Metamath Proof Explorer


Theorem omsmeas

Description: The restriction of a constructed outer measure to Caratheodory measurable sets is a measure. This theorem allows to construct measures from pre-measures with the required characteristics, as for the Lebesgue measure. (Contributed by Thierry Arnoux, 17-May-2020)

Ref Expression
Hypotheses omsmeas.m 𝑀 = ( toOMeas ‘ 𝑅 )
omsmeas.s 𝑆 = ( toCaraSiga ‘ 𝑀 )
omsmeas.o ( 𝜑𝑄𝑉 )
omsmeas.r ( 𝜑𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) )
omsmeas.d ( 𝜑 → ∅ ∈ dom 𝑅 )
omsmeas.0 ( 𝜑 → ( 𝑅 ‘ ∅ ) = 0 )
Assertion omsmeas ( 𝜑 → ( 𝑀𝑆 ) ∈ ( measures ‘ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 omsmeas.m 𝑀 = ( toOMeas ‘ 𝑅 )
2 omsmeas.s 𝑆 = ( toCaraSiga ‘ 𝑀 )
3 omsmeas.o ( 𝜑𝑄𝑉 )
4 omsmeas.r ( 𝜑𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) )
5 omsmeas.d ( 𝜑 → ∅ ∈ dom 𝑅 )
6 omsmeas.0 ( 𝜑 → ( 𝑅 ‘ ∅ ) = 0 )
7 omsf ( ( 𝑄𝑉𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) → ( toOMeas ‘ 𝑅 ) : 𝒫 dom 𝑅 ⟶ ( 0 [,] +∞ ) )
8 3 4 7 syl2anc ( 𝜑 → ( toOMeas ‘ 𝑅 ) : 𝒫 dom 𝑅 ⟶ ( 0 [,] +∞ ) )
9 1 a1i ( 𝜑𝑀 = ( toOMeas ‘ 𝑅 ) )
10 4 fdmd ( 𝜑 → dom 𝑅 = 𝑄 )
11 10 eqcomd ( 𝜑𝑄 = dom 𝑅 )
12 11 unieqd ( 𝜑 𝑄 = dom 𝑅 )
13 12 pweqd ( 𝜑 → 𝒫 𝑄 = 𝒫 dom 𝑅 )
14 9 13 feq12d ( 𝜑 → ( 𝑀 : 𝒫 𝑄 ⟶ ( 0 [,] +∞ ) ↔ ( toOMeas ‘ 𝑅 ) : 𝒫 dom 𝑅 ⟶ ( 0 [,] +∞ ) ) )
15 8 14 mpbird ( 𝜑𝑀 : 𝒫 𝑄 ⟶ ( 0 [,] +∞ ) )
16 3 uniexd ( 𝜑 𝑄 ∈ V )
17 16 15 carsgcl ( 𝜑 → ( toCaraSiga ‘ 𝑀 ) ⊆ 𝒫 𝑄 )
18 2 17 eqsstrid ( 𝜑𝑆 ⊆ 𝒫 𝑄 )
19 15 18 fssresd ( 𝜑 → ( 𝑀𝑆 ) : 𝑆 ⟶ ( 0 [,] +∞ ) )
20 1 3 4 5 6 oms0 ( 𝜑 → ( 𝑀 ‘ ∅ ) = 0 )
21 16 15 20 0elcarsg ( 𝜑 → ∅ ∈ ( toCaraSiga ‘ 𝑀 ) )
22 21 2 eleqtrrdi ( 𝜑 → ∅ ∈ 𝑆 )
23 fvres ( ∅ ∈ 𝑆 → ( ( 𝑀𝑆 ) ‘ ∅ ) = ( 𝑀 ‘ ∅ ) )
24 22 23 syl ( 𝜑 → ( ( 𝑀𝑆 ) ‘ ∅ ) = ( 𝑀 ‘ ∅ ) )
25 24 20 eqtrd ( 𝜑 → ( ( 𝑀𝑆 ) ‘ ∅ ) = 0 )
26 nfcv 𝑔 𝑓
27 nfcv 𝑓 𝑔
28 id ( 𝑓 = 𝑔𝑓 = 𝑔 )
29 26 27 28 cbvdisj ( Disj 𝑓𝑒 𝑓Disj 𝑔𝑒 𝑔 )
30 29 anbi2i ( ( 𝑒 ≼ ω ∧ Disj 𝑓𝑒 𝑓 ) ↔ ( 𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔 ) )
31 3 ad2antrr ( ( ( 𝜑𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔 ) ) → 𝑄𝑉 )
32 4 ad2antrr ( ( ( 𝜑𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔 ) ) → 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) )
33 simplr ( ( ( 𝜑𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔 ) ) → 𝑒 ∈ 𝒫 𝑆 )
34 33 elpwid ( ( ( 𝜑𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔 ) ) → 𝑒𝑆 )
35 18 ad2antrr ( ( ( 𝜑𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔 ) ) → 𝑆 ⊆ 𝒫 𝑄 )
36 34 35 sstrd ( ( ( 𝜑𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔 ) ) → 𝑒 ⊆ 𝒫 𝑄 )
37 36 sselda ( ( ( ( 𝜑𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔 ) ) ∧ 𝑓𝑒 ) → 𝑓 ∈ 𝒫 𝑄 )
38 37 elpwid ( ( ( ( 𝜑𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔 ) ) ∧ 𝑓𝑒 ) → 𝑓 𝑄 )
39 simprl ( ( ( 𝜑𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔 ) ) → 𝑒 ≼ ω )
40 1 31 32 38 39 omssubadd ( ( ( 𝜑𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔 ) ) → ( 𝑀 𝑓𝑒 𝑓 ) ≤ Σ* 𝑓𝑒 ( 𝑀𝑓 ) )
41 16 ad2antrr ( ( ( 𝜑𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔 ) ) → 𝑄 ∈ V )
42 15 ad2antrr ( ( ( 𝜑𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔 ) ) → 𝑀 : 𝒫 𝑄 ⟶ ( 0 [,] +∞ ) )
43 20 ad2antrr ( ( ( 𝜑𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔 ) ) → ( 𝑀 ‘ ∅ ) = 0 )
44 uniiun 𝑥 = 𝑦𝑥 𝑦
45 44 fveq2i ( 𝑀 𝑥 ) = ( 𝑀 𝑦𝑥 𝑦 )
46 3 3ad2ant1 ( ( 𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄 ) → 𝑄𝑉 )
47 4 3ad2ant1 ( ( 𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄 ) → 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) )
48 simpl3 ( ( ( 𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄 ) ∧ 𝑦𝑥 ) → 𝑥 ⊆ 𝒫 𝑄 )
49 simpr ( ( ( 𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄 ) ∧ 𝑦𝑥 ) → 𝑦𝑥 )
50 48 49 sseldd ( ( ( 𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄 ) ∧ 𝑦𝑥 ) → 𝑦 ∈ 𝒫 𝑄 )
51 50 elpwid ( ( ( 𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄 ) ∧ 𝑦𝑥 ) → 𝑦 𝑄 )
52 simp2 ( ( 𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄 ) → 𝑥 ≼ ω )
