Step |
Hyp |
Ref |
Expression |
1 |
|
caraext.1 |
⊢ ( 𝜑 → 𝑃 : 𝑅 ⟶ ( 0 [,] +∞ ) ) |
2 |
|
caraext.2 |
⊢ ( 𝜑 → ( 𝑃 ‘ ∅ ) = 0 ) |
3 |
|
caraext.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝑅 ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) → ( 𝑃 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑃 ‘ 𝑦 ) ) |
4 |
|
pmeasmono.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑅 ) |
5 |
|
pmeasmono.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑅 ) |
6 |
|
pmeasmono.3 |
⊢ ( 𝜑 → ( 𝐵 ∖ 𝐴 ) ∈ 𝑅 ) |
7 |
|
pmeasmono.4 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
8 |
|
eqimss |
⊢ ( 𝐴 = ( 𝐵 ∖ 𝐴 ) → 𝐴 ⊆ ( 𝐵 ∖ 𝐴 ) ) |
9 |
|
ssdifeq0 |
⊢ ( 𝐴 ⊆ ( 𝐵 ∖ 𝐴 ) ↔ 𝐴 = ∅ ) |
10 |
8 9
|
sylib |
⊢ ( 𝐴 = ( 𝐵 ∖ 𝐴 ) → 𝐴 = ∅ ) |
11 |
10
|
fveq2d |
⊢ ( 𝐴 = ( 𝐵 ∖ 𝐴 ) → ( 𝑃 ‘ 𝐴 ) = ( 𝑃 ‘ ∅ ) ) |
12 |
11
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐴 = ( 𝐵 ∖ 𝐴 ) ) → ( 𝑃 ‘ 𝐴 ) = ( 𝑃 ‘ ∅ ) ) |
13 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = ( 𝐵 ∖ 𝐴 ) ) → ( 𝑃 ‘ ∅ ) = 0 ) |
14 |
12 13
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐴 = ( 𝐵 ∖ 𝐴 ) ) → ( 𝑃 ‘ 𝐴 ) = 0 ) |
15 |
1 5
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑃 ‘ 𝐵 ) ∈ ( 0 [,] +∞ ) ) |
16 |
|
elxrge0 |
⊢ ( ( 𝑃 ‘ 𝐵 ) ∈ ( 0 [,] +∞ ) ↔ ( ( 𝑃 ‘ 𝐵 ) ∈ ℝ* ∧ 0 ≤ ( 𝑃 ‘ 𝐵 ) ) ) |
17 |
16
|
simprbi |
⊢ ( ( 𝑃 ‘ 𝐵 ) ∈ ( 0 [,] +∞ ) → 0 ≤ ( 𝑃 ‘ 𝐵 ) ) |
18 |
15 17
|
syl |
⊢ ( 𝜑 → 0 ≤ ( 𝑃 ‘ 𝐵 ) ) |
19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = ( 𝐵 ∖ 𝐴 ) ) → 0 ≤ ( 𝑃 ‘ 𝐵 ) ) |
20 |
14 19
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝐴 = ( 𝐵 ∖ 𝐴 ) ) → ( 𝑃 ‘ 𝐴 ) ≤ ( 𝑃 ‘ 𝐵 ) ) |
21 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
22 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ( 𝐵 ∖ 𝐴 ) ) → 𝑃 : 𝑅 ⟶ ( 0 [,] +∞ ) ) |
23 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ( 𝐵 ∖ 𝐴 ) ) → 𝐴 ∈ 𝑅 ) |
24 |
22 23
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ( 𝐵 ∖ 𝐴 ) ) → ( 𝑃 ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ) |
25 |
21 24
|
