Step |
Hyp |
Ref |
Expression |
1 |
|
carsgval.1 |
⊢ ( 𝜑 → 𝑂 ∈ 𝑉 ) |
2 |
|
carsgval.2 |
⊢ ( 𝜑 → 𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) ) |
3 |
|
carsgsiga.1 |
⊢ ( 𝜑 → ( 𝑀 ‘ ∅ ) = 0 ) |
4 |
|
carsgsiga.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂 ) → ( 𝑀 ‘ ∪ 𝑥 ) ≤ Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) |
5 |
|
carsgsiga.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂 ) → ( 𝑀 ‘ 𝑥 ) ≤ ( 𝑀 ‘ 𝑦 ) ) |
6 |
1 2
|
carsgcl |
⊢ ( 𝜑 → ( toCaraSiga ‘ 𝑀 ) ⊆ 𝒫 𝑂 ) |
7 |
1 2 3
|
baselcarsg |
⊢ ( 𝜑 → 𝑂 ∈ ( toCaraSiga ‘ 𝑀 ) ) |
8 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( toCaraSiga ‘ 𝑀 ) ) → 𝑂 ∈ 𝑉 ) |
9 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( toCaraSiga ‘ 𝑀 ) ) → 𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) ) |
10 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( toCaraSiga ‘ 𝑀 ) ) → 𝑔 ∈ ( toCaraSiga ‘ 𝑀 ) ) |
11 |
8 9 10
|
difelcarsg |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( toCaraSiga ‘ 𝑀 ) ) → ( 𝑂 ∖ 𝑔 ) ∈ ( toCaraSiga ‘ 𝑀 ) ) |
12 |
11
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑔 ∈ ( toCaraSiga ‘ 𝑀 ) ( 𝑂 ∖ 𝑔 ) ∈ ( toCaraSiga ‘ 𝑀 ) ) |
13 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝒫 ( toCaraSiga ‘ 𝑀 ) ) ∧ 𝑔 ≼ ω ) → 𝑂 ∈ 𝑉 ) |
14 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝒫 ( toCaraSiga ‘ 𝑀 ) ) ∧ 𝑔 ≼ ω ) → 𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) ) |
15 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝒫 ( toCaraSiga ‘ 𝑀 ) ) ∧ 𝑔 ≼ ω ) → ( 𝑀 ‘ ∅ ) = 0 ) |
16 |
4
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝒫 ( toCaraSiga ‘ 𝑀 ) ) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂 ) → ( 𝑀 ‘ ∪ 𝑥 ) ≤ Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) |
17 |
16
|
3adant1r |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝒫 ( toCaraSiga ‘ 𝑀 ) ) ∧ 𝑔 ≼ ω ) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂 ) → ( 𝑀 ‘ ∪ 𝑥 ) ≤ Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) |
18 |
5
