Step |
Hyp |
Ref |
Expression |
1 |
|
omsmeas.m |
⊢ 𝑀 = ( toOMeas ‘ 𝑅 ) |
2 |
|
omsmeas.s |
⊢ 𝑆 = ( toCaraSiga ‘ 𝑀 ) |
3 |
|
omsmeas.o |
⊢ ( 𝜑 → 𝑄 ∈ 𝑉 ) |
4 |
|
omsmeas.r |
⊢ ( 𝜑 → 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) |
5 |
|
omsmeas.d |
⊢ ( 𝜑 → ∅ ∈ dom 𝑅 ) |
6 |
|
omsmeas.0 |
⊢ ( 𝜑 → ( 𝑅 ‘ ∅ ) = 0 ) |
7 |
|
omsf |
⊢ ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) → ( toOMeas ‘ 𝑅 ) : 𝒫 ∪ dom 𝑅 ⟶ ( 0 [,] +∞ ) ) |
8 |
3 4 7
|
syl2anc |
⊢ ( 𝜑 → ( toOMeas ‘ 𝑅 ) : 𝒫 ∪ dom 𝑅 ⟶ ( 0 [,] +∞ ) ) |
9 |
1
|
a1i |
⊢ ( 𝜑 → 𝑀 = ( toOMeas ‘ 𝑅 ) ) |
10 |
4
|
fdmd |
⊢ ( 𝜑 → dom 𝑅 = 𝑄 ) |
11 |
10
|
eqcomd |
⊢ ( 𝜑 → 𝑄 = dom 𝑅 ) |
12 |
11
|
unieqd |
⊢ ( 𝜑 → ∪ 𝑄 = ∪ dom 𝑅 ) |
13 |
12
|
pweqd |
⊢ ( 𝜑 → 𝒫 ∪ 𝑄 = 𝒫 ∪ dom 𝑅 ) |
14 |
9 13
|
feq12d |
⊢ ( 𝜑 → ( 𝑀 : 𝒫 ∪ 𝑄 ⟶ ( 0 [,] +∞ ) ↔ ( toOMeas ‘ 𝑅 ) : 𝒫 ∪ dom 𝑅 ⟶ ( 0 [,] +∞ ) ) ) |
15 |
8 14
|
mpbird |
⊢ ( 𝜑 → 𝑀 : 𝒫 ∪ 𝑄 ⟶ ( 0 [,] +∞ ) ) |
16 |
3
|
uniexd |
⊢ ( 𝜑 → ∪ 𝑄 ∈ V ) |
17 |
16 15
|
carsgcl |
⊢ ( 𝜑 → ( toCaraSiga ‘ 𝑀 ) ⊆ 𝒫 ∪ 𝑄 ) |
18 |
2 17
|
eqsstrid |
⊢ ( 𝜑 → 𝑆 ⊆ 𝒫 ∪ 𝑄 ) |
19 |
15 18
|
fssresd |
⊢ ( 𝜑 → ( 𝑀 ↾ 𝑆 ) : 𝑆 ⟶ ( 0 [,] +∞ ) ) |
20 |
1 3 4 5 6
|
oms0 |
⊢ ( 𝜑 → ( 𝑀 ‘ ∅ ) = 0 ) |
21 |
16 15 20
|
0elcarsg |
⊢ ( 𝜑 → ∅ ∈ ( toCaraSiga ‘ 𝑀 ) ) |
22 |
21 2
|
eleqtrrdi |
⊢ ( 𝜑 → ∅ ∈ 𝑆 ) |
23 |
|
fvres |
⊢ ( ∅ ∈ 𝑆 → ( ( 𝑀 ↾ 𝑆 ) ‘ ∅ ) = ( 𝑀 ‘ ∅ ) ) |
24 |
22 23
|
syl |
⊢ ( 𝜑 → ( ( 𝑀 ↾ 𝑆 ) ‘ ∅ ) = ( 𝑀 ‘ ∅ ) ) |
25 |
24 20
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑀 ↾ 𝑆 ) ‘ ∅ ) = 0 ) |
26 |
|
nfcv |
⊢ Ⅎ 𝑔 𝑓 |
27 |
|
nfcv |
⊢ Ⅎ 𝑓 𝑔 |
28 |
|
id |
⊢ ( 𝑓 = 𝑔 → 𝑓 = 𝑔 ) |
29 |
26 27 28
|
cbvdisj |
⊢ ( Disj 𝑓 ∈ 𝑒 𝑓 ↔ Disj 𝑔 ∈ 𝑒 𝑔 ) |
30 |
29
|
anbi2i |
⊢ ( ( 𝑒 ≼ ω ∧ Disj 𝑓 ∈ 𝑒 𝑓 ) ↔ ( 𝑒 ≼ ω ∧ Disj 𝑔 ∈ 𝑒 𝑔 ) ) |
31 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔 ∈ 𝑒 𝑔 ) ) → 𝑄 ∈ 𝑉 ) |
32 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔 ∈ 𝑒 𝑔 ) ) → 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) |
