| Step | Hyp | Ref | Expression | 
						
							| 1 |  | omsmeas.m | ⊢ 𝑀  =  ( toOMeas ‘ 𝑅 ) | 
						
							| 2 |  | omsmeas.s | ⊢ 𝑆  =  ( toCaraSiga ‘ 𝑀 ) | 
						
							| 3 |  | omsmeas.o | ⊢ ( 𝜑  →  𝑄  ∈  𝑉 ) | 
						
							| 4 |  | omsmeas.r | ⊢ ( 𝜑  →  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 5 |  | omsmeas.d | ⊢ ( 𝜑  →  ∅  ∈  dom  𝑅 ) | 
						
							| 6 |  | omsmeas.0 | ⊢ ( 𝜑  →  ( 𝑅 ‘ ∅ )  =  0 ) | 
						
							| 7 |  | omsf | ⊢ ( ( 𝑄  ∈  𝑉  ∧  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) )  →  ( toOMeas ‘ 𝑅 ) : 𝒫  ∪  dom  𝑅 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 8 | 3 4 7 | syl2anc | ⊢ ( 𝜑  →  ( toOMeas ‘ 𝑅 ) : 𝒫  ∪  dom  𝑅 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 9 | 1 | a1i | ⊢ ( 𝜑  →  𝑀  =  ( toOMeas ‘ 𝑅 ) ) | 
						
							| 10 | 4 | fdmd | ⊢ ( 𝜑  →  dom  𝑅  =  𝑄 ) | 
						
							| 11 | 10 | eqcomd | ⊢ ( 𝜑  →  𝑄  =  dom  𝑅 ) | 
						
							| 12 | 11 | unieqd | ⊢ ( 𝜑  →  ∪  𝑄  =  ∪  dom  𝑅 ) | 
						
							| 13 | 12 | pweqd | ⊢ ( 𝜑  →  𝒫  ∪  𝑄  =  𝒫  ∪  dom  𝑅 ) | 
						
							| 14 | 9 13 | feq12d | ⊢ ( 𝜑  →  ( 𝑀 : 𝒫  ∪  𝑄 ⟶ ( 0 [,] +∞ )  ↔  ( toOMeas ‘ 𝑅 ) : 𝒫  ∪  dom  𝑅 ⟶ ( 0 [,] +∞ ) ) ) | 
						
							| 15 | 8 14 | mpbird | ⊢ ( 𝜑  →  𝑀 : 𝒫  ∪  𝑄 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 16 | 3 | uniexd | ⊢ ( 𝜑  →  ∪  𝑄  ∈  V ) | 
						
							| 17 | 16 15 | carsgcl | ⊢ ( 𝜑  →  ( toCaraSiga ‘ 𝑀 )  ⊆  𝒫  ∪  𝑄 ) | 
						
							| 18 | 2 17 | eqsstrid | ⊢ ( 𝜑  →  𝑆  ⊆  𝒫  ∪  𝑄 ) | 
						
							| 19 | 15 18 | fssresd | ⊢ ( 𝜑  →  ( 𝑀  ↾  𝑆 ) : 𝑆 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 20 | 1 3 4 5 6 | oms0 | ⊢ ( 𝜑  →  ( 𝑀 ‘ ∅ )  =  0 ) | 
						
							| 21 | 16 15 20 | 0elcarsg | ⊢ ( 𝜑  →  ∅  ∈  ( toCaraSiga ‘ 𝑀 ) ) | 
						
							| 22 | 21 2 | eleqtrrdi | ⊢ ( 𝜑  →  ∅  ∈  𝑆 ) | 
						
							| 23 |  | fvres | ⊢ ( ∅  ∈  𝑆  →  ( ( 𝑀  ↾  𝑆 ) ‘ ∅ )  =  ( 𝑀 ‘ ∅ ) ) | 
						
							| 24 | 22 23 | syl | ⊢ ( 𝜑  →  ( ( 𝑀  ↾  𝑆 ) ‘ ∅ )  =  ( 𝑀 ‘ ∅ ) ) | 
						
							| 25 | 24 20 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝑀  ↾  𝑆 ) ‘ ∅ )  =  0 ) | 
						
							| 26 |  | nfcv | ⊢ Ⅎ 𝑔 𝑓 | 
						
							| 27 |  | nfcv | ⊢ Ⅎ 𝑓 𝑔 | 
						
							| 28 |  | id | ⊢ ( 𝑓  =  𝑔  →  𝑓  =  𝑔 ) | 
						
							| 29 | 26 27 28 | cbvdisj | ⊢ ( Disj  𝑓  ∈  𝑒 𝑓  ↔  Disj  𝑔  ∈  𝑒 𝑔 ) | 
						
							| 30 | 29 | anbi2i | ⊢ ( ( 𝑒  ≼  ω  ∧  Disj  𝑓  ∈  𝑒 𝑓 )  ↔  ( 𝑒  ≼  ω  ∧  Disj  𝑔  ∈  𝑒 𝑔 ) ) | 
						