sselid |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ( 𝐵 ∖ 𝐴 ) ) → ( 𝑃 ‘ 𝐴 ) ∈ ℝ* ) |
26 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ( 𝐵 ∖ 𝐴 ) ) → ( 𝐵 ∖ 𝐴 ) ∈ 𝑅 ) |
27 |
22 26
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ( 𝐵 ∖ 𝐴 ) ) → ( 𝑃 ‘ ( 𝐵 ∖ 𝐴 ) ) ∈ ( 0 [,] +∞ ) ) |
28 |
|
xrge0addge |
⊢ ( ( ( 𝑃 ‘ 𝐴 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐵 ∖ 𝐴 ) ) ∈ ( 0 [,] +∞ ) ) → ( 𝑃 ‘ 𝐴 ) ≤ ( ( 𝑃 ‘ 𝐴 ) +𝑒 ( 𝑃 ‘ ( 𝐵 ∖ 𝐴 ) ) ) ) |
29 |
25 27 28
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ( 𝐵 ∖ 𝐴 ) ) → ( 𝑃 ‘ 𝐴 ) ≤ ( ( 𝑃 ‘ 𝐴 ) +𝑒 ( 𝑃 ‘ ( 𝐵 ∖ 𝐴 ) ) ) ) |
30 |
|
prct |
⊢ ( ( 𝐴 ∈ 𝑅 ∧ ( 𝐵 ∖ 𝐴 ) ∈ 𝑅 ) → { 𝐴 , ( 𝐵 ∖ 𝐴 ) } ≼ ω ) |
31 |
4 6 30
|
syl2anc |
⊢ ( 𝜑 → { 𝐴 , ( 𝐵 ∖ 𝐴 ) } ≼ ω ) |
32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ( 𝐵 ∖ 𝐴 ) ) → { 𝐴 , ( 𝐵 ∖ 𝐴 ) } ≼ ω ) |
33 |
|
prssi |
⊢ ( ( 𝐴 ∈ 𝑅 ∧ ( 𝐵 ∖ 𝐴 ) ∈ 𝑅 ) → { 𝐴 , ( 𝐵 ∖ 𝐴 ) } ⊆ 𝑅 ) |
34 |
4 6 33
|
syl2anc |
⊢ ( 𝜑 → { 𝐴 , ( 𝐵 ∖ 𝐴 ) } ⊆ 𝑅 ) |
35 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ( 𝐵 ∖ 𝐴 ) ) → { 𝐴 , ( 𝐵 ∖ 𝐴 ) } ⊆ 𝑅 ) |
36 |
|
disjdif |
⊢ ( 𝐴 ∩ ( 𝐵 ∖ 𝐴 ) ) = ∅ |
37 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ( 𝐵 ∖ 𝐴 ) ) → 𝐴 ≠ ( 𝐵 ∖ 𝐴 ) ) |
38 |
|
id |
⊢ ( 𝑦 = 𝐴 → 𝑦 = 𝐴 ) |
39 |
|
id |
⊢ ( 𝑦 = ( 𝐵 ∖ 𝐴 ) → 𝑦 = ( 𝐵 ∖ 𝐴 ) ) |
40 |
38 39
|
disjprg |
⊢ ( ( 𝐴 ∈ 𝑅 ∧ ( 𝐵 ∖ 𝐴 ) ∈ 𝑅 ∧ 𝐴 ≠ ( 𝐵 ∖ 𝐴 ) ) → ( Disj 𝑦 ∈ { 𝐴 , ( 𝐵 ∖ 𝐴 ) } 𝑦 ↔ ( 𝐴 ∩ ( 𝐵 ∖ 𝐴 ) ) = ∅ ) ) |
41 |
23 26 37 40
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ( 𝐵 ∖ 𝐴 ) ) → ( Disj 𝑦 ∈ { 𝐴 , ( 𝐵 ∖ 𝐴 ) } 𝑦 ↔ ( 𝐴 ∩ ( 𝐵 ∖ 𝐴 ) ) = ∅ ) ) |
42 |
36 41
|
mpbiri |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ( 𝐵 ∖ 𝐴 ) ) → Disj 𝑦 ∈ { 𝐴 , ( 𝐵 ∖ 𝐴 ) } 𝑦 ) |
43 |
32 35 42
|
3jca |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ( 𝐵 ∖ 𝐴 ) ) → ( { 𝐴 , ( 𝐵 ∖ 𝐴 ) } ≼ ω ∧ { 𝐴 , ( 𝐵 ∖ 𝐴 ) } ⊆ 𝑅 ∧ Disj 𝑦 ∈ { 𝐴 , ( 𝐵 ∖ 𝐴 ) } 𝑦 ) ) |
44 |
|
prex |
⊢ { 𝐴 , ( 𝐵 ∖ 𝐴 ) } ∈ V |
45 |
|
biidd |
⊢ ( 𝑥 = { 𝐴 , ( 𝐵 ∖ 𝐴 ) } → ( 𝜑 ↔ 𝜑 ) ) |
46 |
|
breq1 |
⊢ ( 𝑥 = { 𝐴 , ( 𝐵 ∖ 𝐴 ) } → ( 𝑥 ≼ ω ↔ { 𝐴 , ( 𝐵 ∖ 𝐴 ) } ≼ ω ) ) |
