| Step | Hyp | Ref | Expression | 
						
							| 1 |  | caraext.1 | ⊢ ( 𝜑  →  𝑃 : 𝑅 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 2 |  | caraext.2 | ⊢ ( 𝜑  →  ( 𝑃 ‘ ∅ )  =  0 ) | 
						
							| 3 |  | caraext.3 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ≼  ω  ∧  𝑥  ⊆  𝑅  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  →  ( 𝑃 ‘ ∪  𝑥 )  =  Σ* 𝑦  ∈  𝑥 ( 𝑃 ‘ 𝑦 ) ) | 
						
							| 4 |  | pmeasmono.1 | ⊢ ( 𝜑  →  𝐴  ∈  𝑅 ) | 
						
							| 5 |  | pmeasmono.2 | ⊢ ( 𝜑  →  𝐵  ∈  𝑅 ) | 
						
							| 6 |  | pmeasmono.3 | ⊢ ( 𝜑  →  ( 𝐵  ∖  𝐴 )  ∈  𝑅 ) | 
						
							| 7 |  | pmeasmono.4 | ⊢ ( 𝜑  →  𝐴  ⊆  𝐵 ) | 
						
							| 8 |  | eqimss | ⊢ ( 𝐴  =  ( 𝐵  ∖  𝐴 )  →  𝐴  ⊆  ( 𝐵  ∖  𝐴 ) ) | 
						
							| 9 |  | ssdifeq0 | ⊢ ( 𝐴  ⊆  ( 𝐵  ∖  𝐴 )  ↔  𝐴  =  ∅ ) | 
						
							| 10 | 8 9 | sylib | ⊢ ( 𝐴  =  ( 𝐵  ∖  𝐴 )  →  𝐴  =  ∅ ) | 
						
							| 11 | 10 | fveq2d | ⊢ ( 𝐴  =  ( 𝐵  ∖  𝐴 )  →  ( 𝑃 ‘ 𝐴 )  =  ( 𝑃 ‘ ∅ ) ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( 𝜑  ∧  𝐴  =  ( 𝐵  ∖  𝐴 ) )  →  ( 𝑃 ‘ 𝐴 )  =  ( 𝑃 ‘ ∅ ) ) | 
						
							| 13 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  =  ( 𝐵  ∖  𝐴 ) )  →  ( 𝑃 ‘ ∅ )  =  0 ) | 
						
							| 14 | 12 13 | eqtrd | ⊢ ( ( 𝜑  ∧  𝐴  =  ( 𝐵  ∖  𝐴 ) )  →  ( 𝑃 ‘ 𝐴 )  =  0 ) | 
						
							| 15 | 1 5 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝑃 ‘ 𝐵 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 16 |  | elxrge0 | ⊢ ( ( 𝑃 ‘ 𝐵 )  ∈  ( 0 [,] +∞ )  ↔  ( ( 𝑃 ‘ 𝐵 )  ∈  ℝ*  ∧  0  ≤  ( 𝑃 ‘ 𝐵 ) ) ) | 
						
							| 17 | 16 | simprbi | ⊢ ( ( 𝑃 ‘ 𝐵 )  ∈  ( 0 [,] +∞ )  →  0  ≤  ( 𝑃 ‘ 𝐵 ) ) | 
						
							| 18 | 15 17 | syl | ⊢ ( 𝜑  →  0  ≤  ( 𝑃 ‘ 𝐵 ) ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  =  ( 𝐵  ∖  𝐴 ) )  →  0  ≤  ( 𝑃 ‘ 𝐵 ) ) | 
						
							| 20 | 14 19 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝐴  =  ( 𝐵  ∖  𝐴 ) )  →  ( 𝑃 ‘ 𝐴 )  ≤  ( 𝑃 ‘ 𝐵 ) ) | 
						
							| 21 |  | iccssxr | ⊢ ( 0 [,] +∞ )  ⊆  ℝ* | 
						
							| 22 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  ( 𝐵  ∖  𝐴 ) )  →  𝑃 : 𝑅 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 23 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  ( 𝐵  ∖  𝐴 ) )  →  𝐴  ∈  𝑅 ) | 
						
							| 24 | 22 23 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝐴  ≠  ( 𝐵  ∖  𝐴 ) )  →  ( 𝑃 ‘ 𝐴 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 25 | 21 24 | sselid | ⊢ ( ( 𝜑  ∧  𝐴  ≠  ( 𝐵  ∖  𝐴 ) )  →  ( 𝑃 ‘ 𝐴 )  ∈  ℝ* ) | 
						