							| 31 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑆 )  ∧  ( 𝑒  ≼  ω  ∧  Disj  𝑔  ∈  𝑒 𝑔 ) )  →  𝑄  ∈  𝑉 ) | 
						
							| 32 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑆 )  ∧  ( 𝑒  ≼  ω  ∧  Disj  𝑔  ∈  𝑒 𝑔 ) )  →  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 33 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑆 )  ∧  ( 𝑒  ≼  ω  ∧  Disj  𝑔  ∈  𝑒 𝑔 ) )  →  𝑒  ∈  𝒫  𝑆 ) | 
						
							| 34 | 33 | elpwid | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑆 )  ∧  ( 𝑒  ≼  ω  ∧  Disj  𝑔  ∈  𝑒 𝑔 ) )  →  𝑒  ⊆  𝑆 ) | 
						
							| 35 | 18 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑆 )  ∧  ( 𝑒  ≼  ω  ∧  Disj  𝑔  ∈  𝑒 𝑔 ) )  →  𝑆  ⊆  𝒫  ∪  𝑄 ) | 
						
							| 36 | 34 35 | sstrd | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑆 )  ∧  ( 𝑒  ≼  ω  ∧  Disj  𝑔  ∈  𝑒 𝑔 ) )  →  𝑒  ⊆  𝒫  ∪  𝑄 ) | 
						
							| 37 | 36 | sselda | ⊢ ( ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑆 )  ∧  ( 𝑒  ≼  ω  ∧  Disj  𝑔  ∈  𝑒 𝑔 ) )  ∧  𝑓  ∈  𝑒 )  →  𝑓  ∈  𝒫  ∪  𝑄 ) | 
						
							| 38 | 37 | elpwid | ⊢ ( ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑆 )  ∧  ( 𝑒  ≼  ω  ∧  Disj  𝑔  ∈  𝑒 𝑔 ) )  ∧  𝑓  ∈  𝑒 )  →  𝑓  ⊆  ∪  𝑄 ) | 
						
							| 39 |  | simprl | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑆 )  ∧  ( 𝑒  ≼  ω  ∧  Disj  𝑔  ∈  𝑒 𝑔 ) )  →  𝑒  ≼  ω ) | 
						
							| 40 | 1 31 32 38 39 | omssubadd | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑆 )  ∧  ( 𝑒  ≼  ω  ∧  Disj  𝑔  ∈  𝑒 𝑔 ) )  →  ( 𝑀 ‘ ∪  𝑓  ∈  𝑒 𝑓 )  ≤  Σ* 𝑓  ∈  𝑒 ( 𝑀 ‘ 𝑓 ) ) | 
						
							| 41 | 16 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑆 )  ∧  ( 𝑒  ≼  ω  ∧  Disj  𝑔  ∈  𝑒 𝑔 ) )  →  ∪  𝑄  ∈  V ) | 
						
							| 42 | 15 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑆 )  ∧  ( 𝑒  ≼  ω  ∧  Disj  𝑔  ∈  𝑒 𝑔 ) )  →  𝑀 : 𝒫  ∪  𝑄 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 43 | 20 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑆 )  ∧  ( 𝑒  ≼  ω  ∧  Disj  𝑔  ∈  𝑒 𝑔 ) )  →  ( 𝑀 ‘ ∅ )  =  0 ) | 
						
							| 44 |  | uniiun | ⊢ ∪  𝑥  =  ∪  𝑦  ∈  𝑥 𝑦 | 
						
							| 45 | 44 | fveq2i | ⊢ ( 𝑀 ‘ ∪  𝑥 )  =  ( 𝑀 ‘ ∪  𝑦  ∈  𝑥 𝑦 ) | 
						
							| 46 | 3 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑥  ≼  ω  ∧  𝑥  ⊆  𝒫  ∪  𝑄 )  →  𝑄  ∈  𝑉 ) | 
						
							| 47 | 4 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑥  ≼  ω  ∧  𝑥  ⊆  𝒫  ∪  𝑄 )  →  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 48 |  | simpl3 | ⊢ ( ( ( 𝜑  ∧  𝑥  ≼  ω  ∧  𝑥  ⊆  𝒫  ∪  𝑄 )  ∧  𝑦  ∈  𝑥 )  →  𝑥  ⊆  𝒫  ∪  𝑄 ) | 
						
							| 49 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑥  ≼  ω  ∧  𝑥  ⊆  𝒫  ∪  𝑄 )  ∧  𝑦  ∈  𝑥 )  →  𝑦  ∈  𝑥 ) | 
						