47 |
|
sseq1 |
⊢ ( 𝑥 = { 𝐴 , ( 𝐵 ∖ 𝐴 ) } → ( 𝑥 ⊆ 𝑅 ↔ { 𝐴 , ( 𝐵 ∖ 𝐴 ) } ⊆ 𝑅 ) ) |
48 |
|
disjeq1 |
⊢ ( 𝑥 = { 𝐴 , ( 𝐵 ∖ 𝐴 ) } → ( Disj 𝑦 ∈ 𝑥 𝑦 ↔ Disj 𝑦 ∈ { 𝐴 , ( 𝐵 ∖ 𝐴 ) } 𝑦 ) ) |
49 |
46 47 48
|
3anbi123d |
⊢ ( 𝑥 = { 𝐴 , ( 𝐵 ∖ 𝐴 ) } → ( ( 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝑅 ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ↔ ( { 𝐴 , ( 𝐵 ∖ 𝐴 ) } ≼ ω ∧ { 𝐴 , ( 𝐵 ∖ 𝐴 ) } ⊆ 𝑅 ∧ Disj 𝑦 ∈ { 𝐴 , ( 𝐵 ∖ 𝐴 ) } 𝑦 ) ) ) |
50 |
45 49
|
anbi12d |
⊢ ( 𝑥 = { 𝐴 , ( 𝐵 ∖ 𝐴 ) } → ( ( 𝜑 ∧ ( 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝑅 ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) ↔ ( 𝜑 ∧ ( { 𝐴 , ( 𝐵 ∖ 𝐴 ) } ≼ ω ∧ { 𝐴 , ( 𝐵 ∖ 𝐴 ) } ⊆ 𝑅 ∧ Disj 𝑦 ∈ { 𝐴 , ( 𝐵 ∖ 𝐴 ) } 𝑦 ) ) ) ) |
51 |
|
unieq |
⊢ ( 𝑥 = { 𝐴 , ( 𝐵 ∖ 𝐴 ) } → ∪ 𝑥 = ∪ { 𝐴 , ( 𝐵 ∖ 𝐴 ) } ) |
52 |
51
|
fveq2d |
⊢ ( 𝑥 = { 𝐴 , ( 𝐵 ∖ 𝐴 ) } → ( 𝑃 ‘ ∪ 𝑥 ) = ( 𝑃 ‘ ∪ { 𝐴 , ( 𝐵 ∖ 𝐴 ) } ) ) |
53 |
|
esumeq1 |
⊢ ( 𝑥 = { 𝐴 , ( 𝐵 ∖ 𝐴 ) } → Σ* 𝑦 ∈ 𝑥 ( 𝑃 ‘ 𝑦 ) = Σ* 𝑦 ∈ { 𝐴 , ( 𝐵 ∖ 𝐴 ) } ( 𝑃 ‘ 𝑦 ) ) |
54 |
52 53
|
eqeq12d |
⊢ ( 𝑥 = { 𝐴 , ( 𝐵 ∖ 𝐴 ) } → ( ( 𝑃 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑃 ‘ 𝑦 ) ↔ ( 𝑃 ‘ ∪ { 𝐴 , ( 𝐵 ∖ 𝐴 ) } ) = Σ* 𝑦 ∈ { 𝐴 , ( 𝐵 ∖ 𝐴 ) } ( 𝑃 ‘ 𝑦 ) ) ) |
55 |
50 54
|
imbi12d |
⊢ ( 𝑥 = { 𝐴 , ( 𝐵 ∖ 𝐴 ) } → ( ( ( 𝜑 ∧ ( 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝑅 ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) ) → ( 𝑃 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑃 ‘ 𝑦 ) ) ↔ ( ( 𝜑 ∧ ( { 𝐴 , ( 𝐵 ∖ 𝐴 ) } ≼ ω ∧ { 𝐴 , ( 𝐵 ∖ 𝐴 ) } ⊆ 𝑅 ∧ Disj 𝑦 ∈ { 𝐴 , ( 𝐵 ∖ 𝐴 ) } 𝑦 ) ) → ( 𝑃 ‘ ∪ { 𝐴 , ( 𝐵 ∖ 𝐴 ) } ) = Σ* 𝑦 ∈ { 𝐴 , ( 𝐵 ∖ 𝐴 ) } ( 𝑃 ‘ 𝑦 ) ) ) ) |
56 |
55 3
|
vtoclg |
⊢ ( { 𝐴 , ( 𝐵 ∖ 𝐴 ) } ∈ V → ( ( 𝜑 ∧ ( { 𝐴 , ( 𝐵 ∖ 𝐴 ) } ≼ ω ∧ { 𝐴 , ( 𝐵 ∖ 𝐴 ) } ⊆ 𝑅 ∧ Disj 𝑦 ∈ { 𝐴 , ( 𝐵 ∖ 𝐴 ) } 𝑦 ) ) → ( 𝑃 ‘ ∪ { 𝐴 , ( 𝐵 ∖ 𝐴 ) } ) = Σ* 𝑦 ∈ { 𝐴 , ( 𝐵 ∖ 𝐴 ) } ( 𝑃 ‘ 𝑦 ) ) ) |
57 |
44 56
|
ax-mp |
⊢ ( ( 𝜑 ∧ ( { 𝐴 , ( 𝐵 ∖ 𝐴 ) } ≼ ω ∧ { 𝐴 , ( 𝐵 ∖ 𝐴 ) } ⊆ 𝑅 ∧ Disj 𝑦 ∈ { 𝐴 , ( 𝐵 ∖ 𝐴 ) } 𝑦 ) ) → ( 𝑃 ‘ ∪ { 𝐴 , ( 𝐵 ∖ 𝐴 ) } ) = Σ* 𝑦 ∈ { 𝐴 , ( 𝐵 ∖ 𝐴 ) } ( 𝑃 ‘ 𝑦 ) ) |