33 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔 ∈ 𝑒 𝑔 ) ) → 𝑒 ∈ 𝒫 𝑆 ) |
34 |
33
|
elpwid |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔 ∈ 𝑒 𝑔 ) ) → 𝑒 ⊆ 𝑆 ) |
35 |
18
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔 ∈ 𝑒 𝑔 ) ) → 𝑆 ⊆ 𝒫 ∪ 𝑄 ) |
36 |
34 35
|
sstrd |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔 ∈ 𝑒 𝑔 ) ) → 𝑒 ⊆ 𝒫 ∪ 𝑄 ) |
37 |
36
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔 ∈ 𝑒 𝑔 ) ) ∧ 𝑓 ∈ 𝑒 ) → 𝑓 ∈ 𝒫 ∪ 𝑄 ) |
38 |
37
|
elpwid |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔 ∈ 𝑒 𝑔 ) ) ∧ 𝑓 ∈ 𝑒 ) → 𝑓 ⊆ ∪ 𝑄 ) |
39 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔 ∈ 𝑒 𝑔 ) ) → 𝑒 ≼ ω ) |
40 |
1 31 32 38 39
|
omssubadd |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔 ∈ 𝑒 𝑔 ) ) → ( 𝑀 ‘ ∪ 𝑓 ∈ 𝑒 𝑓 ) ≤ Σ* 𝑓 ∈ 𝑒 ( 𝑀 ‘ 𝑓 ) ) |
41 |
16
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔 ∈ 𝑒 𝑔 ) ) → ∪ 𝑄 ∈ V ) |
42 |
15
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔 ∈ 𝑒 𝑔 ) ) → 𝑀 : 𝒫 ∪ 𝑄 ⟶ ( 0 [,] +∞ ) ) |
43 |
20
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔 ∈ 𝑒 𝑔 ) ) → ( 𝑀 ‘ ∅ ) = 0 ) |
44 |
|
uniiun |
⊢ ∪ 𝑥 = ∪ 𝑦 ∈ 𝑥 𝑦 |
45 |
44
|
fveq2i |
⊢ ( 𝑀 ‘ ∪ 𝑥 ) = ( 𝑀 ‘ ∪ 𝑦 ∈ 𝑥 𝑦 ) |
46 |
3
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 ∪ 𝑄 ) → 𝑄 ∈ 𝑉 ) |
47 |
4
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 ∪ 𝑄 ) → 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) |
48 |
|
simpl3 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 ∪ 𝑄 ) ∧ 𝑦 ∈ 𝑥 ) → 𝑥 ⊆ 𝒫 ∪ 𝑄 ) |
49 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 ∪ 𝑄 ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ 𝑥 ) |
50 |
48 49
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 ∪ 𝑄 ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ 𝒫 ∪ 𝑄 ) |
51 |
50
|
elpwid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 ∪ 𝑄 ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ⊆ ∪ 𝑄 ) |