							| 50 | 48 49 | sseldd | ⊢ ( ( ( 𝜑  ∧  𝑥  ≼  ω  ∧  𝑥  ⊆  𝒫  ∪  𝑄 )  ∧  𝑦  ∈  𝑥 )  →  𝑦  ∈  𝒫  ∪  𝑄 ) | 
						
							| 51 | 50 | elpwid | ⊢ ( ( ( 𝜑  ∧  𝑥  ≼  ω  ∧  𝑥  ⊆  𝒫  ∪  𝑄 )  ∧  𝑦  ∈  𝑥 )  →  𝑦  ⊆  ∪  𝑄 ) | 
						
							| 52 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑥  ≼  ω  ∧  𝑥  ⊆  𝒫  ∪  𝑄 )  →  𝑥  ≼  ω ) | 
						
							| 53 | 1 46 47 51 52 | omssubadd | ⊢ ( ( 𝜑  ∧  𝑥  ≼  ω  ∧  𝑥  ⊆  𝒫  ∪  𝑄 )  →  ( 𝑀 ‘ ∪  𝑦  ∈  𝑥 𝑦 )  ≤  Σ* 𝑦  ∈  𝑥 ( 𝑀 ‘ 𝑦 ) ) | 
						
							| 54 | 45 53 | eqbrtrid | ⊢ ( ( 𝜑  ∧  𝑥  ≼  ω  ∧  𝑥  ⊆  𝒫  ∪  𝑄 )  →  ( 𝑀 ‘ ∪  𝑥 )  ≤  Σ* 𝑦  ∈  𝑥 ( 𝑀 ‘ 𝑦 ) ) | 
						
							| 55 | 54 | 3adant1r | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑆 )  ∧  𝑥  ≼  ω  ∧  𝑥  ⊆  𝒫  ∪  𝑄 )  →  ( 𝑀 ‘ ∪  𝑥 )  ≤  Σ* 𝑦  ∈  𝑥 ( 𝑀 ‘ 𝑦 ) ) | 
						
							| 56 | 55 | 3adant1r | ⊢ ( ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑆 )  ∧  ( 𝑒  ≼  ω  ∧  Disj  𝑔  ∈  𝑒 𝑔 ) )  ∧  𝑥  ≼  ω  ∧  𝑥  ⊆  𝒫  ∪  𝑄 )  →  ( 𝑀 ‘ ∪  𝑥 )  ≤  Σ* 𝑦  ∈  𝑥 ( 𝑀 ‘ 𝑦 ) ) | 
						
							| 57 | 3 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  𝑦  ∧  𝑦  ∈  𝒫  ∪  𝑄 )  →  𝑄  ∈  𝑉 ) | 
						
							| 58 | 4 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  𝑦  ∧  𝑦  ∈  𝒫  ∪  𝑄 )  →  𝑅 : 𝑄 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 59 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  𝑦  ∧  𝑦  ∈  𝒫  ∪  𝑄 )  →  𝑥  ⊆  𝑦 ) | 
						
							| 60 |  | elpwi | ⊢ ( 𝑦  ∈  𝒫  ∪  𝑄  →  𝑦  ⊆  ∪  𝑄 ) | 
						
							| 61 | 60 | 3ad2ant3 | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  𝑦  ∧  𝑦  ∈  𝒫  ∪  𝑄 )  →  𝑦  ⊆  ∪  𝑄 ) | 
						
							| 62 | 1 57 58 59 61 | omsmon | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  𝑦  ∧  𝑦  ∈  𝒫  ∪  𝑄 )  →  ( 𝑀 ‘ 𝑥 )  ≤  ( 𝑀 ‘ 𝑦 ) ) | 
						
							| 63 | 62 | 3adant1r | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑆 )  ∧  𝑥  ⊆  𝑦  ∧  𝑦  ∈  𝒫  ∪  𝑄 )  →  ( 𝑀 ‘ 𝑥 )  ≤  ( 𝑀 ‘ 𝑦 ) ) | 
						
							| 64 | 63 | 3adant1r | ⊢ ( ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑆 )  ∧  ( 𝑒  ≼  ω  ∧  Disj  𝑔  ∈  𝑒 𝑔 ) )  ∧  𝑥  ⊆  𝑦  ∧  𝑦  ∈  𝒫  ∪  𝑄 )  →  ( 𝑀 ‘ 𝑥 )  ≤  ( 𝑀 ‘ 𝑦 ) ) | 
						
							| 65 |  | elpwi | ⊢ ( 𝑒  ∈  𝒫  𝑆  →  𝑒  ⊆  𝑆 ) | 
						
							| 66 | 65 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑆 )  ∧  ( 𝑒  ≼  ω  ∧  Disj  𝑔  ∈  𝑒 𝑔 ) )  →  𝑒  ⊆  𝑆 ) | 
						
