ( ( 𝜑𝑔 ∈ 𝒫 ( toCaraSiga ‘ 𝑀 ) ) ∧ 𝑔 ≼ ω ) ∧ 𝑥𝑦𝑦 ∈ 𝒫 𝑂 ) → ( 𝑀𝑥 ) ≤ ( 𝑀𝑦 ) )
20 simpr ( ( ( 𝜑𝑔 ∈ 𝒫 ( toCaraSiga ‘ 𝑀 ) ) ∧ 𝑔 ≼ ω ) → 𝑔 ≼ ω )
21 elpwi ( 𝑔 ∈ 𝒫 ( toCaraSiga ‘ 𝑀 ) → 𝑔 ⊆ ( toCaraSiga ‘ 𝑀 ) )
22 21 ad2antlr ( ( ( 𝜑𝑔 ∈ 𝒫 ( toCaraSiga ‘ 𝑀 ) ) ∧ 𝑔 ≼ ω ) → 𝑔 ⊆ ( toCaraSiga ‘ 𝑀 ) )
23 13 14 15 17 19 20 22 carsgclctun ( ( ( 𝜑𝑔 ∈ 𝒫 ( toCaraSiga ‘ 𝑀 ) ) ∧ 𝑔 ≼ ω ) → 𝑔 ∈ ( toCaraSiga ‘ 𝑀 ) )
24 23 ex ( ( 𝜑𝑔 ∈ 𝒫 ( toCaraSiga ‘ 𝑀 ) ) → ( 𝑔 ≼ ω → 𝑔 ∈ ( toCaraSiga ‘ 𝑀 ) ) )
25 24 ralrimiva ( 𝜑 → ∀ 𝑔 ∈ 𝒫 ( toCaraSiga ‘ 𝑀 ) ( 𝑔 ≼ ω → 𝑔 ∈ ( toCaraSiga ‘ 𝑀 ) ) )
26 7 12 25 3jca ( 𝜑 → ( 𝑂 ∈ ( toCaraSiga ‘ 𝑀 ) ∧ ∀ 𝑔 ∈ ( toCaraSiga ‘ 𝑀 ) ( 𝑂𝑔 ) ∈ ( toCaraSiga ‘ 𝑀 ) ∧ ∀ 𝑔 ∈ 𝒫 ( toCaraSiga ‘ 𝑀 ) ( 𝑔 ≼ ω → 𝑔 ∈ ( toCaraSiga ‘ 𝑀 ) ) ) )
27 6 26 jca ( 𝜑 → ( ( toCaraSiga ‘ 𝑀 ) ⊆ 𝒫 𝑂 ∧ ( 𝑂 ∈ ( toCaraSiga ‘ 𝑀 ) ∧ ∀ 𝑔 ∈ ( toCaraSiga ‘ 𝑀 ) ( 𝑂𝑔 ) ∈ ( toCaraSiga ‘ 𝑀 ) ∧ ∀ 𝑔 ∈ 𝒫 ( toCaraSiga ‘ 𝑀 ) ( 𝑔 ≼ ω → 𝑔 ∈ ( toCaraSiga ‘ 𝑀 ) ) ) ) )
28 fvex ( toCaraSiga ‘ 𝑀 ) ∈ V
29 issiga ( ( toCaraSiga ‘ 𝑀 ) ∈ V → ( ( toCaraSiga ‘ 𝑀 ) ∈ ( sigAlgebra ‘ 𝑂 ) ↔ ( ( toCaraSiga ‘ 𝑀 ) ⊆ 𝒫 𝑂 ∧ ( 𝑂 ∈ ( toCaraSiga ‘ 𝑀 ) ∧ ∀ 𝑔 ∈ ( toCaraSiga ‘ 𝑀 ) ( 𝑂𝑔 ) ∈ ( toCaraSiga ‘ 𝑀 ) ∧ ∀ 𝑔 ∈ 𝒫 ( toCaraSiga ‘ 𝑀 ) ( 𝑔 ≼ ω → 𝑔 ∈ ( toCaraSiga ‘ 𝑀 ) ) ) ) ) )
30 28 29 ax-mp ( ( toCaraSiga ‘ 𝑀 ) ∈ ( sigAlgebra ‘ 𝑂 ) ↔ ( ( toCaraSiga ‘ 𝑀 ) ⊆ 𝒫 𝑂 ∧ ( 𝑂 ∈ ( toCaraSiga ‘ 𝑀 ) ∧ ∀ 𝑔 ∈ ( toCaraSiga ‘ 𝑀 ) ( 𝑂𝑔 ) ∈ ( toCaraSiga ‘ 𝑀 ) ∧ ∀ 𝑔 ∈ 𝒫 ( toCaraSiga ‘ 𝑀 ) ( 𝑔 ≼ ω → 𝑔 ∈ ( toCaraSiga ‘ 𝑀 ) ) ) ) )
31 27 30 sylibr ( 𝜑 → ( toCaraSiga ‘ 𝑀 ) ∈ ( sigAlgebra ‘ 𝑂 ) )