52 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 ∪ 𝑄 ) → 𝑥 ≼ ω ) |
53 |
1 46 47 51 52
|
omssubadd |
⊢ ( ( 𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 ∪ 𝑄 ) → ( 𝑀 ‘ ∪ 𝑦 ∈ 𝑥 𝑦 ) ≤ Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) |
54 |
45 53
|
eqbrtrid |
⊢ ( ( 𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 ∪ 𝑄 ) → ( 𝑀 ‘ ∪ 𝑥 ) ≤ Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) |
55 |
54
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑆 ) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 ∪ 𝑄 ) → ( 𝑀 ‘ ∪ 𝑥 ) ≤ Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) |
56 |
55
|
3adant1r |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔 ∈ 𝑒 𝑔 ) ) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 ∪ 𝑄 ) → ( 𝑀 ‘ ∪ 𝑥 ) ≤ Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) |
57 |
3
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 ∪ 𝑄 ) → 𝑄 ∈ 𝑉 ) |
58 |
4
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 ∪ 𝑄 ) → 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) |
59 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 ∪ 𝑄 ) → 𝑥 ⊆ 𝑦 ) |
60 |
|
elpwi |
⊢ ( 𝑦 ∈ 𝒫 ∪ 𝑄 → 𝑦 ⊆ ∪ 𝑄 ) |
61 |
60
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 ∪ 𝑄 ) → 𝑦 ⊆ ∪ 𝑄 ) |
62 |
1 57 58 59 61
|
omsmon |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 ∪ 𝑄 ) → ( 𝑀 ‘ 𝑥 ) ≤ ( 𝑀 ‘ 𝑦 ) ) |
63 |
62
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑆 ) ∧ 𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 ∪ 𝑄 ) → ( 𝑀 ‘ 𝑥 ) ≤ ( 𝑀 ‘ 𝑦 ) ) |
64 |
63
|
3adant1r |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔 ∈ 𝑒 𝑔 ) ) ∧ 𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 ∪ 𝑄 ) → ( 𝑀 ‘ 𝑥 ) ≤ ( 𝑀 ‘ 𝑦 ) ) |
65 |
|
elpwi |
⊢ ( 𝑒 ∈ 𝒫 𝑆 → 𝑒 ⊆ 𝑆 ) |
66 |
65
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔 ∈ 𝑒 𝑔 ) ) → 𝑒 ⊆ 𝑆 ) |
67 |
66 2
|
sseqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔 ∈ 𝑒 𝑔 ) ) → 𝑒 ⊆ ( toCaraSiga ‘ 𝑀 ) ) |