							| 67 | 66 2 | sseqtrdi | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑆 )  ∧  ( 𝑒  ≼  ω  ∧  Disj  𝑔  ∈  𝑒 𝑔 ) )  →  𝑒  ⊆  ( toCaraSiga ‘ 𝑀 ) ) | 
						
							| 68 | 41 42 43 56 64 39 67 | carsgclctun | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑆 )  ∧  ( 𝑒  ≼  ω  ∧  Disj  𝑔  ∈  𝑒 𝑔 ) )  →  ∪  𝑒  ∈  ( toCaraSiga ‘ 𝑀 ) ) | 
						
							| 69 | 68 2 | eleqtrrdi | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑆 )  ∧  ( 𝑒  ≼  ω  ∧  Disj  𝑔  ∈  𝑒 𝑔 ) )  →  ∪  𝑒  ∈  𝑆 ) | 
						
							| 70 |  | fvres | ⊢ ( ∪  𝑒  ∈  𝑆  →  ( ( 𝑀  ↾  𝑆 ) ‘ ∪  𝑒 )  =  ( 𝑀 ‘ ∪  𝑒 ) ) | 
						
							| 71 |  | uniiun | ⊢ ∪  𝑒  =  ∪  𝑓  ∈  𝑒 𝑓 | 
						
							| 72 | 71 | fveq2i | ⊢ ( 𝑀 ‘ ∪  𝑒 )  =  ( 𝑀 ‘ ∪  𝑓  ∈  𝑒 𝑓 ) | 
						
							| 73 | 70 72 | eqtrdi | ⊢ ( ∪  𝑒  ∈  𝑆  →  ( ( 𝑀  ↾  𝑆 ) ‘ ∪  𝑒 )  =  ( 𝑀 ‘ ∪  𝑓  ∈  𝑒 𝑓 ) ) | 
						
							| 74 | 69 73 | syl | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑆 )  ∧  ( 𝑒  ≼  ω  ∧  Disj  𝑔  ∈  𝑒 𝑔 ) )  →  ( ( 𝑀  ↾  𝑆 ) ‘ ∪  𝑒 )  =  ( 𝑀 ‘ ∪  𝑓  ∈  𝑒 𝑓 ) ) | 
						
							| 75 |  | nfv | ⊢ Ⅎ 𝑓 ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑆 )  ∧  ( 𝑒  ≼  ω  ∧  Disj  𝑔  ∈  𝑒 𝑔 ) ) | 
						
							| 76 | 66 | sselda | ⊢ ( ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑆 )  ∧  ( 𝑒  ≼  ω  ∧  Disj  𝑔  ∈  𝑒 𝑔 ) )  ∧  𝑓  ∈  𝑒 )  →  𝑓  ∈  𝑆 ) | 
						
							| 77 |  | fvres | ⊢ ( 𝑓  ∈  𝑆  →  ( ( 𝑀  ↾  𝑆 ) ‘ 𝑓 )  =  ( 𝑀 ‘ 𝑓 ) ) | 
						
							| 78 | 76 77 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑆 )  ∧  ( 𝑒  ≼  ω  ∧  Disj  𝑔  ∈  𝑒 𝑔 ) )  ∧  𝑓  ∈  𝑒 )  →  ( ( 𝑀  ↾  𝑆 ) ‘ 𝑓 )  =  ( 𝑀 ‘ 𝑓 ) ) | 
						
							| 79 | 78 | ralrimiva | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑆 )  ∧  ( 𝑒  ≼  ω  ∧  Disj  𝑔  ∈  𝑒 𝑔 ) )  →  ∀ 𝑓  ∈  𝑒 ( ( 𝑀  ↾  𝑆 ) ‘ 𝑓 )  =  ( 𝑀 ‘ 𝑓 ) ) | 
						
							| 80 | 75 79 | esumeq2d | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑆 )  ∧  ( 𝑒  ≼  ω  ∧  Disj  𝑔  ∈  𝑒 𝑔 ) )  →  Σ* 𝑓  ∈  𝑒 ( ( 𝑀  ↾  𝑆 ) ‘ 𝑓 )  =  Σ* 𝑓  ∈  𝑒 ( 𝑀 ‘ 𝑓 ) ) | 
						
							| 81 | 40 74 80 | 3brtr4d | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑆 )  ∧  ( 𝑒  ≼  ω  ∧  Disj  𝑔  ∈  𝑒 𝑔 ) )  →  ( ( 𝑀  ↾  𝑆 ) ‘ ∪  𝑒 )  ≤  Σ* 𝑓  ∈  𝑒 ( ( 𝑀  ↾  𝑆 ) ‘ 𝑓 ) ) | 
						