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝒫 ( toCaraSiga ‘ 𝑀 ) ) ∧ 𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂 ) → ( 𝑀 ‘ 𝑥 ) ≤ ( 𝑀 ‘ 𝑦 ) ) |
19 |
18
|
3adant1r |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝒫 ( toCaraSiga ‘ 𝑀 ) ) ∧ 𝑔 ≼ ω ) ∧ 𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂 ) → ( 𝑀 ‘ 𝑥 ) ≤ ( 𝑀 ‘ 𝑦 ) ) |
20 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝒫 ( toCaraSiga ‘ 𝑀 ) ) ∧ 𝑔 ≼ ω ) → 𝑔 ≼ ω ) |
21 |
|
elpwi |
⊢ ( 𝑔 ∈ 𝒫 ( toCaraSiga ‘ 𝑀 ) → 𝑔 ⊆ ( toCaraSiga ‘ 𝑀 ) ) |
22 |
21
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝒫 ( toCaraSiga ‘ 𝑀 ) ) ∧ 𝑔 ≼ ω ) → 𝑔 ⊆ ( toCaraSiga ‘ 𝑀 ) ) |
23 |
13 14 15 17 19 20 22
|
carsgclctun |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝒫 ( toCaraSiga ‘ 𝑀 ) ) ∧ 𝑔 ≼ ω ) → ∪ 𝑔 ∈ ( toCaraSiga ‘ 𝑀 ) ) |
24 |
23
|
ex |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝒫 ( toCaraSiga ‘ 𝑀 ) ) → ( 𝑔 ≼ ω → ∪ 𝑔 ∈ ( toCaraSiga ‘ 𝑀 ) ) ) |
25 |
24
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑔 ∈ 𝒫 ( toCaraSiga ‘ 𝑀 ) ( 𝑔 ≼ ω → ∪ 𝑔 ∈ ( toCaraSiga ‘ 𝑀 ) ) ) |
26 |
7 12 25
|
3jca |
⊢ ( 𝜑 → ( 𝑂 ∈ ( toCaraSiga ‘ 𝑀 ) ∧ ∀ 𝑔 ∈ ( toCaraSiga ‘ 𝑀 ) ( 𝑂 ∖ 𝑔 ) ∈ ( toCaraSiga ‘ 𝑀 ) ∧ ∀ 𝑔 ∈ 𝒫 ( toCaraSiga ‘ 𝑀 ) ( 𝑔 ≼ ω → ∪ 𝑔 ∈ ( toCaraSiga ‘ 𝑀 ) ) ) ) |
27 |
6 26
|
jca |
⊢ ( 𝜑 → ( ( toCaraSiga ‘ 𝑀 ) ⊆ 𝒫 𝑂 ∧ ( 𝑂 ∈ ( toCaraSiga ‘ 𝑀 ) ∧ ∀ 𝑔 ∈ ( toCaraSiga ‘ 𝑀 ) ( 𝑂 ∖ 𝑔 ) ∈ ( toCaraSiga ‘ 𝑀 ) ∧ ∀ 𝑔 ∈ 𝒫 ( toCaraSiga ‘ 𝑀 ) ( 𝑔 ≼ ω → ∪ 𝑔 ∈ ( toCaraSiga ‘ 𝑀 ) ) ) ) ) |
28 |
|
fvex |
⊢ ( toCaraSiga ‘ 𝑀 ) ∈ V |
29 |
|
issiga |
⊢ ( ( toCaraSiga ‘ 𝑀 ) ∈ V → ( ( toCaraSiga ‘ 𝑀 ) ∈ ( sigAlgebra ‘ 𝑂 ) ↔ ( ( toCaraSiga ‘ 𝑀 ) ⊆ 𝒫 𝑂 ∧ ( 𝑂 ∈ ( toCaraSiga ‘ 𝑀 ) ∧ ∀ 𝑔 ∈ ( toCaraSiga ‘ 𝑀 ) ( 𝑂 ∖ 𝑔 ) ∈ ( toCaraSiga ‘ 𝑀 ) ∧ ∀ 𝑔 ∈ 𝒫 ( toCaraSiga ‘ 𝑀 ) ( 𝑔 ≼ ω → ∪ 𝑔 ∈ ( toCaraSiga ‘ 𝑀 ) ) ) ) ) ) |
30 |
28 29
|
ax-mp |
⊢ ( ( toCaraSiga ‘ 𝑀 ) ∈ ( sigAlgebra ‘ 𝑂 ) ↔ ( ( toCaraSiga ‘ 𝑀 ) ⊆ 𝒫 𝑂 ∧ ( 𝑂 ∈ ( toCaraSiga ‘ 𝑀 ) ∧ ∀ 𝑔 ∈ ( toCaraSiga ‘ 𝑀 ) ( 𝑂 ∖ 𝑔 ) ∈ ( toCaraSiga ‘ 𝑀 ) ∧ ∀ 𝑔 ∈ 𝒫 ( toCaraSiga ‘ 𝑀 ) ( 𝑔 ≼ ω → ∪ 𝑔 ∈ ( toCaraSiga ‘ 𝑀 ) ) ) ) ) |
31 |
27 30
|
sylibr |
⊢ ( 𝜑 → ( toCaraSiga ‘ 𝑀 ) ∈ ( sigAlgebra ‘ 𝑂 ) ) |