							| 26 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  ( 𝐵  ∖  𝐴 ) )  →  ( 𝐵  ∖  𝐴 )  ∈  𝑅 ) | 
						
							| 27 | 22 26 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝐴  ≠  ( 𝐵  ∖  𝐴 ) )  →  ( 𝑃 ‘ ( 𝐵  ∖  𝐴 ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 28 |  | xrge0addge | ⊢ ( ( ( 𝑃 ‘ 𝐴 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐵  ∖  𝐴 ) )  ∈  ( 0 [,] +∞ ) )  →  ( 𝑃 ‘ 𝐴 )  ≤  ( ( 𝑃 ‘ 𝐴 )  +𝑒  ( 𝑃 ‘ ( 𝐵  ∖  𝐴 ) ) ) ) | 
						
							| 29 | 25 27 28 | syl2anc | ⊢ ( ( 𝜑  ∧  𝐴  ≠  ( 𝐵  ∖  𝐴 ) )  →  ( 𝑃 ‘ 𝐴 )  ≤  ( ( 𝑃 ‘ 𝐴 )  +𝑒  ( 𝑃 ‘ ( 𝐵  ∖  𝐴 ) ) ) ) | 
						
							| 30 |  | prct | ⊢ ( ( 𝐴  ∈  𝑅  ∧  ( 𝐵  ∖  𝐴 )  ∈  𝑅 )  →  { 𝐴 ,  ( 𝐵  ∖  𝐴 ) }  ≼  ω ) | 
						
							| 31 | 4 6 30 | syl2anc | ⊢ ( 𝜑  →  { 𝐴 ,  ( 𝐵  ∖  𝐴 ) }  ≼  ω ) | 
						
							| 32 | 31 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  ( 𝐵  ∖  𝐴 ) )  →  { 𝐴 ,  ( 𝐵  ∖  𝐴 ) }  ≼  ω ) | 
						
							| 33 |  | prssi | ⊢ ( ( 𝐴  ∈  𝑅  ∧  ( 𝐵  ∖  𝐴 )  ∈  𝑅 )  →  { 𝐴 ,  ( 𝐵  ∖  𝐴 ) }  ⊆  𝑅 ) | 
						
							| 34 | 4 6 33 | syl2anc | ⊢ ( 𝜑  →  { 𝐴 ,  ( 𝐵  ∖  𝐴 ) }  ⊆  𝑅 ) | 
						
							| 35 | 34 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  ( 𝐵  ∖  𝐴 ) )  →  { 𝐴 ,  ( 𝐵  ∖  𝐴 ) }  ⊆  𝑅 ) | 
						
							| 36 |  | disjdif | ⊢ ( 𝐴  ∩  ( 𝐵  ∖  𝐴 ) )  =  ∅ | 
						
							| 37 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  ( 𝐵  ∖  𝐴 ) )  →  𝐴  ≠  ( 𝐵  ∖  𝐴 ) ) | 
						
							| 38 |  | id | ⊢ ( 𝑦  =  𝐴  →  𝑦  =  𝐴 ) | 
						
							| 39 |  | id | ⊢ ( 𝑦  =  ( 𝐵  ∖  𝐴 )  →  𝑦  =  ( 𝐵  ∖  𝐴 ) ) | 
						
							| 40 | 38 39 | disjprg | ⊢ ( ( 𝐴  ∈  𝑅  ∧  ( 𝐵  ∖  𝐴 )  ∈  𝑅  ∧  𝐴  ≠  ( 𝐵  ∖  𝐴 ) )  →  ( Disj  𝑦  ∈  { 𝐴 ,  ( 𝐵  ∖  𝐴 ) } 𝑦  ↔  ( 𝐴  ∩  ( 𝐵  ∖  𝐴 ) )  =  ∅ ) ) | 
						
							| 41 | 23 26 37 40 | syl3anc | ⊢ ( ( 𝜑  ∧  𝐴  ≠  ( 𝐵  ∖  𝐴 ) )  →  ( Disj  𝑦  ∈  { 𝐴 ,  ( 𝐵  ∖  𝐴 ) } 𝑦  ↔  ( 𝐴  ∩  ( 𝐵  ∖  𝐴 ) )  =  ∅ ) ) | 
						
							| 42 | 36 41 | mpbiri | ⊢ ( ( 𝜑  ∧  𝐴  ≠  ( 𝐵  ∖  𝐴 ) )  →  Disj  𝑦  ∈  { 𝐴 ,  ( 𝐵  ∖  𝐴 ) } 𝑦 ) | 
						