							| 82 |  | snex | ⊢ { ∅ }  ∈  V | 
						
							| 83 | 82 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑆 )  ∧  ( 𝑒  ≼  ω  ∧  Disj  𝑔  ∈  𝑒 𝑔 ) )  →  { ∅ }  ∈  V ) | 
						
							| 84 | 42 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑆 )  ∧  ( 𝑒  ≼  ω  ∧  Disj  𝑔  ∈  𝑒 𝑔 ) )  ∧  𝑓  ∈  𝑒 )  →  𝑀 : 𝒫  ∪  𝑄 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 85 | 84 37 | ffvelcdmd | ⊢ ( ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑆 )  ∧  ( 𝑒  ≼  ω  ∧  Disj  𝑔  ∈  𝑒 𝑔 ) )  ∧  𝑓  ∈  𝑒 )  →  ( 𝑀 ‘ 𝑓 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 86 |  | elsni | ⊢ ( 𝑓  ∈  { ∅ }  →  𝑓  =  ∅ ) | 
						
							| 87 | 86 | fveq2d | ⊢ ( 𝑓  ∈  { ∅ }  →  ( 𝑀 ‘ 𝑓 )  =  ( 𝑀 ‘ ∅ ) ) | 
						
							| 88 | 87 43 | sylan9eqr | ⊢ ( ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑆 )  ∧  ( 𝑒  ≼  ω  ∧  Disj  𝑔  ∈  𝑒 𝑔 ) )  ∧  𝑓  ∈  { ∅ } )  →  ( 𝑀 ‘ 𝑓 )  =  0 ) | 
						
							| 89 | 33 83 85 88 | esumpad2 | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑆 )  ∧  ( 𝑒  ≼  ω  ∧  Disj  𝑔  ∈  𝑒 𝑔 ) )  →  Σ* 𝑓  ∈  ( 𝑒  ∖  { ∅ } ) ( 𝑀 ‘ 𝑓 )  =  Σ* 𝑓  ∈  𝑒 ( 𝑀 ‘ 𝑓 ) ) | 
						
							| 90 |  | neldifsnd | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑆 )  ∧  ( 𝑒  ≼  ω  ∧  Disj  𝑔  ∈  𝑒 𝑔 ) )  →  ¬  ∅  ∈  ( 𝑒  ∖  { ∅ } ) ) | 
						
							| 91 |  | difss | ⊢ ( 𝑒  ∖  { ∅ } )  ⊆  𝑒 | 
						
							| 92 |  | ssdomg | ⊢ ( 𝑒  ∈  𝒫  𝑆  →  ( ( 𝑒  ∖  { ∅ } )  ⊆  𝑒  →  ( 𝑒  ∖  { ∅ } )  ≼  𝑒 ) ) | 
						
							| 93 | 33 91 92 | mpisyl | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑆 )  ∧  ( 𝑒  ≼  ω  ∧  Disj  𝑔  ∈  𝑒 𝑔 ) )  →  ( 𝑒  ∖  { ∅ } )  ≼  𝑒 ) | 
						
							| 94 |  | domtr | ⊢ ( ( ( 𝑒  ∖  { ∅ } )  ≼  𝑒  ∧  𝑒  ≼  ω )  →  ( 𝑒  ∖  { ∅ } )  ≼  ω ) | 
						
							| 95 | 93 39 94 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑆 )  ∧  ( 𝑒  ≼  ω  ∧  Disj  𝑔  ∈  𝑒 𝑔 ) )  →  ( 𝑒  ∖  { ∅ } )  ≼  ω ) | 
						
							| 96 | 67 | ssdifssd | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑆 )  ∧  ( 𝑒  ≼  ω  ∧  Disj  𝑔  ∈  𝑒 𝑔 ) )  →  ( 𝑒  ∖  { ∅ } )  ⊆  ( toCaraSiga ‘ 𝑀 ) ) | 
						
							| 97 |  | simprr | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑆 )  ∧  ( 𝑒  ≼  ω  ∧  Disj  𝑔  ∈  𝑒 𝑔 ) )  →  Disj  𝑔  ∈  𝑒 𝑔 ) | 
						
							| 98 |  | nfcv | ⊢ Ⅎ 𝑦 𝑔 | 
						
							| 99 |  | nfcv | ⊢ Ⅎ 𝑔 𝑦 | 
						
							| 100 |  | id | ⊢ ( 𝑔  =  𝑦  →  𝑔  =  𝑦 ) | 
						
							| 101 | 98 99 100 | cbvdisj | ⊢ ( Disj  𝑔  ∈  𝑒 𝑔  ↔  Disj  𝑦  ∈  𝑒 𝑦 ) | 
						
							| 102 | 97 101 | sylib | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑆 )  ∧  ( 𝑒  ≼  ω  ∧  Disj  𝑔  ∈  𝑒 𝑔 ) )  →  Disj  𝑦  ∈  𝑒 𝑦 ) | 
						