53 1 46 47 51 52 omssubadd ( ( 𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄 ) → ( 𝑀 𝑦𝑥 𝑦 ) ≤ Σ* 𝑦𝑥 ( 𝑀𝑦 ) )
54 45 53 eqbrtrid ( ( 𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄 ) → ( 𝑀 𝑥 ) ≤ Σ* 𝑦𝑥 ( 𝑀𝑦 ) )
55 54 3adant1r ( ( ( 𝜑𝑒 ∈ 𝒫 𝑆 ) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄 ) → ( 𝑀 𝑥 ) ≤ Σ* 𝑦𝑥 ( 𝑀𝑦 ) )
56 55 3adant1r ( ( ( ( 𝜑𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔 ) ) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄 ) → ( 𝑀 𝑥 ) ≤ Σ* 𝑦𝑥 ( 𝑀𝑦 ) )
57 3 3ad2ant1 ( ( 𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑄 ) → 𝑄𝑉 )
58 4 3ad2ant1 ( ( 𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑄 ) → 𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) )
59 simp2 ( ( 𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑄 ) → 𝑥𝑦 )
60 elpwi ( 𝑦 ∈ 𝒫 𝑄𝑦 𝑄 )
61 60 3ad2ant3 ( ( 𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑄 ) → 𝑦 𝑄 )
62 1 57 58 59 61 omsmon ( ( 𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑄 ) → ( 𝑀𝑥 ) ≤ ( 𝑀𝑦 ) )
63 62 3adant1r ( ( ( 𝜑𝑒 ∈ 𝒫 𝑆 ) ∧ 𝑥𝑦𝑦 ∈ 𝒫 𝑄 ) → ( 𝑀𝑥 ) ≤ ( 𝑀𝑦 ) )
64 63 3adant1r ( ( ( ( 𝜑𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔 ) ) ∧ 𝑥𝑦𝑦 ∈ 𝒫 𝑄 ) → ( 𝑀𝑥 ) ≤ ( 𝑀𝑦 ) )
65 elpwi ( 𝑒 ∈ 𝒫 𝑆𝑒𝑆 )
66 65 ad2antlr ( ( ( 𝜑𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔 ) ) → 𝑒𝑆 )
67 66 2 sseqtrdi ( ( ( 𝜑𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔 ) ) → 𝑒 ⊆ ( toCaraSiga ‘ 𝑀 ) )
68 41 42 43 56 64 39 67 carsgclctun ( ( ( 𝜑𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔 ) ) → 𝑒 ∈ ( toCaraSiga ‘ 𝑀 ) )
69 68 2 eleqtrrdi ( ( ( 𝜑𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔 ) ) → 𝑒𝑆 )
70 fvres ( 𝑒𝑆 → ( ( 𝑀𝑆 ) ‘ 𝑒 ) = ( 𝑀 𝑒 ) )
71 uniiun 𝑒 = 𝑓𝑒 𝑓
72 71 fveq2i ( 𝑀 𝑒 ) = ( 𝑀 𝑓𝑒 𝑓 )
73 70 72 eqtrdi ( 𝑒𝑆 → ( ( 𝑀𝑆 ) ‘ 𝑒 ) = ( 𝑀 𝑓𝑒 𝑓 ) )
74 69 73 syl ( ( ( 𝜑𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔 ) ) → ( ( 𝑀𝑆 ) ‘ 𝑒 ) = ( 𝑀 𝑓𝑒 𝑓 ) )
75 nfv 𝑓 ( ( 𝜑𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔 ) )
76 66 sselda ( ( ( ( 𝜑𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔 ) ) ∧ 𝑓𝑒 ) → 𝑓𝑆 )
77 fvres ( 𝑓𝑆 → ( ( 𝑀𝑆 ) ‘ 𝑓 ) = ( 𝑀𝑓 ) )
78 76 77 syl ( ( ( ( 𝜑𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔 ) ) ∧ 𝑓𝑒 ) → ( ( 𝑀𝑆 ) ‘ 𝑓 ) = ( 𝑀𝑓 ) )
79 78 ralrimiva ( ( ( 𝜑𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔 ) ) → ∀ 𝑓𝑒 ( ( 𝑀𝑆 ) ‘ 𝑓 ) = ( 𝑀𝑓 ) )
80 75 79 esumeq2d ( ( ( 𝜑𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔 ) ) → Σ* 𝑓𝑒 ( ( 𝑀𝑆 ) ‘ 𝑓 ) = Σ* 𝑓𝑒 ( 𝑀𝑓 ) )
81 40 74 80 3brtr4d ( ( ( 𝜑𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔 ) ) → ( ( 𝑀𝑆 ) ‘ 𝑒 ) ≤ Σ* 𝑓𝑒 ( ( 𝑀𝑆 ) ‘ 𝑓 ) )
82 snex { ∅ } ∈ V
83 82 a1i ( ( ( 𝜑𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔 ) ) → { ∅ } ∈ V )
84 42 adantr ( ( ( ( 𝜑𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔 ) ) ∧ 𝑓𝑒 ) → 𝑀 : 𝒫 𝑄 ⟶ ( 0 [,] +∞ ) )
85 84 37 ffvelrnd ( ( ( ( 𝜑𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔 ) ) ∧ 𝑓𝑒 ) → ( 𝑀𝑓 ) ∈ ( 0 [,] +∞ ) )
86 elsni ( 𝑓 ∈ { ∅ } → 𝑓 = ∅ )
87 86 fveq2d ( 𝑓 ∈ { ∅ } → ( 𝑀𝑓 ) = ( 𝑀 ‘ ∅ ) )
88 87 43 sylan9eqr ( ( ( ( 𝜑𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔 ) ) ∧ 𝑓 ∈ { ∅ } ) → ( 𝑀𝑓 ) = 0 )
89 33 83 85 88 esumpad2 ( ( ( 𝜑𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔 ) ) → Σ* 𝑓 ∈ ( 𝑒 ∖ { ∅ } ) ( 𝑀𝑓 ) = Σ* 𝑓𝑒 ( 𝑀𝑓 ) )
90 neldifsnd ( ( ( 𝜑𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔 ) ) → ¬ ∅ ∈ ( 𝑒 ∖ { ∅ } ) )
91 difss ( 𝑒 ∖ { ∅ } ) ⊆ 𝑒
92 ssdomg ( 𝑒 ∈ 𝒫 𝑆 → ( ( 𝑒 ∖ { ∅ } ) ⊆ 𝑒 → ( 𝑒 ∖ { ∅ } ) ≼ 𝑒 ) )
93 33 91 92 mpisyl ( ( ( 𝜑𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔 ) ) → ( 𝑒 ∖ { ∅ } ) ≼ 𝑒 )
94 domtr ( ( ( 𝑒 ∖ { ∅ } ) ≼ 𝑒𝑒 ≼ ω ) → ( 𝑒 ∖ { ∅ } ) ≼ ω )
95 93 39 94 syl2anc ( ( ( 𝜑𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔 ) ) → ( 𝑒 ∖ { ∅ } ) ≼ ω )
96 67 ssdifssd ( ( ( 𝜑𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔 ) ) → ( 𝑒 ∖ { ∅ } ) ⊆ ( toCaraSiga ‘ 𝑀 ) )
97 simprr ( ( ( 𝜑𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔 ) ) → Disj 𝑔𝑒 𝑔 )
98 nfcv 𝑦 𝑔
99 nfcv 𝑔 𝑦