							| 43 | 32 35 42 | 3jca | ⊢ ( ( 𝜑  ∧  𝐴  ≠  ( 𝐵  ∖  𝐴 ) )  →  ( { 𝐴 ,  ( 𝐵  ∖  𝐴 ) }  ≼  ω  ∧  { 𝐴 ,  ( 𝐵  ∖  𝐴 ) }  ⊆  𝑅  ∧  Disj  𝑦  ∈  { 𝐴 ,  ( 𝐵  ∖  𝐴 ) } 𝑦 ) ) | 
						
							| 44 |  | prex | ⊢ { 𝐴 ,  ( 𝐵  ∖  𝐴 ) }  ∈  V | 
						
							| 45 |  | biidd | ⊢ ( 𝑥  =  { 𝐴 ,  ( 𝐵  ∖  𝐴 ) }  →  ( 𝜑  ↔  𝜑 ) ) | 
						
							| 46 |  | breq1 | ⊢ ( 𝑥  =  { 𝐴 ,  ( 𝐵  ∖  𝐴 ) }  →  ( 𝑥  ≼  ω  ↔  { 𝐴 ,  ( 𝐵  ∖  𝐴 ) }  ≼  ω ) ) | 
						
							| 47 |  | sseq1 | ⊢ ( 𝑥  =  { 𝐴 ,  ( 𝐵  ∖  𝐴 ) }  →  ( 𝑥  ⊆  𝑅  ↔  { 𝐴 ,  ( 𝐵  ∖  𝐴 ) }  ⊆  𝑅 ) ) | 
						
							| 48 |  | disjeq1 | ⊢ ( 𝑥  =  { 𝐴 ,  ( 𝐵  ∖  𝐴 ) }  →  ( Disj  𝑦  ∈  𝑥 𝑦  ↔  Disj  𝑦  ∈  { 𝐴 ,  ( 𝐵  ∖  𝐴 ) } 𝑦 ) ) | 
						
							| 49 | 46 47 48 | 3anbi123d | ⊢ ( 𝑥  =  { 𝐴 ,  ( 𝐵  ∖  𝐴 ) }  →  ( ( 𝑥  ≼  ω  ∧  𝑥  ⊆  𝑅  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  ↔  ( { 𝐴 ,  ( 𝐵  ∖  𝐴 ) }  ≼  ω  ∧  { 𝐴 ,  ( 𝐵  ∖  𝐴 ) }  ⊆  𝑅  ∧  Disj  𝑦  ∈  { 𝐴 ,  ( 𝐵  ∖  𝐴 ) } 𝑦 ) ) ) | 
						
							| 50 | 45 49 | anbi12d | ⊢ ( 𝑥  =  { 𝐴 ,  ( 𝐵  ∖  𝐴 ) }  →  ( ( 𝜑  ∧  ( 𝑥  ≼  ω  ∧  𝑥  ⊆  𝑅  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  ↔  ( 𝜑  ∧  ( { 𝐴 ,  ( 𝐵  ∖  𝐴 ) }  ≼  ω  ∧  { 𝐴 ,  ( 𝐵  ∖  𝐴 ) }  ⊆  𝑅  ∧  Disj  𝑦  ∈  { 𝐴 ,  ( 𝐵  ∖  𝐴 ) } 𝑦 ) ) ) ) | 
						
							| 51 |  | unieq | ⊢ ( 𝑥  =  { 𝐴 ,  ( 𝐵  ∖  𝐴 ) }  →  ∪  𝑥  =  ∪  { 𝐴 ,  ( 𝐵  ∖  𝐴 ) } ) | 
						
							| 52 | 51 | fveq2d | ⊢ ( 𝑥  =  { 𝐴 ,  ( 𝐵  ∖  𝐴 ) }  →  ( 𝑃 ‘ ∪  𝑥 )  =  ( 𝑃 ‘ ∪  { 𝐴 ,  ( 𝐵  ∖  𝐴 ) } ) ) | 
						
							| 53 |  | esumeq1 | ⊢ ( 𝑥  =  { 𝐴 ,  ( 𝐵  ∖  𝐴 ) }  →  Σ* 𝑦  ∈  𝑥 ( 𝑃 ‘ 𝑦 )  =  Σ* 𝑦  ∈  { 𝐴 ,  ( 𝐵  ∖  𝐴 ) } ( 𝑃 ‘ 𝑦 ) ) | 
						