							| 103 |  | disjss1 | ⊢ ( ( 𝑒  ∖  { ∅ } )  ⊆  𝑒  →  ( Disj  𝑦  ∈  𝑒 𝑦  →  Disj  𝑦  ∈  ( 𝑒  ∖  { ∅ } ) 𝑦 ) ) | 
						
							| 104 | 91 102 103 | mpsyl | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑆 )  ∧  ( 𝑒  ≼  ω  ∧  Disj  𝑔  ∈  𝑒 𝑔 ) )  →  Disj  𝑦  ∈  ( 𝑒  ∖  { ∅ } ) 𝑦 ) | 
						
							| 105 | 41 42 43 56 90 95 96 104 64 | carsggect | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑆 )  ∧  ( 𝑒  ≼  ω  ∧  Disj  𝑔  ∈  𝑒 𝑔 ) )  →  Σ* 𝑓  ∈  ( 𝑒  ∖  { ∅ } ) ( 𝑀 ‘ 𝑓 )  ≤  ( 𝑀 ‘ ∪  ( 𝑒  ∖  { ∅ } ) ) ) | 
						
							| 106 | 89 105 | eqbrtrrd | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑆 )  ∧  ( 𝑒  ≼  ω  ∧  Disj  𝑔  ∈  𝑒 𝑔 ) )  →  Σ* 𝑓  ∈  𝑒 ( 𝑀 ‘ 𝑓 )  ≤  ( 𝑀 ‘ ∪  ( 𝑒  ∖  { ∅ } ) ) ) | 
						
							| 107 |  | unidif0 | ⊢ ∪  ( 𝑒  ∖  { ∅ } )  =  ∪  𝑒 | 
						
							| 108 | 107 | fveq2i | ⊢ ( 𝑀 ‘ ∪  ( 𝑒  ∖  { ∅ } ) )  =  ( 𝑀 ‘ ∪  𝑒 ) | 
						
							| 109 | 106 108 | breqtrdi | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑆 )  ∧  ( 𝑒  ≼  ω  ∧  Disj  𝑔  ∈  𝑒 𝑔 ) )  →  Σ* 𝑓  ∈  𝑒 ( 𝑀 ‘ 𝑓 )  ≤  ( 𝑀 ‘ ∪  𝑒 ) ) | 
						
							| 110 | 69 70 | syl | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑆 )  ∧  ( 𝑒  ≼  ω  ∧  Disj  𝑔  ∈  𝑒 𝑔 ) )  →  ( ( 𝑀  ↾  𝑆 ) ‘ ∪  𝑒 )  =  ( 𝑀 ‘ ∪  𝑒 ) ) | 
						
							| 111 | 109 80 110 | 3brtr4d | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑆 )  ∧  ( 𝑒  ≼  ω  ∧  Disj  𝑔  ∈  𝑒 𝑔 ) )  →  Σ* 𝑓  ∈  𝑒 ( ( 𝑀  ↾  𝑆 ) ‘ 𝑓 )  ≤  ( ( 𝑀  ↾  𝑆 ) ‘ ∪  𝑒 ) ) | 
						
							| 112 | 81 111 | jca | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑆 )  ∧  ( 𝑒  ≼  ω  ∧  Disj  𝑔  ∈  𝑒 𝑔 ) )  →  ( ( ( 𝑀  ↾  𝑆 ) ‘ ∪  𝑒 )  ≤  Σ* 𝑓  ∈  𝑒 ( ( 𝑀  ↾  𝑆 ) ‘ 𝑓 )  ∧  Σ* 𝑓  ∈  𝑒 ( ( 𝑀  ↾  𝑆 ) ‘ 𝑓 )  ≤  ( ( 𝑀  ↾  𝑆 ) ‘ ∪  𝑒 ) ) ) | 
						
							| 113 |  | iccssxr | ⊢ ( 0 [,] +∞ )  ⊆  ℝ* | 
						
							| 114 | 19 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑆 )  ∧  ( 𝑒  ≼  ω  ∧  Disj  𝑔  ∈  𝑒 𝑔 ) )  →  ( 𝑀  ↾  𝑆 ) : 𝑆 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 115 | 114 69 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑆 )  ∧  ( 𝑒  ≼  ω  ∧  Disj  𝑔  ∈  𝑒 𝑔 ) )  →  ( ( 𝑀  ↾  𝑆 ) ‘ ∪  𝑒 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 116 | 113 115 | sselid | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑆 )  ∧  ( 𝑒  ≼  ω  ∧  Disj  𝑔  ∈  𝑒 𝑔 ) )  →  ( ( 𝑀  ↾  𝑆 ) ‘ ∪  𝑒 )  ∈  ℝ* ) | 
						