68 |
41 42 43 56 64 39 67
|
carsgclctun |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔 ∈ 𝑒 𝑔 ) ) → ∪ 𝑒 ∈ ( toCaraSiga ‘ 𝑀 ) ) |
69 |
68 2
|
eleqtrrdi |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔 ∈ 𝑒 𝑔 ) ) → ∪ 𝑒 ∈ 𝑆 ) |
70 |
|
fvres |
⊢ ( ∪ 𝑒 ∈ 𝑆 → ( ( 𝑀 ↾ 𝑆 ) ‘ ∪ 𝑒 ) = ( 𝑀 ‘ ∪ 𝑒 ) ) |
71 |
|
uniiun |
⊢ ∪ 𝑒 = ∪ 𝑓 ∈ 𝑒 𝑓 |
72 |
71
|
fveq2i |
⊢ ( 𝑀 ‘ ∪ 𝑒 ) = ( 𝑀 ‘ ∪ 𝑓 ∈ 𝑒 𝑓 ) |
73 |
70 72
|
eqtrdi |
⊢ ( ∪ 𝑒 ∈ 𝑆 → ( ( 𝑀 ↾ 𝑆 ) ‘ ∪ 𝑒 ) = ( 𝑀 ‘ ∪ 𝑓 ∈ 𝑒 𝑓 ) ) |
74 |
69 73
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔 ∈ 𝑒 𝑔 ) ) → ( ( 𝑀 ↾ 𝑆 ) ‘ ∪ 𝑒 ) = ( 𝑀 ‘ ∪ 𝑓 ∈ 𝑒 𝑓 ) ) |
75 |
|
nfv |
⊢ Ⅎ 𝑓 ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔 ∈ 𝑒 𝑔 ) ) |
76 |
66
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔 ∈ 𝑒 𝑔 ) ) ∧ 𝑓 ∈ 𝑒 ) → 𝑓 ∈ 𝑆 ) |
77 |
|
fvres |
⊢ ( 𝑓 ∈ 𝑆 → ( ( 𝑀 ↾ 𝑆 ) ‘ 𝑓 ) = ( 𝑀 ‘ 𝑓 ) ) |
78 |
76 77
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔 ∈ 𝑒 𝑔 ) ) ∧ 𝑓 ∈ 𝑒 ) → ( ( 𝑀 ↾ 𝑆 ) ‘ 𝑓 ) = ( 𝑀 ‘ 𝑓 ) ) |
79 |
78
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔 ∈ 𝑒 𝑔 ) ) → ∀ 𝑓 ∈ 𝑒 ( ( 𝑀 ↾ 𝑆 ) ‘ 𝑓 ) = ( 𝑀 ‘ 𝑓 ) ) |
80 |
75 79
|
esumeq2d |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔 ∈ 𝑒 𝑔 ) ) → Σ* 𝑓 ∈ 𝑒 ( ( 𝑀 ↾ 𝑆 ) ‘ 𝑓 ) = Σ* 𝑓 ∈ 𝑒 ( 𝑀 ‘ 𝑓 ) ) |
81 |
40 74 80
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔 ∈ 𝑒 𝑔 ) ) → ( ( 𝑀 ↾ 𝑆 ) ‘ ∪ 𝑒 ) ≤ Σ* 𝑓 ∈ 𝑒 ( ( 𝑀 ↾ 𝑆 ) ‘ 𝑓 ) ) |
82 |
|
snex |
⊢ { ∅ } ∈ V |
83 |
82
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔 ∈ 𝑒 𝑔 ) ) → { ∅ } ∈ V ) |
84 |
42
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔 ∈ 𝑒 𝑔 ) ) ∧ 𝑓 ∈ 𝑒 ) → 𝑀 : 𝒫 ∪ 𝑄 ⟶ ( 0 [,] +∞ ) ) |
85 |
84 37
|
ffvelrnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔 ∈ 𝑒 𝑔 ) ) ∧ 𝑓 ∈ 𝑒 ) → ( 𝑀 ‘ 𝑓 ) ∈ ( 0 [,] +∞ ) ) |
86 |
|
elsni |
⊢ ( 𝑓 ∈ { ∅ } → 𝑓 = ∅ ) |
87 |
86
|
fveq2d |
⊢ ( 𝑓 ∈ { ∅ } → ( 𝑀 ‘ 𝑓 ) = ( 𝑀 ‘ ∅ ) ) |
88 |
87 43
|