							| 54 | 52 53 | eqeq12d | ⊢ ( 𝑥  =  { 𝐴 ,  ( 𝐵  ∖  𝐴 ) }  →  ( ( 𝑃 ‘ ∪  𝑥 )  =  Σ* 𝑦  ∈  𝑥 ( 𝑃 ‘ 𝑦 )  ↔  ( 𝑃 ‘ ∪  { 𝐴 ,  ( 𝐵  ∖  𝐴 ) } )  =  Σ* 𝑦  ∈  { 𝐴 ,  ( 𝐵  ∖  𝐴 ) } ( 𝑃 ‘ 𝑦 ) ) ) | 
						
							| 55 | 50 54 | imbi12d | ⊢ ( 𝑥  =  { 𝐴 ,  ( 𝐵  ∖  𝐴 ) }  →  ( ( ( 𝜑  ∧  ( 𝑥  ≼  ω  ∧  𝑥  ⊆  𝑅  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  →  ( 𝑃 ‘ ∪  𝑥 )  =  Σ* 𝑦  ∈  𝑥 ( 𝑃 ‘ 𝑦 ) )  ↔  ( ( 𝜑  ∧  ( { 𝐴 ,  ( 𝐵  ∖  𝐴 ) }  ≼  ω  ∧  { 𝐴 ,  ( 𝐵  ∖  𝐴 ) }  ⊆  𝑅  ∧  Disj  𝑦  ∈  { 𝐴 ,  ( 𝐵  ∖  𝐴 ) } 𝑦 ) )  →  ( 𝑃 ‘ ∪  { 𝐴 ,  ( 𝐵  ∖  𝐴 ) } )  =  Σ* 𝑦  ∈  { 𝐴 ,  ( 𝐵  ∖  𝐴 ) } ( 𝑃 ‘ 𝑦 ) ) ) ) | 
						
							| 56 | 55 3 | vtoclg | ⊢ ( { 𝐴 ,  ( 𝐵  ∖  𝐴 ) }  ∈  V  →  ( ( 𝜑  ∧  ( { 𝐴 ,  ( 𝐵  ∖  𝐴 ) }  ≼  ω  ∧  { 𝐴 ,  ( 𝐵  ∖  𝐴 ) }  ⊆  𝑅  ∧  Disj  𝑦  ∈  { 𝐴 ,  ( 𝐵  ∖  𝐴 ) } 𝑦 ) )  →  ( 𝑃 ‘ ∪  { 𝐴 ,  ( 𝐵  ∖  𝐴 ) } )  =  Σ* 𝑦  ∈  { 𝐴 ,  ( 𝐵  ∖  𝐴 ) } ( 𝑃 ‘ 𝑦 ) ) ) | 
						
							| 57 | 44 56 | ax-mp | ⊢ ( ( 𝜑  ∧  ( { 𝐴 ,  ( 𝐵  ∖  𝐴 ) }  ≼  ω  ∧  { 𝐴 ,  ( 𝐵  ∖  𝐴 ) }  ⊆  𝑅  ∧  Disj  𝑦  ∈  { 𝐴 ,  ( 𝐵  ∖  𝐴 ) } 𝑦 ) )  →  ( 𝑃 ‘ ∪  { 𝐴 ,  ( 𝐵  ∖  𝐴 ) } )  =  Σ* 𝑦  ∈  { 𝐴 ,  ( 𝐵  ∖  𝐴 ) } ( 𝑃 ‘ 𝑦 ) ) | 
						
							| 58 | 57 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝐴  ≠  ( 𝐵  ∖  𝐴 ) )  ∧  ( { 𝐴 ,  ( 𝐵  ∖  𝐴 ) }  ≼  ω  ∧  { 𝐴 ,  ( 𝐵  ∖  𝐴 ) }  ⊆  𝑅  ∧  Disj  𝑦  ∈  { 𝐴 ,  ( 𝐵  ∖  𝐴 ) } 𝑦 ) )  →  ( 𝑃 ‘ ∪  { 𝐴 ,  ( 𝐵  ∖  𝐴 ) } )  =  Σ* 𝑦  ∈  { 𝐴 ,  ( 𝐵  ∖  𝐴 ) } ( 𝑃 ‘ 𝑦 ) ) | 
						
							| 59 | 43 58 | mpdan | ⊢ ( ( 𝜑  ∧  𝐴  ≠  ( 𝐵  ∖  𝐴 ) )  →  ( 𝑃 ‘ ∪  { 𝐴 ,  ( 𝐵  ∖  𝐴 ) } )  =  Σ* 𝑦  ∈  { 𝐴 ,  ( 𝐵  ∖  𝐴 ) } ( 𝑃 ‘ 𝑦 ) ) | 
						