							| 117 | 114 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑆 )  ∧  ( 𝑒  ≼  ω  ∧  Disj  𝑔  ∈  𝑒 𝑔 ) )  ∧  𝑓  ∈  𝑒 )  →  ( 𝑀  ↾  𝑆 ) : 𝑆 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 118 | 117 76 | ffvelcdmd | ⊢ ( ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑆 )  ∧  ( 𝑒  ≼  ω  ∧  Disj  𝑔  ∈  𝑒 𝑔 ) )  ∧  𝑓  ∈  𝑒 )  →  ( ( 𝑀  ↾  𝑆 ) ‘ 𝑓 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 119 | 118 | ralrimiva | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑆 )  ∧  ( 𝑒  ≼  ω  ∧  Disj  𝑔  ∈  𝑒 𝑔 ) )  →  ∀ 𝑓  ∈  𝑒 ( ( 𝑀  ↾  𝑆 ) ‘ 𝑓 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 120 |  | nfcv | ⊢ Ⅎ 𝑓 𝑒 | 
						
							| 121 | 120 | esumcl | ⊢ ( ( 𝑒  ∈  𝒫  𝑆  ∧  ∀ 𝑓  ∈  𝑒 ( ( 𝑀  ↾  𝑆 ) ‘ 𝑓 )  ∈  ( 0 [,] +∞ ) )  →  Σ* 𝑓  ∈  𝑒 ( ( 𝑀  ↾  𝑆 ) ‘ 𝑓 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 122 | 33 119 121 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑆 )  ∧  ( 𝑒  ≼  ω  ∧  Disj  𝑔  ∈  𝑒 𝑔 ) )  →  Σ* 𝑓  ∈  𝑒 ( ( 𝑀  ↾  𝑆 ) ‘ 𝑓 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 123 | 113 122 | sselid | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑆 )  ∧  ( 𝑒  ≼  ω  ∧  Disj  𝑔  ∈  𝑒 𝑔 ) )  →  Σ* 𝑓  ∈  𝑒 ( ( 𝑀  ↾  𝑆 ) ‘ 𝑓 )  ∈  ℝ* ) | 
						
							| 124 |  | xrletri3 | ⊢ ( ( ( ( 𝑀  ↾  𝑆 ) ‘ ∪  𝑒 )  ∈  ℝ*  ∧  Σ* 𝑓  ∈  𝑒 ( ( 𝑀  ↾  𝑆 ) ‘ 𝑓 )  ∈  ℝ* )  →  ( ( ( 𝑀  ↾  𝑆 ) ‘ ∪  𝑒 )  =  Σ* 𝑓  ∈  𝑒 ( ( 𝑀  ↾  𝑆 ) ‘ 𝑓 )  ↔  ( ( ( 𝑀  ↾  𝑆 ) ‘ ∪  𝑒 )  ≤  Σ* 𝑓  ∈  𝑒 ( ( 𝑀  ↾  𝑆 ) ‘ 𝑓 )  ∧  Σ* 𝑓  ∈  𝑒 ( ( 𝑀  ↾  𝑆 ) ‘ 𝑓 )  ≤  ( ( 𝑀  ↾  𝑆 ) ‘ ∪  𝑒 ) ) ) ) | 
						
							| 125 | 116 123 124 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑆 )  ∧  ( 𝑒  ≼  ω  ∧  Disj  𝑔  ∈  𝑒 𝑔 ) )  →  ( ( ( 𝑀  ↾  𝑆 ) ‘ ∪  𝑒 )  =  Σ* 𝑓  ∈  𝑒 ( ( 𝑀  ↾  𝑆 ) ‘ 𝑓 )  ↔  ( ( ( 𝑀  ↾  𝑆 ) ‘ ∪  𝑒 )  ≤  Σ* 𝑓  ∈  𝑒 ( ( 𝑀  ↾  𝑆 ) ‘ 𝑓 )  ∧  Σ* 𝑓  ∈  𝑒 ( ( 𝑀  ↾  𝑆 ) ‘ 𝑓 )  ≤  ( ( 𝑀  ↾  𝑆 ) ‘ ∪  𝑒 ) ) ) ) | 
						
							| 126 | 112 125 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑆 )  ∧  ( 𝑒  ≼  ω  ∧  Disj  𝑔  ∈  𝑒 𝑔 ) )  →  ( ( 𝑀  ↾  𝑆 ) ‘ ∪  𝑒 )  =  Σ* 𝑓  ∈  𝑒 ( ( 𝑀  ↾  𝑆 ) ‘ 𝑓 ) ) | 
						