100 id ( 𝑔 = 𝑦𝑔 = 𝑦 )
101 98 99 100 cbvdisj ( Disj 𝑔𝑒 𝑔Disj 𝑦𝑒 𝑦 )
102 97 101 sylib ( ( ( 𝜑𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔 ) ) → Disj 𝑦𝑒 𝑦 )
103 disjss1 ( ( 𝑒 ∖ { ∅ } ) ⊆ 𝑒 → ( Disj 𝑦𝑒 𝑦Disj 𝑦 ∈ ( 𝑒 ∖ { ∅ } ) 𝑦 ) )
104 91 102 103 mpsyl ( ( ( 𝜑𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔 ) ) → Disj 𝑦 ∈ ( 𝑒 ∖ { ∅ } ) 𝑦 )
105 41 42 43 56 90 95 96 104 64 carsggect ( ( ( 𝜑𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔 ) ) → Σ* 𝑓 ∈ ( 𝑒 ∖ { ∅ } ) ( 𝑀𝑓 ) ≤ ( 𝑀 ( 𝑒 ∖ { ∅ } ) ) )
106 89 105 eqbrtrrd ( ( ( 𝜑𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔 ) ) → Σ* 𝑓𝑒 ( 𝑀𝑓 ) ≤ ( 𝑀 ( 𝑒 ∖ { ∅ } ) ) )
107 unidif0 ( 𝑒 ∖ { ∅ } ) = 𝑒
108 107 fveq2i ( 𝑀 ( 𝑒 ∖ { ∅ } ) ) = ( 𝑀 𝑒 )
109 106 108 breqtrdi ( ( ( 𝜑𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔 ) ) → Σ* 𝑓𝑒 ( 𝑀𝑓 ) ≤ ( 𝑀 𝑒 ) )
110 69 70 syl ( ( ( 𝜑𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔 ) ) → ( ( 𝑀𝑆 ) ‘ 𝑒 ) = ( 𝑀 𝑒 ) )
111 109 80 110 3brtr4d ( ( ( 𝜑𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔 ) ) → Σ* 𝑓𝑒 ( ( 𝑀𝑆 ) ‘ 𝑓 ) ≤ ( ( 𝑀𝑆 ) ‘ 𝑒 ) )
112 81 111 jca ( ( ( 𝜑𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔 ) ) → ( ( ( 𝑀𝑆 ) ‘ 𝑒 ) ≤ Σ* 𝑓𝑒 ( ( 𝑀𝑆 ) ‘ 𝑓 ) ∧ Σ* 𝑓𝑒 ( ( 𝑀𝑆 ) ‘ 𝑓 ) ≤ ( ( 𝑀𝑆 ) ‘ 𝑒 ) ) )
113 iccssxr ( 0 [,] +∞ ) ⊆ ℝ*
114 19 ad2antrr ( ( ( 𝜑𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔 ) ) → ( 𝑀𝑆 ) : 𝑆 ⟶ ( 0 [,] +∞ ) )
115 114 69 ffvelrnd ( ( ( 𝜑𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔 ) ) → ( ( 𝑀𝑆 ) ‘ 𝑒 ) ∈ ( 0 [,] +∞ ) )
116 113 115 sselid ( ( ( 𝜑𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔 ) ) → ( ( 𝑀𝑆 ) ‘ 𝑒 ) ∈ ℝ* )
117 114 adantr ( ( ( ( 𝜑𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔 ) ) ∧ 𝑓𝑒 ) → ( 𝑀𝑆 ) : 𝑆 ⟶ ( 0 [,] +∞ ) )
118 117 76 ffvelrnd ( ( ( ( 𝜑𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔 ) ) ∧ 𝑓𝑒 ) → ( ( 𝑀𝑆 ) ‘ 𝑓 ) ∈ ( 0 [,] +∞ ) )
119 118 ralrimiva ( ( ( 𝜑𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔 ) ) → ∀ 𝑓𝑒 ( ( 𝑀𝑆 ) ‘ 𝑓 ) ∈ ( 0 [,] +∞ ) )