							| 60 |  | uniprg | ⊢ ( ( 𝐴  ∈  𝑅  ∧  ( 𝐵  ∖  𝐴 )  ∈  𝑅 )  →  ∪  { 𝐴 ,  ( 𝐵  ∖  𝐴 ) }  =  ( 𝐴  ∪  ( 𝐵  ∖  𝐴 ) ) ) | 
						
							| 61 | 4 6 60 | syl2anc | ⊢ ( 𝜑  →  ∪  { 𝐴 ,  ( 𝐵  ∖  𝐴 ) }  =  ( 𝐴  ∪  ( 𝐵  ∖  𝐴 ) ) ) | 
						
							| 62 |  | undif | ⊢ ( 𝐴  ⊆  𝐵  ↔  ( 𝐴  ∪  ( 𝐵  ∖  𝐴 ) )  =  𝐵 ) | 
						
							| 63 | 7 62 | sylib | ⊢ ( 𝜑  →  ( 𝐴  ∪  ( 𝐵  ∖  𝐴 ) )  =  𝐵 ) | 
						
							| 64 | 61 63 | eqtrd | ⊢ ( 𝜑  →  ∪  { 𝐴 ,  ( 𝐵  ∖  𝐴 ) }  =  𝐵 ) | 
						
							| 65 | 64 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  ( 𝐵  ∖  𝐴 ) )  →  ∪  { 𝐴 ,  ( 𝐵  ∖  𝐴 ) }  =  𝐵 ) | 
						
							| 66 | 65 | fveq2d | ⊢ ( ( 𝜑  ∧  𝐴  ≠  ( 𝐵  ∖  𝐴 ) )  →  ( 𝑃 ‘ ∪  { 𝐴 ,  ( 𝐵  ∖  𝐴 ) } )  =  ( 𝑃 ‘ 𝐵 ) ) | 
						
							| 67 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝐴  ≠  ( 𝐵  ∖  𝐴 ) )  ∧  𝑦  =  𝐴 )  →  𝑦  =  𝐴 ) | 
						
							| 68 | 67 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝐴  ≠  ( 𝐵  ∖  𝐴 ) )  ∧  𝑦  =  𝐴 )  →  ( 𝑃 ‘ 𝑦 )  =  ( 𝑃 ‘ 𝐴 ) ) | 
						
							| 69 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝐴  ≠  ( 𝐵  ∖  𝐴 ) )  ∧  𝑦  =  ( 𝐵  ∖  𝐴 ) )  →  𝑦  =  ( 𝐵  ∖  𝐴 ) ) | 
						
							| 70 | 69 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝐴  ≠  ( 𝐵  ∖  𝐴 ) )  ∧  𝑦  =  ( 𝐵  ∖  𝐴 ) )  →  ( 𝑃 ‘ 𝑦 )  =  ( 𝑃 ‘ ( 𝐵  ∖  𝐴 ) ) ) | 
						
							| 71 | 68 70 23 26 24 27 37 | esumpr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  ( 𝐵  ∖  𝐴 ) )  →  Σ* 𝑦  ∈  { 𝐴 ,  ( 𝐵  ∖  𝐴 ) } ( 𝑃 ‘ 𝑦 )  =  ( ( 𝑃 ‘ 𝐴 )  +𝑒  ( 𝑃 ‘ ( 𝐵  ∖  𝐴 ) ) ) ) | 
						
							| 72 | 59 66 71 | 3eqtr3d | ⊢ ( ( 𝜑  ∧  𝐴  ≠  ( 𝐵  ∖  𝐴 ) )  →  ( 𝑃 ‘ 𝐵 )  =  ( ( 𝑃 ‘ 𝐴 )  +𝑒  ( 𝑃 ‘ ( 𝐵  ∖  𝐴 ) ) ) ) | 
						
							| 73 | 29 72 | breqtrrd | ⊢ ( ( 𝜑  ∧  𝐴  ≠  ( 𝐵  ∖  𝐴 ) )  →  ( 𝑃 ‘ 𝐴 )  ≤  ( 𝑃 ‘ 𝐵 ) ) | 
						
							| 74 | 20 73 | pm2.61dane | ⊢ ( 𝜑  →  ( 𝑃 ‘ 𝐴 )  ≤  ( 𝑃 ‘ 𝐵 ) ) |