							| 127 | 30 126 | sylan2b | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑆 )  ∧  ( 𝑒  ≼  ω  ∧  Disj  𝑓  ∈  𝑒 𝑓 ) )  →  ( ( 𝑀  ↾  𝑆 ) ‘ ∪  𝑒 )  =  Σ* 𝑓  ∈  𝑒 ( ( 𝑀  ↾  𝑆 ) ‘ 𝑓 ) ) | 
						
							| 128 | 127 | ex | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑆 )  →  ( ( 𝑒  ≼  ω  ∧  Disj  𝑓  ∈  𝑒 𝑓 )  →  ( ( 𝑀  ↾  𝑆 ) ‘ ∪  𝑒 )  =  Σ* 𝑓  ∈  𝑒 ( ( 𝑀  ↾  𝑆 ) ‘ 𝑓 ) ) ) | 
						
							| 129 | 128 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑒  ∈  𝒫  𝑆 ( ( 𝑒  ≼  ω  ∧  Disj  𝑓  ∈  𝑒 𝑓 )  →  ( ( 𝑀  ↾  𝑆 ) ‘ ∪  𝑒 )  =  Σ* 𝑓  ∈  𝑒 ( ( 𝑀  ↾  𝑆 ) ‘ 𝑓 ) ) ) | 
						
							| 130 | 19 25 129 | 3jca | ⊢ ( 𝜑  →  ( ( 𝑀  ↾  𝑆 ) : 𝑆 ⟶ ( 0 [,] +∞ )  ∧  ( ( 𝑀  ↾  𝑆 ) ‘ ∅ )  =  0  ∧  ∀ 𝑒  ∈  𝒫  𝑆 ( ( 𝑒  ≼  ω  ∧  Disj  𝑓  ∈  𝑒 𝑓 )  →  ( ( 𝑀  ↾  𝑆 ) ‘ ∪  𝑒 )  =  Σ* 𝑓  ∈  𝑒 ( ( 𝑀  ↾  𝑆 ) ‘ 𝑓 ) ) ) ) | 
						
							| 131 | 16 15 20 54 62 | carsgsiga | ⊢ ( 𝜑  →  ( toCaraSiga ‘ 𝑀 )  ∈  ( sigAlgebra ‘ ∪  𝑄 ) ) | 
						
							| 132 | 2 131 | eqeltrid | ⊢ ( 𝜑  →  𝑆  ∈  ( sigAlgebra ‘ ∪  𝑄 ) ) | 
						
							| 133 |  | elrnsiga | ⊢ ( 𝑆  ∈  ( sigAlgebra ‘ ∪  𝑄 )  →  𝑆  ∈  ∪  ran  sigAlgebra ) | 
						
							| 134 |  | ismeas | ⊢ ( 𝑆  ∈  ∪  ran  sigAlgebra  →  ( ( 𝑀  ↾  𝑆 )  ∈  ( measures ‘ 𝑆 )  ↔  ( ( 𝑀  ↾  𝑆 ) : 𝑆 ⟶ ( 0 [,] +∞ )  ∧  ( ( 𝑀  ↾  𝑆 ) ‘ ∅ )  =  0  ∧  ∀ 𝑒  ∈  𝒫  𝑆 ( ( 𝑒  ≼  ω  ∧  Disj  𝑓  ∈  𝑒 𝑓 )  →  ( ( 𝑀  ↾  𝑆 ) ‘ ∪  𝑒 )  =  Σ* 𝑓  ∈  𝑒 ( ( 𝑀  ↾  𝑆 ) ‘ 𝑓 ) ) ) ) ) | 
						
							| 135 | 132 133 134 | 3syl | ⊢ ( 𝜑  →  ( ( 𝑀  ↾  𝑆 )  ∈  ( measures ‘ 𝑆 )  ↔  ( ( 𝑀  ↾  𝑆 ) : 𝑆 ⟶ ( 0 [,] +∞ )  ∧  ( ( 𝑀  ↾  𝑆 ) ‘ ∅ )  =  0  ∧  ∀ 𝑒  ∈  𝒫  𝑆 ( ( 𝑒  ≼  ω  ∧  Disj  𝑓  ∈  𝑒 𝑓 )  →  ( ( 𝑀  ↾  𝑆 ) ‘ ∪  𝑒 )  =  Σ* 𝑓  ∈  𝑒 ( ( 𝑀  ↾  𝑆 ) ‘ 𝑓 ) ) ) ) ) | 
						
							| 136 | 130 135 | mpbird | ⊢ ( 𝜑  →  ( 𝑀  ↾  𝑆 )  ∈  ( measures ‘ 𝑆 ) ) |