Metamath Proof Explorer


Theorem pmeasmono

Description: This theorem's hypotheses define a pre-measure. A pre-measure is monotone. (Contributed by Thierry Arnoux, 19-Jul-2020)

Ref Expression
Hypotheses caraext.1 φ P : R 0 +∞
caraext.2 φ P = 0
caraext.3 φ x ω x R Disj y x y P x = * y x P y
pmeasmono.1 φ A R
pmeasmono.2 φ B R
pmeasmono.3 φ B A R
pmeasmono.4 φ A B
Assertion pmeasmono φ P A P B

Proof

Step Hyp Ref Expression
1 caraext.1 φ P : R 0 +∞
2 caraext.2 φ P = 0
3 caraext.3 φ x ω x R Disj y x y P x = * y x P y
4 pmeasmono.1 φ A R
5 pmeasmono.2 φ B R
6 pmeasmono.3 φ B A R
7 pmeasmono.4 φ A B
8 eqimss A = B A A B A
9 ssdifeq0 A B A A =
10 8 9 sylib A = B A A =
11 10 fveq2d A = B A P A = P
12 11 adantl φ A = B A P A = P
13 2 adantr φ A = B A P = 0
14 12 13 eqtrd φ A = B A P A = 0
15 1 5 ffvelrnd φ P B 0 +∞
16 elxrge0 P B 0 +∞ P B * 0 P B
17 16 simprbi P B 0 +∞ 0 P B
18 15 17 syl φ 0 P B
19 18 adantr φ A = B A 0 P B
20 14 19 eqbrtrd φ A = B A P A P B
21 iccssxr 0 +∞ *
22 1 adantr φ A B A P : R 0 +∞
23 4 adantr φ A B A A R
24 22 23 ffvelrnd φ A B A P A 0 +∞
25 21 24 sseldi φ A B A P A *
26 6 adantr φ A B A B A R
27 22 26 ffvelrnd φ A B A P B A 0 +∞
28 xrge0addge P A * P B A 0 +∞ P A P A + 𝑒 P B A
29 25 27 28 syl2anc φ A B A P A P A + 𝑒 P B A
30 prct A R B A R A B A ω
31 4 6 30 syl2anc φ A B A ω
32 31 adantr φ A B A A B A ω
33 prssi A R B A R A B A R
34 4 6 33 syl2anc φ A B A R
35 34 adantr φ A B A A B A R
36 disjdif A B A =
37 simpr φ A B A A B A
38 id y = A y = A
39 id y = B A y = B A
40 38 39 disjprg A R B A R A B A Disj y A B A y A B A =
41 23 26 37 40 syl3anc φ A B A Disj y A B A y A B A =
42 36 41 mpbiri φ A B A Disj y A B A y
43 32 35 42 3jca φ A B A A B A ω A B A R Disj y A B A y
44 prex A B A V
45 biidd x = A B A φ φ
46 breq1 x = A B A x ω A B A ω
47 sseq1 x = A B A x R A B A R
48 disjeq1 x = A B A Disj y x y Disj y A B A y
49 46 47 48 3anbi123d x = A B A x ω x R Disj y x y A B A ω A B A R Disj y A B A y
50 45 49 anbi12d x = A B A φ x ω x R Disj y x y φ A B A ω A B A R Disj y A B A y
51 unieq x = A B A x = A B A
52 51 fveq2d x = A B A P x = P A B A
53 esumeq1 x = A B A * y x P y = * y A B A P y
54 52 53 eqeq12d x = A B A P x = * y x P y P A B A = * y A B A P y
55 50 54 imbi12d x = A B A φ x ω x R Disj y x y P x = * y x P y φ A B A ω A B A R Disj y A B A y P A B A = * y A B A P y
56 55 3 vtoclg A B A V φ A B A ω A B A R Disj y A B A y P A B A = * y A B A P y
57 44 56 ax-mp φ A B A ω A B A R Disj y A B A y P A B A = * y A B A P y
58 57 adantlr φ A B A A B A ω A B A R Disj y A B A y P A B A = * y A B A P y
59 43 58 mpdan φ A B A P A B A = * y A B A P y
60 uniprg A R B A R A B A = A B A
61 4 6 60 syl2anc φ A B A = A B A
62 undif A B A B A = B
63 7 62 sylib φ A B A = B
64 61 63 eqtrd φ A B A = B
65 64 adantr φ A B A A B A = B
66 65 fveq2d φ A B A P A B A = P B
67 simpr φ A B A y = A y = A
68 67 fveq2d φ A B A y = A P y = P A
69 simpr φ A B A y = B A y = B A
70 69 fveq2d φ A B A y = B A P y = P B A
71 68 70 23 26 24 27 37 esumpr φ A B A * y A B A P y = P A + 𝑒 P B A
72 59 66 71 3eqtr3d φ A B A P B = P A + 𝑒 P B A
73 29 72 breqtrrd φ A B A P A P B
74 20 73 pm2.61dane φ P A P B