sylan9eqr |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔 ∈ 𝑒 𝑔 ) ) ∧ 𝑓 ∈ { ∅ } ) → ( 𝑀 ‘ 𝑓 ) = 0 ) |
89 |
33 83 85 88
|
esumpad2 |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔 ∈ 𝑒 𝑔 ) ) → Σ* 𝑓 ∈ ( 𝑒 ∖ { ∅ } ) ( 𝑀 ‘ 𝑓 ) = Σ* 𝑓 ∈ 𝑒 ( 𝑀 ‘ 𝑓 ) ) |
90 |
|
neldifsnd |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔 ∈ 𝑒 𝑔 ) ) → ¬ ∅ ∈ ( 𝑒 ∖ { ∅ } ) ) |
91 |
|
difss |
⊢ ( 𝑒 ∖ { ∅ } ) ⊆ 𝑒 |
92 |
|
ssdomg |
⊢ ( 𝑒 ∈ 𝒫 𝑆 → ( ( 𝑒 ∖ { ∅ } ) ⊆ 𝑒 → ( 𝑒 ∖ { ∅ } ) ≼ 𝑒 ) ) |
93 |
33 91 92
|
mpisyl |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔 ∈ 𝑒 𝑔 ) ) → ( 𝑒 ∖ { ∅ } ) ≼ 𝑒 ) |
94 |
|
domtr |
⊢ ( ( ( 𝑒 ∖ { ∅ } ) ≼ 𝑒 ∧ 𝑒 ≼ ω ) → ( 𝑒 ∖ { ∅ } ) ≼ ω ) |
95 |
93 39 94
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔 ∈ 𝑒 𝑔 ) ) → ( 𝑒 ∖ { ∅ } ) ≼ ω ) |
96 |
67
|
ssdifssd |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔 ∈ 𝑒 𝑔 ) ) → ( 𝑒 ∖ { ∅ } ) ⊆ ( toCaraSiga ‘ 𝑀 ) ) |
97 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔 ∈ 𝑒 𝑔 ) ) → Disj 𝑔 ∈ 𝑒 𝑔 ) |
98 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑔 |
99 |
|
nfcv |
⊢ Ⅎ 𝑔 𝑦 |
100 |
|
id |
⊢ ( 𝑔 = 𝑦 → 𝑔 = 𝑦 ) |
101 |
98 99 100
|
cbvdisj |
⊢ ( Disj 𝑔 ∈ 𝑒 𝑔 ↔ Disj 𝑦 ∈ 𝑒 𝑦 ) |
102 |
97 101
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔 ∈ 𝑒 𝑔 ) ) → Disj 𝑦 ∈ 𝑒 𝑦 ) |
103 |
|
disjss1 |
⊢ ( ( 𝑒 ∖ { ∅ } ) ⊆ 𝑒 → ( Disj 𝑦 ∈ 𝑒 𝑦 → Disj 𝑦 ∈ ( 𝑒 ∖ { ∅ } ) 𝑦 ) ) |
104 |
91 102 103
|
mpsyl |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔 ∈ 𝑒 𝑔 ) ) → Disj 𝑦 ∈ ( 𝑒 ∖ { ∅ } ) 𝑦 ) |
105 |
41 42 43 56 90 95 96 104 64
|
carsggect |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔 ∈ 𝑒 𝑔 ) ) → Σ* 𝑓 ∈ ( 𝑒 ∖ { ∅ } ) ( 𝑀 ‘ 𝑓 ) ≤ ( 𝑀 ‘ ∪ ( 𝑒 ∖ { ∅ } ) ) ) |
106 |
89 105
|
eqbrtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔 ∈ 𝑒 𝑔 ) ) → Σ* 𝑓 ∈ 𝑒 ( 𝑀 ‘ 𝑓 ) ≤ ( 𝑀 ‘ ∪ ( 𝑒 ∖ { ∅ } ) ) ) |
107 |
|
unidif0 |
⊢ ∪ ( 𝑒 ∖ { ∅ } ) = ∪ 𝑒 |
108 |
107
|
fveq2i |
⊢ ( 𝑀 ‘ ∪ ( 𝑒 ∖ { ∅ } ) ) = ( 𝑀 ‘ ∪ 𝑒 ) |
109 |
106 108
|
breqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔 ∈ 𝑒 𝑔 ) ) → Σ* 𝑓 ∈ 𝑒 ( 𝑀 ‘ 𝑓 ) ≤ ( 𝑀 ‘ ∪ 𝑒 ) ) |
110 |
69 70
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔 ∈ 𝑒 𝑔 ) ) → ( ( 𝑀 ↾ 𝑆 ) ‘ ∪ 𝑒 ) = ( 𝑀 ‘ ∪ 𝑒 ) ) |
111 |
109 80 110
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔 ∈ 𝑒 𝑔 ) ) → Σ* 𝑓 ∈ 𝑒 ( ( 𝑀 ↾ 𝑆 ) ‘ 𝑓 ) ≤ ( ( 𝑀 ↾ 𝑆 ) ‘ ∪ 𝑒 ) ) |
112 |
81 111
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔 ∈ 𝑒 𝑔 ) ) → ( ( ( 𝑀 ↾ 𝑆 ) ‘ ∪ 𝑒 ) ≤ Σ* 𝑓 ∈ 𝑒 ( ( 𝑀 ↾ 𝑆 ) ‘ 𝑓 ) ∧ Σ* 𝑓 ∈ 𝑒 ( ( 𝑀 ↾ 𝑆 ) ‘ 𝑓 ) ≤ ( ( 𝑀 ↾ 𝑆 ) ‘ ∪ 𝑒 ) ) ) |
113 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
114 |
19
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔 ∈ 𝑒 𝑔 ) ) → ( 𝑀 ↾ 𝑆 ) : 𝑆 ⟶ ( 0 [,] +∞ ) ) |
115 |
114 69
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔 ∈ 𝑒 𝑔 ) ) → ( ( 𝑀 ↾ 𝑆 ) ‘ ∪ 𝑒 ) ∈ ( 0 [,] +∞ ) ) |
116 |
113 115
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔 ∈ 𝑒 𝑔 ) ) → ( ( 𝑀 ↾ 𝑆 ) ‘ ∪ 𝑒 ) ∈ ℝ* ) |
117 |
114
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔 ∈ 𝑒 𝑔 ) ) ∧ 𝑓 ∈ 𝑒 ) → ( 𝑀 ↾ 𝑆 ) : 𝑆 ⟶ ( 0 [,] +∞ ) ) |
118 |
117 76
|
ffvelrnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔 ∈ 𝑒 𝑔 ) ) ∧ 𝑓 ∈ 𝑒 ) → ( ( 𝑀 ↾ 𝑆 ) ‘ 𝑓 ) ∈ ( 0 [,] +∞ ) ) |
119 |
118
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔 ∈ 𝑒 𝑔 ) ) → ∀ 𝑓 ∈ 𝑒 ( ( 𝑀 ↾ 𝑆 ) ‘ 𝑓 ) ∈ ( 0 [,] +∞ ) ) |
120 |
|
nfcv |
⊢ Ⅎ 𝑓 𝑒 |
121 |
120
|
esumcl |
⊢ ( ( 𝑒 ∈ 𝒫 𝑆 ∧ ∀ 𝑓 ∈ 𝑒 ( ( 𝑀 ↾ 𝑆 ) ‘ 𝑓 ) ∈ ( 0 [,] +∞ ) ) → Σ* 𝑓 ∈ 𝑒 ( ( 𝑀 ↾ 𝑆 ) ‘ 𝑓 ) ∈ ( 0 [,] +∞ ) ) |
122 |
33 119 121
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔 ∈ 𝑒 𝑔 ) ) → Σ* 𝑓 ∈ 𝑒 ( ( 𝑀 ↾ 𝑆 ) ‘ 𝑓 ) ∈ ( 0 [,] +∞ ) ) |
123 |
113 122
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔 ∈ 𝑒 𝑔 ) ) → Σ* 𝑓 ∈ 𝑒 ( ( 𝑀 ↾ 𝑆 ) ‘ 𝑓 ) ∈ ℝ* ) |
124 |
|
xrletri3 |
⊢ ( ( ( ( 𝑀 ↾ 𝑆 ) ‘ ∪ 𝑒 ) ∈ ℝ* ∧ Σ* 𝑓 ∈ 𝑒 ( ( 𝑀 ↾ 𝑆 ) ‘ 𝑓 ) ∈ ℝ* ) → ( ( ( 𝑀 ↾ 𝑆 ) ‘ ∪ 𝑒 ) = Σ* 𝑓 ∈ 𝑒 ( ( 𝑀 ↾ 𝑆 ) ‘ 𝑓 ) ↔ ( ( ( 𝑀 ↾ 𝑆 ) ‘ ∪ 𝑒 ) ≤ Σ* 𝑓 ∈ 𝑒 ( ( 𝑀 ↾ 𝑆 ) ‘ 𝑓 ) ∧ Σ* 𝑓 ∈ 𝑒 ( ( 𝑀 ↾ 𝑆 ) ‘ 𝑓 ) ≤ ( ( 𝑀 ↾ 𝑆 ) ‘ ∪ 𝑒 ) ) ) ) |