58 |
57
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ ( 𝐵 ∖ 𝐴 ) ) ∧ ( { 𝐴 , ( 𝐵 ∖ 𝐴 ) } ≼ ω ∧ { 𝐴 , ( 𝐵 ∖ 𝐴 ) } ⊆ 𝑅 ∧ Disj 𝑦 ∈ { 𝐴 , ( 𝐵 ∖ 𝐴 ) } 𝑦 ) ) → ( 𝑃 ‘ ∪ { 𝐴 , ( 𝐵 ∖ 𝐴 ) } ) = Σ* 𝑦 ∈ { 𝐴 , ( 𝐵 ∖ 𝐴 ) } ( 𝑃 ‘ 𝑦 ) ) |
59 |
43 58
|
mpdan |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ( 𝐵 ∖ 𝐴 ) ) → ( 𝑃 ‘ ∪ { 𝐴 , ( 𝐵 ∖ 𝐴 ) } ) = Σ* 𝑦 ∈ { 𝐴 , ( 𝐵 ∖ 𝐴 ) } ( 𝑃 ‘ 𝑦 ) ) |
60 |
|
uniprg |
⊢ ( ( 𝐴 ∈ 𝑅 ∧ ( 𝐵 ∖ 𝐴 ) ∈ 𝑅 ) → ∪ { 𝐴 , ( 𝐵 ∖ 𝐴 ) } = ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) ) |
61 |
4 6 60
|
syl2anc |
⊢ ( 𝜑 → ∪ { 𝐴 , ( 𝐵 ∖ 𝐴 ) } = ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) ) |
62 |
|
undif |
⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) = 𝐵 ) |
63 |
7 62
|
sylib |
⊢ ( 𝜑 → ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) = 𝐵 ) |
64 |
61 63
|
eqtrd |
⊢ ( 𝜑 → ∪ { 𝐴 , ( 𝐵 ∖ 𝐴 ) } = 𝐵 ) |
65 |
64
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ( 𝐵 ∖ 𝐴 ) ) → ∪ { 𝐴 , ( 𝐵 ∖ 𝐴 ) } = 𝐵 ) |
66 |
65
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ( 𝐵 ∖ 𝐴 ) ) → ( 𝑃 ‘ ∪ { 𝐴 , ( 𝐵 ∖ 𝐴 ) } ) = ( 𝑃 ‘ 𝐵 ) ) |
67 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ ( 𝐵 ∖ 𝐴 ) ) ∧ 𝑦 = 𝐴 ) → 𝑦 = 𝐴 ) |
68 |
67
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ ( 𝐵 ∖ 𝐴 ) ) ∧ 𝑦 = 𝐴 ) → ( 𝑃 ‘ 𝑦 ) = ( 𝑃 ‘ 𝐴 ) ) |
69 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ ( 𝐵 ∖ 𝐴 ) ) ∧ 𝑦 = ( 𝐵 ∖ 𝐴 ) ) → 𝑦 = ( 𝐵 ∖ 𝐴 ) ) |
70 |
69
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ ( 𝐵 ∖ 𝐴 ) ) ∧ 𝑦 = ( 𝐵 ∖ 𝐴 ) ) → ( 𝑃 ‘ 𝑦 ) = ( 𝑃 ‘ ( 𝐵 ∖ 𝐴 ) ) ) |
71 |
68 70 23 26 24 27 37
|
esumpr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ( 𝐵 ∖ 𝐴 ) ) → Σ* 𝑦 ∈ { 𝐴 , ( 𝐵 ∖ 𝐴 ) } ( 𝑃 ‘ 𝑦 ) = ( ( 𝑃 ‘ 𝐴 ) +𝑒 ( 𝑃 ‘ ( 𝐵 ∖ 𝐴 ) ) ) ) |
72 |
59 66 71
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ( 𝐵 ∖ 𝐴 ) ) → ( 𝑃 ‘ 𝐵 ) = ( ( 𝑃 ‘ 𝐴 ) +𝑒 ( 𝑃 ‘ ( 𝐵 ∖ 𝐴 ) ) ) ) |
73 |
29 72
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ( 𝐵 ∖ 𝐴 ) ) → ( 𝑃 ‘ 𝐴 ) ≤ ( 𝑃 ‘ 𝐵 ) ) |
74 |
20 73
|
pm2.61dane |
⊢ ( 𝜑 → ( 𝑃 ‘ 𝐴 ) ≤ ( 𝑃 ‘ 𝐵 ) ) |