120 nfcv 𝑓 𝑒
121 120 esumcl ( ( 𝑒 ∈ 𝒫 𝑆 ∧ ∀ 𝑓𝑒 ( ( 𝑀𝑆 ) ‘ 𝑓 ) ∈ ( 0 [,] +∞ ) ) → Σ* 𝑓𝑒 ( ( 𝑀𝑆 ) ‘ 𝑓 ) ∈ ( 0 [,] +∞ ) )
122 33 119 121 syl2anc ( ( ( 𝜑𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔 ) ) → Σ* 𝑓𝑒 ( ( 𝑀𝑆 ) ‘ 𝑓 ) ∈ ( 0 [,] +∞ ) )
123 113 122 sselid ( ( ( 𝜑𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔 ) ) → Σ* 𝑓𝑒 ( ( 𝑀𝑆 ) ‘ 𝑓 ) ∈ ℝ* )
124 xrletri3 ( ( ( ( 𝑀𝑆 ) ‘ 𝑒 ) ∈ ℝ* ∧ Σ* 𝑓𝑒 ( ( 𝑀𝑆 ) ‘ 𝑓 ) ∈ ℝ* ) → ( ( ( 𝑀𝑆 ) ‘ 𝑒 ) = Σ* 𝑓𝑒 ( ( 𝑀𝑆 ) ‘ 𝑓 ) ↔ ( ( ( 𝑀𝑆 ) ‘ 𝑒 ) ≤ Σ* 𝑓𝑒 ( ( 𝑀𝑆 ) ‘ 𝑓 ) ∧ Σ* 𝑓𝑒 ( ( 𝑀𝑆 ) ‘ 𝑓 ) ≤ ( ( 𝑀𝑆 ) ‘ 𝑒 ) ) ) )
125 116 123 124 syl2anc ( ( ( 𝜑𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔 ) ) → ( ( ( 𝑀𝑆 ) ‘ 𝑒 ) = Σ* 𝑓𝑒 ( ( 𝑀𝑆 ) ‘ 𝑓 ) ↔ ( ( ( 𝑀𝑆 ) ‘ 𝑒 ) ≤ Σ* 𝑓𝑒 ( ( 𝑀𝑆 ) ‘ 𝑓 ) ∧ Σ* 𝑓𝑒 ( ( 𝑀𝑆 ) ‘ 𝑓 ) ≤ ( ( 𝑀𝑆 ) ‘ 𝑒 ) ) ) )
126 112 125 mpbird ( ( ( 𝜑𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔 ) ) → ( ( 𝑀𝑆 ) ‘ 𝑒 ) = Σ* 𝑓𝑒 ( ( 𝑀𝑆 ) ‘ 𝑓 ) )
127 30 126 sylan2b ( ( ( 𝜑𝑒 ∈ 𝒫 𝑆 ) ∧ ( 𝑒 ≼ ω ∧ Disj 𝑓𝑒 𝑓 ) ) → ( ( 𝑀𝑆 ) ‘ 𝑒 ) = Σ* 𝑓𝑒 ( ( 𝑀𝑆 ) ‘ 𝑓 ) )
128 127 ex ( ( 𝜑𝑒 ∈ 𝒫 𝑆 ) → ( ( 𝑒 ≼ ω ∧ Disj 𝑓𝑒 𝑓 ) → ( ( 𝑀𝑆 ) ‘ 𝑒 ) = Σ* 𝑓𝑒 ( ( 𝑀𝑆 ) ‘ 𝑓 ) ) )
129 128 ralrimiva ( 𝜑 → ∀ 𝑒 ∈ 𝒫 𝑆 ( ( 𝑒 ≼ ω ∧ Disj 𝑓𝑒 𝑓 ) → ( ( 𝑀𝑆 ) ‘ 𝑒 ) = Σ* 𝑓𝑒 ( ( 𝑀𝑆 ) ‘ 𝑓 ) ) )
130 19 25 129 3jca ( 𝜑 → ( ( 𝑀𝑆 ) : 𝑆 ⟶ ( 0 [,] +∞ ) ∧ ( ( 𝑀𝑆 ) ‘ ∅ ) = 0 ∧ ∀ 𝑒 ∈ 𝒫 𝑆 ( ( 𝑒 ≼ ω ∧ Disj 𝑓𝑒 𝑓 ) → ( ( 𝑀𝑆 ) ‘ 𝑒 ) = Σ* 𝑓𝑒 ( ( 𝑀𝑆 ) ‘ 𝑓 ) ) ) )
131 16 15 20 54 62 carsgsiga ( 𝜑 → ( toCaraSiga ‘ 𝑀 ) ∈ ( sigAlgebra ‘ 𝑄 ) )
132 2 131 eqeltrid ( 𝜑𝑆 ∈ ( sigAlgebra ‘ 𝑄 ) )
133 elrnsiga ( 𝑆 ∈ ( sigAlgebra ‘ 𝑄 ) → 𝑆 ran sigAlgebra )
134 ismeas ( 𝑆 ran sigAlgebra → ( ( 𝑀𝑆 ) ∈ ( measures ‘ 𝑆 ) ↔ ( ( 𝑀𝑆 ) : 𝑆 ⟶ ( 0 [,] +∞ ) ∧ ( ( 𝑀𝑆 ) ‘ ∅ ) = 0 ∧ ∀ 𝑒 ∈ 𝒫 𝑆 ( ( 𝑒 ≼ ω ∧ Disj 𝑓𝑒 𝑓 ) → ( ( 𝑀𝑆 ) ‘ 𝑒 ) = Σ* 𝑓𝑒 ( ( 𝑀𝑆 ) ‘ 𝑓 ) ) ) ) )
135 132 133 134 3syl ( 𝜑 → ( ( 𝑀𝑆 ) ∈ ( measures ‘ 𝑆 ) ↔ ( ( 𝑀𝑆 ) : 𝑆 ⟶ ( 0 [,] +∞ ) ∧ ( ( 𝑀𝑆 ) ‘ ∅ ) = 0 ∧ ∀ 𝑒 ∈ 𝒫 𝑆 ( ( 𝑒 ≼ ω ∧ Disj 𝑓𝑒 𝑓 ) → ( ( 𝑀𝑆 ) ‘ 𝑒 ) = Σ* 𝑓𝑒 ( ( 𝑀𝑆 ) ‘ 𝑓 ) ) ) ) )
136 130 135 mpbird ( 𝜑 → ( 𝑀𝑆 ) ∈ ( measures ‘ 𝑆 ) )