125 |
116 123 124
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔 ∈ 𝑒 𝑔 ) ) → ( ( ( 𝑀 ↾ 𝑆 ) ‘ ∪ 𝑒 ) = Σ* 𝑓 ∈ 𝑒 ( ( 𝑀 ↾ 𝑆 ) ‘ 𝑓 ) ↔ ( ( ( 𝑀 ↾ 𝑆 ) ‘ ∪ 𝑒 ) ≤ Σ* 𝑓 ∈ 𝑒 ( ( 𝑀 ↾ 𝑆 ) ‘ 𝑓 ) ∧ Σ* 𝑓 ∈ 𝑒 ( ( 𝑀 ↾ 𝑆 ) ‘ 𝑓 ) ≤ ( ( 𝑀 ↾ 𝑆 ) ‘ ∪ 𝑒 ) ) ) ) |
126 |
112 125
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔 ∈ 𝑒 𝑔 ) ) → ( ( 𝑀 ↾ 𝑆 ) ‘ ∪ 𝑒 ) = Σ* 𝑓 ∈ 𝑒 ( ( 𝑀 ↾ 𝑆 ) ‘ 𝑓 ) ) |
127 |
30 126
|
sylan2b |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑓 ∈ 𝑒 𝑓 ) ) → ( ( 𝑀 ↾ 𝑆 ) ‘ ∪ 𝑒 ) = Σ* 𝑓 ∈ 𝑒 ( ( 𝑀 ↾ 𝑆 ) ‘ 𝑓 ) ) |
128 |
127
|
ex |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑆 ) → ( ( 𝑒 ≼ ω ∧ Disj 𝑓 ∈ 𝑒 𝑓 ) → ( ( 𝑀 ↾ 𝑆 ) ‘ ∪ 𝑒 ) = Σ* 𝑓 ∈ 𝑒 ( ( 𝑀 ↾ 𝑆 ) ‘ 𝑓 ) ) ) |
129 |
128
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑒 ∈ 𝒫 𝑆 ( ( 𝑒 ≼ ω ∧ Disj 𝑓 ∈ 𝑒 𝑓 ) → ( ( 𝑀 ↾ 𝑆 ) ‘ ∪ 𝑒 ) = Σ* 𝑓 ∈ 𝑒 ( ( 𝑀 ↾ 𝑆 ) ‘ 𝑓 ) ) ) |
130 |
19 25 129
|
3jca |
⊢ ( 𝜑 → ( ( 𝑀 ↾ 𝑆 ) : 𝑆 ⟶ ( 0 [,] +∞ ) ∧ ( ( 𝑀 ↾ 𝑆 ) ‘ ∅ ) = 0 ∧ ∀ 𝑒 ∈ 𝒫 𝑆 ( ( 𝑒 ≼ ω ∧ Disj 𝑓 ∈ 𝑒 𝑓 ) → ( ( 𝑀 ↾ 𝑆 ) ‘ ∪ 𝑒 ) = Σ* 𝑓 ∈ 𝑒 ( ( 𝑀 ↾ 𝑆 ) ‘ 𝑓 ) ) ) ) |
131 |
16 15 20 54 62
|
carsgsiga |
⊢ ( 𝜑 → ( toCaraSiga ‘ 𝑀 ) ∈ ( sigAlgebra ‘ ∪ 𝑄 ) ) |
132 |
2 131
|
eqeltrid |
⊢ ( 𝜑 → 𝑆 ∈ ( sigAlgebra ‘ ∪ 𝑄 ) ) |
133 |
|
elrnsiga |
⊢ ( 𝑆 ∈ ( sigAlgebra ‘ ∪ 𝑄 ) → 𝑆 ∈ ∪ ran sigAlgebra ) |
134 |
|
ismeas |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra → ( ( 𝑀 ↾ 𝑆 ) ∈ ( measures ‘ 𝑆 ) ↔ ( ( 𝑀 ↾ 𝑆 ) : 𝑆 ⟶ ( 0 [,] +∞ ) ∧ ( ( 𝑀 ↾ 𝑆 ) ‘ ∅ ) = 0 ∧ ∀ 𝑒 ∈ 𝒫 𝑆 ( ( 𝑒 ≼ ω ∧ Disj 𝑓 ∈ 𝑒 𝑓 ) → ( ( 𝑀 ↾ 𝑆 ) ‘ ∪ 𝑒 ) = Σ* 𝑓 ∈ 𝑒 ( ( 𝑀 ↾ 𝑆 ) ‘ 𝑓 ) ) ) ) ) |
135 |
132 133 134
|
3syl |
⊢ ( 𝜑 → ( ( 𝑀 ↾ 𝑆 ) ∈ ( measures ‘ 𝑆 ) ↔ ( ( 𝑀 ↾ 𝑆 ) : 𝑆 ⟶ ( 0 [,] +∞ ) ∧ ( ( 𝑀 ↾ 𝑆 ) ‘ ∅ ) = 0 ∧ ∀ 𝑒 ∈ 𝒫 𝑆 ( ( 𝑒 ≼ ω ∧ Disj 𝑓 ∈ 𝑒 𝑓 ) → ( ( 𝑀 ↾ 𝑆 ) ‘ ∪ 𝑒 ) = Σ* 𝑓 ∈ 𝑒 ( ( 𝑀 ↾ 𝑆 ) ‘ 𝑓 ) ) ) ) ) |
136 |
130 135
|
mpbird |
⊢ ( 𝜑 → ( 𝑀 ↾ 𝑆 ) ∈ ( measures ‘ 𝑆 ) ) |